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Problem 9.1: Braid group representations from the Majorana algebra [Oral | 12 pt(s) ]

ID: ex_braid_group_representation:tqp25

Learning objective

Anyons are localized particles in two-dimensional systems that obey neither fermionic nor bosonic

statistics. In general, their statistics is described by representations of the braid group. In this exercise,

you familiarize yourself with the braid group and then use the Majorana modes introduced in the lecture

to construct a non-Abelian representation which describes the braiding statistics of so called Ising anyons.

This construction motivates the concept of so called Majorana-based topological quantum computinga,

and can – in principle – be realized with vortices in two-dimensional p-wave superconductors or at the
ends of one-dimensional Majorana chains (or generalized wire networksb).

aT. Karzig et al., Scalable designs for quasiparticle-poisoning-protected topological quantum computation with

Majorana zero modes, Physical Review B 95, 235305 (2017)
bJ. Alicea et al., Non-abelian statistics and topological quantum information processing in 1D wire networks,

Nature Physics 7, 412 (2011)

A brief1 introduction to particle statistics

Consider a set of N indistinguishable particles described by positions x ∈ RdN in d-dimensional
space. A path integral is the (formal) sum of all possible paths in configuration space C from a fixed

initial point (xi, ti) to a fixed finial point (xf , tf ), weighted by a phase given by the classical action
S:

〈xf | Û(tf , ti) |xi〉︸ ︷︷ ︸
Amplitude of configura-

tion xi evolving into con-

figuration xf

∼
∑
g∈G

ρ(g)︸ ︷︷ ︸
Sum over equivalence

classes of paths that

cannot be continuously

deformed into each other

∫
Path∈g
xi 7→xf

D(Path) eiS[Path] .

︸ ︷︷ ︸
Integral over paths in class

g that can be continuously
deformed into each other

(1)

A key insight is that the path space (i.e., the space of all continuous paths through C with fixed

endpoints xi and xf ) splits into topologically inequivalent components. That is, certain paths cannot

be continuously deformed into other paths (because we assume the particles cannot occupy the same

point in space at the same time). Naturally, paths through C can be concatenated, which induces a

multiplication on path space. The set of (equivalence classes of) topologically inequivalent paths

through C then forms a group known as the fundamental group G := π1(C).
Because one can only define integrals over continuous components, this forces us to split the path

integral (1) into separate path integrals over the different classes g ∈ G. This opens the possibility

to weight the different contributions with a class functions ρ that is independent of the action that
determines the local dynamics of the particles.

1For more details have a look at Chapter 3 of Topological Quantum by Steven Simon.
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Mathematically, one finds that ρ must be unitary to conserve probabilities. Furthermore, one can

show that ρ must be a representation of G to ensure that the composition law for paths remains

valid. Beyond these requirements, the laws of quantum mechanics do not tell us which prefactors

for the path integral we should use. It is a matter of experiment to determine these representations

for different types of particles. The representation ρ of G is what determines the statistics of the

particles! Thus, to understand which types of statistics are possible, one must understand the

possible representations of G:

In d ≥ 3 spatial dimensions, it turns out that G ' SN is the symmetric group. This means that the

different components in the space of paths on C are labeled by the way the N particles are permuted.

Focusing on one-dimensional2 representations of SN , one finds two of them: the trivial one (where

exchanging two particles does nothing) and the sign representation (where exchanging yields a

minus sign). These two representations correspond to bosonic and fermionic statistics, respectively.

Something remarkable happens in d = 2 dimensions3: Then,

G ' BN turns out to be the so called braid group. The ele-

ments of this group can be visualized as braids of N strings

that start and end on fixed positions i = 1, . . . , N (figure to

the right). Physically, the strings correspond to the world

lines of theN particles through 2+1-dimensional spacetime.

σi,i+1 ≡

It is convenient to lay out the strings in parallel and label their horizontal position by an integer

i = 1, . . . , N . One then defines the counterclockwise exchange of the two adjacent strands at i and
i + 1 as σi,i+1 ∈ BN (depicted in the figure). It is easy to see [subtask a)] that all possible braids

can be decomposed into such elementary exchanges of adjacent string, hence the set of all σi,i+1

generates the braid group BN .

Note that – in contrast to the 3 + 1-dimensional case with the symmetric group4 SN – exchanging

two adjacent braids twice knots their paths so that σ2
i,i+1 6= 1.

a) Argue that the braid group BN can be generated by σ1,2, σ2,3, . . . σN−1,N and their inverses. 2pt(s)

What is the order |BN | of the braid group?
Compare this to the order |SN | of the symmetric group.
Convince yourself geometrically that the defining relations of the braid group BN are

σi,i+1 σi+1,i+2 σi,i+1 = σi+1,i+2 σi,i+1 σi+1,i+2 , (2a)

σi,i+1 σj,j+1 = σj,j+1 σi,i+1 (2b)

for i ∈ {1, . . . , N − 2}, j ∈ {3, . . . , N − 1} and |j − i| > 1.

Note:We read a “braid word” like σi,i+1σ
−1
j,j+1 from right to left (do the right-most operation first).

This allows us to define the Braid group

BN := 〈 σ1,2, . . . , σN−1,N | Eq. (2a) ∧ Eq. (2b) fulfilled 〉 (3)

2Higher-dimensional representations lead to particles with so called parastatistics.
3Mathematically, the distinction between 2+1-dimensional spacetime and 3+1-dimensional spacetime (and higher

dimensions) is that there are non-trivial knots in three dimensions but none in higher dimensions (can you see why?).
4This sets the braid group BN apart from the symmetric group SN : The symmetric group can be interpreted as

a “truncated” braid group characterized by setting σ2
i,i+1 = 1. Conversely, the Braid group can be interpreted as a

non-Abelian “extension” of the symmetric group which accounts for the direction in which two strands are exchanged.
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as the free group of the N − 1 generators, modulo the relations Eq. (2a) and Eq. (2b).

Particles that live in 2 + 1 dimensions and transform via a (non-trivial) braid group representation

ρ are known as an anyons. If the representation is non-Abelian (and therefore necessarily not

one-dimensional), such particles are called non-Abelian anyons. This means that in 2+ 1 dimensions,
indistinguishable particles can behave differently from bosons and fermions!

A particularly simple type of anyon (= statistics) are called Ising anyons5. Ising anyons can be

physically realized (up to phases) in the low-energy sector of models that carry Majorana zero

modes; for example, in the vortices of p-wave superconductors or at the ends of one-dimensional
Majorana chains (as you have seen in the lecture). Thus, the non-Abelian braiding statistics of Ising

anyons can be described in terms of Majorana fermions (by associating a Majorana mode with each

anyon).

The goal of this exercise is to derive and study a (non-Abelian) Braid group representation that can

be constructed from Majorana modes.

To this end, we consider some system with in total N = 2M Majorana zero modes

{γi, γj} = 2δi,j with γi = γ†i for i, j ∈ {1, . . . , 2M} . (4)

Note that it is in particular γ2i = 1. (Think ofM Majorana chains in the topological phase.)

Remember that every pair of Majorana modes γ2i−1 and γ2i can be combined into one fermion

mode ci =
1
2
(γ2i−1 + iγ2i) to each of which we can associate the number operator ni = c†ici. Since

we assume the 2M Majorana modes to be zero modes (= not show up in the Hamiltonian), the

ground state space of our system must be 2M -fold degenerate and we can label ground states by the

occupation numbers ni. (Hence we can storeM qubits in the ground state space.)

In the following, we identify the Majoranas γi with the i-th “strand” on which the Braid group B2M

(N = 2M ) operates. Our goal is to find a unitary representation ρ built from Majorana zero modes

(this representation acts on fermionic Fock space, and in particular the degenerate ground state

space of our system). Note that we can completely define a representation of B2M by defining it on

the generators σ1,2, σ2,3, . . . , σ2M−1,2M .

Physically, we want admissible representations to act locally, i.e., the representation ρ(σi,i+1) that
exchanges the i-th and the i+ 1-th strand (= Majorana mode) should be generated by γi and γi+1

only. Furthermore, we require translational invariance, i.e., the coefficients in ρ(σi,i+1) should be
independent of the strand indices i and i+ 1. Finally, since our representation operates on quantum
states, it should be unitary to conserve probabilities.

b) Use locality and translational invariance to show that a representation of the generators must 1pt(s)

be of the form

ρ(σi,i+1) = a1+ b γiγi+1 (5)

for (still unknown) parameters a, b ∈ C.
Hint: Use the braid group relation Eq. (2b).

c) Show that a unitary representation of the form (5) that satisfies the braid group relation Eq. (2a) 2pt(s)

5The name “Ising” hints at a relation to the Ising model, this is not important for us here.
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must have the form

ρ(σi,i+1) =
eiϕ√
1 + |s|

(1+ sγiγi+1) , (6)

with s ∈ {−1, 0, 1} and an arbitrary phase ϕ ∈ [0, 2π).

In which case is this representation Abelian? In which case is it non-Abelian?

What happens when flipping the sign s 7→ −s?
d) Show that the representation (6) can be rewritten as an exponential 1pt(s)

ρ(σi,i+1) = eiϕ exp
[
s
π

4
γiγi+1

]
(7)

in terms of the anti-Hermitian generator sπ
4
γiγi+1.

Note: In the literature, both expression (6) and expression (7) can be found. For “true” (i.e. non-projective)

Ising anyons, it is s = 1 and the phase would be fixed to ϕ = π
8 .

In the following, we consider the parity Pi ≡ iγ2i−1γ2i of the fermion mode ci and the total parity
P =

∏M
i=1 Pi of the zero modes.

e) Show that Pi = exp [iπ(1− ni)] and P = exp [iπ(M − n)]. 1pt(s)

What are the eigenvalues of P ? Interpret these eigenvalues.

f) Show that the eigenvalue of P remains unchanged under every braiding operation. 1pt(s)

Use this to argue that the representation (7) reduces to two 2M−1-dimensional representations.

Naturally, the representation (6) [or (7)] acts on the Majorana zero modes via conjugation:

ρ(σi,i+1) ◦ γj ≡ ρ(σi,i+1) γj ρ(σi,i+1)
† . (8)

g) Compute the group action of ρ(σi,i+1) on the Majorana modes γ1, . . . , γ2M . 1pt(s)

Does this reflect the interpretation of γj as “strands” that are swapped by ρ(σi,i+1)?

As remarked earlier, for the braid group, the double-exchange σ2
i,i+1 6= 1 is not the identity. Instead,

this describes the braiding of one mode γi around another mode γi+1. In the last part of this exercise,

we study the effect of such a braiding operation on the degenerate ground state space.

h) First, let us consider the braiding of two Majorana modes γ2i−1 and γ2i that belong to the same 2pt(s)

Fermion mode ci =
1
2
(γ2i−1 + iγ2i).

As a preparation, show that the exchange of the two modes

ρ(σ2i−1,2i) =
eiϕ√
1 + |s|

(1− isPi) = eiϕ exp
[
−isπ

4
Pi

]
(9)

can be expressed in terms of the parity operator of the fermion mode Pi.

What is the representation ρ(σ2
2i−1,2i) for braiding of two modes?

Use this result to compute the group action on the fermion modes c
(†)
1 , . . . , c

(†)
M .

Since the fermion mode ci is composed of the two Majoranas γ2i−1 and γ2i that we braid around
each other, we can interpret this operation as rotation of the fermion mode by 360◦. The phase

that is picked up due to this operation is therefore called topological spin.

Does the topological spin of the fermion mode (for s 6= 0) match your expectations for a fermion?
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i) Finally, consider the two adjacent fermion modes ci =
1
2
(γ2i−1+iγ2i) and ci+1 =

1
2
(γ2i+1+iγ2i+2) 1pt(s)

that comprise the four Majorana modes γ2i−1, γ2i, γ2i+1, γ2i+2.

How does the braiding (= double exchange) of γ2i and γ2i+1 act on the two fermion modes?

How can you populate two non-adjacent fermion modes by braiding?

Can you populate only a single fermion mode by braiding?

An Ising anyons theory knows two types of particles (plus the trivial particle 1 which means “no
particle”): The Ising anyon itself (often called σ) and a fermion (called Ψ). A characteristic feature of

this type of statistics is that when one brings two Ising anyons together (called fusion), the outcome

is either 1 (no particle) or Ψ (a fermion). Formally, one writes

σ ⊗ σ = 1⊕Ψ . (10)

This abstract structure is realized in the Majorana framework considered here by identifying the

Ising anyons with Majorana zero modes. Their fusion is then described by measuring the occupation

of the Fermion mode that can be constructed from them. Naturally, this process has two outcomes:

Either the mode is empty (1) or it is occupied by a fermion (Ψ). The fact that there is more than one

possible outcome for fusion makes Ising anyons non-Abelian.

This non-Abelian nature also becomes evident in their braid-

ing rules, one of which can be pictorially described as shown

on the right (time flows from bottom to top).

You start with two pairs of Ising anyons (= Majorana modes)

that fuse to 1 (= their fermion modes are empty). Then

you braid the two inner Majorana modes (which belong to

different pairs) around each other. When you know fuse the

two pairs again, you find a fermion in each of them. This

is your result from subtask i) reformulated in the abstract

language of anyons theories. Operations like this are at the

heart of topological quantum computation, where unitary

gates are implemented by such braiding procedures.
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Problem 9.2: Stabilizer formalism [Written | 9 (+3 bonus) pt(s) ]

ID: ex_stabilizer_formalism:tqp25

Learning objective

In the lecture, we used the degenerate ground state manifold of the Majorana chain as a quantum error

correction code. To this end, we used the stabilizer formalism, where the stabilizer operators where

constructed from Majorana modes. This is a rather niche application of the stabilizer formalisma.

The stabilizer formalism itself is much more versatile, and an important tool in quantum information

theory. Conventionally, stabilizer codes are not constructed from fermionic systems but used to describe

systems of qubits. Here you study the stabilizer formalism from this more general point of view. In

particular, you show how the famous Shor code can be expressed within this formalism.

aS. Bravyi et al., Majorana fermion codes, New Journal of Physics 12(8), 083039 (2010)

We consider a system of N qubits, described by a Hilbert spaceH = (C2)
⊗N

. The Pauli group on

this Hilbert space is defined as the span

PN := 〈 1, Xi, Yi, Zi | i ∈ {1, . . . , N} 〉 (11)

of the Pauli matricesXi, Yi and Zi for each qubit i ∈ {1, . . . , N}, where the group operation is their
multiplication. The Pauli group includes all products of Pauli matrices with multiplicative factors

±1 and ±i.
We are interested in a subgroup S = 〈 S1, . . . , SK 〉 ≤ PN spanned by K independent generators

{S1, . . . , SK} ⊂ PN . (Meaning: S is the set of products of the generators and no generator is a

product of the other generators.) K = rank(S) is called the rank of S .
The choice of generators is not arbitrary. In the following, we require that

−1 /∈ S and ∀i,j∈{1,...,K} : [Si, Sj] = 0 . (12)

Note: You show in subtask c) why these assumptions are necessary; here they are simply part of the definition.

With the group S , we can define the linear subspace of states

HS := span { |ψ〉 ∈ H | ∀S∈S : S |ψ〉 = |ψ〉 } (13)

that are invariant under every element of S .
We say thatHS is stabilized by S and S is the stabilizer ofHS .

Note: Convince yourself that Eq. (13) is a linear subspace ofH.

The rationale of the stabilizer formalism is to describe the quantum state(s) in HS not by writing

down their amplitudes (which requires an exponential amount of resources), but by tracking (and

transforming) their stabilizer group S (given by its generators Si) instead. Since this requires only

storing O(N) generators, this approach is much more efficient. Beyond this efficiency gain, the

stabilizer formalism is also a versatile tool to describe a variety of quantum error correction codes

and protocols.

In the following, you prove crucial properties of the stabilizer formalism and apply it to simple

states, including the famous Shor quantum error correction code:
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a) Our first goal is to determine the dimension of the stabilizer subspaceHS as a function of the 2pt(s)

number of qubits N and the number of generators K .

As a preliminary step, show that for every fixed i ∈ {1, . . . , K}, there exists Pi ∈ PN such that

{Si, Pi} = 0 and ∀j∈{1,...,K}\{i} : [Sj, Pi] = 0 . (14)

Hint: Choose a suitable set of basis vectors.

Note:This shows that you can think of the generators Si as generalized Pauli Z-matrices with the Pi as

their associated Pauli X-matrices.

b) Use your result from a) to show that the dimension of the stabilized subspace is 2pt(s)

dimHS = 2N−K . (15)

Note: This means, for instance, that to describe a single quantum state uniquely, you need as many

stabilizer generators as qubits: dimHS = 2N−N = 1.

Hint: Consider some vector x ∈ ZK
2 and show that

Px
S :=

K∏
j=1

1+ (−1)xjSj
2

(16)

is the projector onto the eigenspaceHx
S with eigenvalues (−1)xj of Sj . Then use the result from a).

∗c) In the definition of a stabilizer, the conditions Eq. (12) seem ad hoc. +2pt(s)

Show thatHS is only a non-trivial subspace (dimHS 6= 0) if the conditions (12) are satisfied.

d) As a simple example, consider the N = 2-qubit Greenberger–Horne–Zeilinger state 1pt(s)

|GHZ〉 = 1√
2
(|00〉+ |11〉) . (17)

What are the stabilizers S such thatHS = span {|GHZ〉}?
Write down a suitable set of generators.

Note: This example demonstrates what makes the stabilizer formalism so powerful: It can describe

strongly entangled states!

e) Consider again N = 2 qubits and delete one generator from your GHZ-stabilizer to obtain the 1pt(s)

new stabilizer group S = 〈 Z1Z2 〉.
Write down the full set of stabilizers S .
What is the Hilbert spaceHS stabilized by S? What is its dimension?

Write down a suitable basis.

Note that not every linear subspace (or state) can be described in terms of stabilizers. A simple

counterexample is the space spanned by theW -state on N = 3 qubits (named afterWolfgang Dür)

|W〉 = |100〉+ |010〉+ |001〉√
3

. (18)

Note: A proof of this statement requires additional knowledge about measurement outcomes of stabilizer

states – otherwise it is not obvious.
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As demonstrated in the lecture, the stabilizer formalism is extremely useful to describe quantum

error correction codes. In this context, the stabilized subspaceHS is the code space in which one wants

to store the logical qubits to be protected from noise. Measuring stabilizer operators then yields

information on errors that occurred (the so called error syndrome) without affecting the amplitudes in

the code space. Note that this scenario requires dimHS > 1 so that K < N .

Suppose we have N = 9 qubits and K = 8 stabilizer generators which leaves us with a 29−8 = 2-
dimensional Hilbert spaceHS (→ one logical qubit). The 8 generators are given by

S = 〈 Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, X1X2X3X4X5X6, X4X5X6X7X8X9 〉 . (19)

This stabilizer describes the famous Shor code6. Historically, it was the first quantum error correction

code that allows for the correction of an arbitrary single qubit error (i.e., one accidental/unknown

Xi, Yi, or Zi gate applied to any of the 9 qubits).

Note: To think about the Shor code stabilizer, it is convenient to arrange the qubits in a 3× 3 array like so:

1 4 7
2 5 8
3 6 9

(20)

f) Show that by measuring the 8 stabilizers (the error syndrome) one can detect whether a single 2pt(s)

qubit error occurred.

Hint:Why is it sufficient to study the effects of Xi and Zi errors only?

Then show that (and how) by applying a single gate conditioned on the error syndrome, one can

correct for any single qubit error.

Hint: Start with a state |ψ〉 ∈ HS in the code space, such that for all generators Si |ψ〉 = |ψ〉, and apply
a single qubit error, e.g., |ψ′〉 = X1 |ψ〉. Then determine the measurement outcomes of all 8 stabilizers

and try to come up with an algorithm to reverse the error.

∗g) Construct the logical Pauli matrices Σx and Σz that operate on the logical qubit stored inHS . +1pt(s)

Hint:These operators must satisfy {Σx,Σz} = 0 and [Σα, Si] = 0 for all i = 1, . . . , 8.

So far, you have shown that stabilizers can be used to describe states or vector spaces. However, the

stabilizer formalism can also be used to describe operations acting on these quantum states.

Again, consider a state |ψ〉 that is uniquely stabilized by the stabilizer S . It is easy to check (do
so!) that a state |ψ′〉 = U |ψ〉 transformed by some unitary U is stabilized by the new generators

S ′
i = USiU

†. This means that instead of keeping track of the state |ψ〉, we can keep track of the
stabilizer S which describes the state.

In order for this to be an efficient encoding, it is necessary that all stabilizers can be described by N
generators Si, S

′
i ∈ PN from the Pauli group. (Do you see why storing N of such operators does not

require an exponential amount of storage?)

Consequently, we can only keep track of unitary gates U that have the property that all new

generators S ′
i = USiU

† are still elements of the Pauli group PN . The subgroup CN ⊂ U(2N) of
unitaries that maps elements of the Pauli group onto (potentially other) elements of the Pauli group

is called the Clifford group.
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h) Show that the Hadamard gate 1pt(s)

H =
1√
2

(
1 1
1 −1

)
(21)

and the Phase gate

S =

(
1 0
0 i

)
(22)

(applied to any of the N qubits) belong to the Clifford group CN .
Can you write down other single-qubit gates that belong to CN?

One can show that the Hadamard and phase gate (on every qubit), together with the Controlled-NOT

(CNOT) gate (applied between any pair of qubits) generate the complete Clifford group CN .
For this reason, any quantum circuit that only uses gates from the Clifford group (Hadamard-, Phase-,

CNOT- and all Pauli-gates), can be efficiently simulated on a classical computer using the stabilizer

formalism. This is an important result in quantum information theory known as the Gottesman-Knill

theorem7.

Crucially, the Clifford group does not contain all unitary operations. In particular, the T-gate

T =
√
S (which is a phase gate with a π

4
phase rotation) is not part of the Clifford group. It is

because of these gates that we need a quantum computer!

6P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Physical Review A 52, R2493 (1995)
7See Chapter 10.5.4 in Quantum Computation andQuantum Information by Nielsen and Chuang for more details.
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