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Problem 7.1: The sewing matrix expression for the Pfaffian invariant [Written | 12 pt(s) ]

ID: ex_sewing_matrix_expression_pfaffian_invariant:tqp25

Learning objective

In the lecture, we introduced the Pfaffian invariant as the parity of the vorticity of the Pfaffian in an

effective Brillouin zone. This topological Z2 index characterizes the topological phase of the Kane-Mele

model (topological insulator). Here you derive an equivalent expression for the Pfaffian invariant in

terms of the sewing matrix. This expression is pivotal for the construction of topological insulators in

three dimensions.

Let {|ei(k)〉}i=1...2n be a globally continuous basis of the valence bundle, i.e., the subspace of filled

Bloch states Hfilled
k over the Brillouin zone T 2. In the lecture, we defined the Pfaffian index as

I :=
1

2πi

∮
∂EBZ

d logP (k) mod 2 =
1

2πi

∮
∂EBZ

∇ logP (k) · dk mod 2 (1)

with ∂EBZ the boundary of a suitably chosen effective Brillouin zone (EBZ) that does not intersect

the vortices of P (k). The latter is given as the Pfaffian P (k) := Pf [M(k)] of the skew-symmetric

matrix

Mij(k) := 〈ei(k)| T̃U |ej(k)〉 . (2)

Here, T̃U = UK is the (antiunitary) time-reversal operator with T̃ 2
U = −1. K denotes complex

conjugation and U is a unitary operator that determines the representation on Bloch space.

Let the sewing matrix be defined as

wij(k) := 〈ei(−k)| T̃U |ej(k)〉 . (3)

The goal of this exercise is to find an expression for the topological index (1) in terms of the sewing

matrix (3). This expression will turn out to be much simpler than Eq. (1) and can straightforwardly

be generalized to three dimensions.

In the following, I denotes the set of time-reversal invariant momenta (TRIMs).

a) To warm up, prove the following properties of the sewing matrix for k ∈ T 2 andK ∈ I : 3pt(s)

i. w(k)w†(k) = 1 → Unitarity everywhere on the Brillouin zone

ii. wT (k) = −w(−k) → Skew-symmetry at TRIMs

iii. w(K) = M(K)

iv. M(−k) = w(k) ·M∗(k) · wT (k)

v. det[w(k)] = P (k)
[P (−k)]∗

Problem Set Version: 1.0 | tqp25 Page 1 of 5



TOPOLOGICAL QUANTUM MANY-BODY PHYSICS Problem Set 7

Hint: For A,B ∈ C2n×2n with A skew-symmetric, it is Pf
[
BABT

]
= det (B) Pf [A].

b) Next, show that det[w(k)] = det[w(−k)] is inversion symmetric on T 2. Use this to prove that 2pt(s)

1

2πi

∮
C
d log[detw(k)] = 0 (4)

vanishes for every closed path C on the Brillouin zone T 2.

Hint: Note that the non-contractible loops around the torus T 2 allow for phase windings even in the

absence of vortices. To show that for such loops the above integral vanishes, use that every loop can be

continuously deformed into a time-reversal invariant loop, i.e., a loop that is mapped onto itself under

inversion k 7→ −k.

For a path C that does not cross zeros of P (k), we define L[C] :=
∫
C d logP (k). This allows us to

rewrite the Pfaffian index as I = L[∂EBZ]/(2πi) mod 2 for the closed path C = ∂EBZ.

In the following, we use Ci,j to label the two disjoint boundary components of the EBZ (each of

which passes through two TRIMs Ki,Kj ∈ I). Each of these paths can be split into two connected

components C±
i,j that are mapped onto each other under time-reversal:

EBZ

kx

ky

C−
1,2 C+

1,2

C−
3,4 C+

3,4

1

4

4

4

4

2 2

3

3

c) Show that the Pfaffian index is implicitly given by 1pt(s)

(−1)I = exp
L[C1,2]− L[C3,4]

2
(5)

with L[Ci,j] = 2L[C+
i,j] +

(
L[C−

i,j]− L[C+
i,j]

)
for (i, j) ∈ {(1, 2), (3, 4)}.

d) To evaluate Eq. (5), first show that 1pt(s)

expL[C+
i,j] =

Pf [w(Kj)]

Pf [w(Ki)]
, (6)

e) . . . and then show that 2pt(s)

L[C+
i,j]− L[C−

i,j] =

∫
C+
i,j

d [logP (k)− logP ∗(−k)] . (7)

Hint: Show that |P (K)| = 1 at TRIMs K ∈ I , and that |P (k)| = |P (−k)| is symmetric. Consider a

polar decomposition P (k) = ρ(k) eiϕ(k) of the Pfaffian.
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f) Use Eq. (7) to derive 1pt(s)

exp

{
L[C+

i,j]− L[C−
i,j]

2

}
=

√
detw(Kj)√
detw(Ki)

. (8)

g) Finally, combine your results to prove the expression 2pt(s)

(−1)I =
∏
K∈I

Pf [w(K)]√
detw(K)

. (9)

For the validity of Eq. (9) you need the continuity of
√
detw(k) on T 2 (why?).

Give a reason why such a choice for the square root is possible.

Hint: The identity Pf [A]2 = det(A) may be useful.

The expression (9) allows for the computation of the Pfaffian invariant I based only on the values of

the sewing matrix at the TRIMs (no integration required!). This expression is important because it

can be used to generalize the Z2 invariant to three dimensions. This naturally leads to the concept

of three dimensional topological insulators (which have been experimentally realized) and weak

topological insulators1.

Problem 7.2: Edge modes of the Su-Schrieffer-Heeger chain [Oral | 9 pt(s) ]

ID: ex_edge_modes_su_schrieffer_heeger_chain:tqp25

Learning objective

In the lecture, we claimed (and numerically demonstrated) that the ground state space degeneracy of the

open-boundary SSH chain is due to exponentially localized edge modes which are present everywhere in

the topological phase – even in the presence of sublattice-symmetric disorder. Here you substantiate this

claim analytically.

The many-body Hamiltonian of the SSH chain reads for open boundary conditions

ĤSSH = t

L∑
i=1

(a†ibi + b†iai) + w

L−1∑
i=1

(b†iai+1 + a†i+1bi) , (10)

with real, uniform hopping strengths t > 0 and w > 0. Here a
(†)
i and b

(†)
i are the fermionic

annihilation (creation) operators of the i-th unit cell.

a) Show that the operators 1pt(s)

ãl := N
L∑
i=1

(−x)i−1 ai and b̃r := N
L∑
i=1

(−x)i−1 bL−i+1 (11)

with x = t
w
describe two fermionic modes and determine their normalizing factor N .
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b) In the thermodynamic limit (L → ∞), and if the system is in the topological phase (x < 1), 2pt(s)

prove that the ground state space of ĤSSH is four-fold degenerate by showing that[
ãl, ĤSSH

]
= O

(
xL

)
and

[
b̃r, ĤSSH

]
= O

(
xL

)
. (12)

Show that the energy splitting of the edge modes vanishes exponentially with the system size.

Your final goal is to demonstrate that these results are robust to disorder that breaks translational

invariance, particle-hole symmetry and time-reversal symmetry (but not sublattice symmetry!). To

this end, consider the generalized SSH chain Hamiltonian from the lecture

Ĥ ′
SSH =

L∑
i=1

(ti a
†
ibi + t∗i b

†
iai) +

L−1∑
i=1

(wi a
†
i+1bi + w∗

i b
†
iai+1) , (13)

with site-dependent, complex coupling constants ti, wi ∈ C.
We define the local ratio xi = ti

wi
for i ∈ {1, . . . , L − 1} and assume that the moduli |xi| are

independent and identically distributed (i.i.d.) random variables with probability density P (x) for
x ∈ [0,∞). For a given realization of couplings {xi}, we define the generalized edge mode operators

ãl := N
L∑
i=1

Xi ai and b̃r := N
L∑
i=1

X∗
i bL−i+1 (14)

with Xi :=
∏

1≤j<i(−xj) and X1 := 1.

c) Verify that all algebraic statements from subtask a) remain valid, i.e., that ãl and b̃r constitute 1pt(s)

two fermion modes.

Determine again their normalizing factor N .

d) Focus only on the left edge mode ãl and show that 3pt(s)[
ãl, Ĥ

′
SSH

]
= NXLtL bL . (15)

Derive a condition on the probability distribution P such that XL ∈ O(e−λL) for some λ > 0.

Hint: Strictly speaking, the limit L → ∞ is to be taken in a stochastic sense: Use the (strong) law of large

numbers to convert XL into an integral over P (x) in the limit L → ∞ (this limit is a so called “almost

sure” convergence).

For the sake of concreteness, assume that the moduli |xi| ∼ U(δ, x̃) are uniformly distributed random

variables in the interval [δ, x̃]. The lower cutoff 0 < δ � 1 is a regularization of no physical

importance; the upper cutoff x̃ > δ is the parameter of the model.

e) Show that for x̃ < 1, the ground state space of Ĥ ′
SSH is four-fold degenerate in the thermodynamic 2pt(s)

limit – despite the disorder in the hoppings!

Hint: Use your result from d).

In this exercise, you have shown explicitly that the topological phase of the SSH chain (indicated

by the presence of degenerate edge modes) does not rely on translation invariance, even though

the topological index derived in the lecture requires a translation invariant formulation to be

well-defined.

1L. Fu, C. L. Kane, and E. J. Mele, Topological Insulators in Three Dimensions, PRL 98, 106803 (2007)
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Problem 7.3: The Zak phase [Oral | 3 pt(s) ]

ID: ex_zak_phase:tqp25

Learning objective

In the lecture, we have shown that the two quantum phases of the SSH chain can be characterized by the

winding number of the Bloch vector around the origin in the dxdy-plane. In this exercise, you show that

the two quantum phases can also be distinguished by the Berry phase collected over the Brillouin zone.

This phase is known as the Zak phasea and has already been measured in experimentsb.

aJ. Zak, Berry’s phase for energy bands in solids, PRL 62, 2747 (1989)
bM. Atala et al., Direct measurement of the Zak phase in topological Bloch bands, Nature Physics 9, 795 (2013)

The Bloch Hamiltonian of the SSH chain is given by H(k) = ~d(k) · ~σ with Bloch vector

~d(k) =

t+ w cos k
w sin k

0

 (16)

for k ∈ S1 ≡ [0, 2π) and t, w > 0. Here, ~σ ≡ (σx, σy, σz)
T is the vector of Pauli matrices.

a) Diagonalize the Bloch Hamiltonian and compute its eigenstates |u±(k)〉. 1pt(s)

b) Compute the Zak phase via the integral of the Berry connection over the Brillouin zone: 1pt(s)

ϕZak =

∫ 2π

0

i 〈u±(k)|∂ku±(k)〉 dk . (17)

Show that ϕZak = π mod 2π in the topological phase (for t < w) and ϕZak = 0 mod 2π in the

trivial phase (for t > w).

c) Consider a continuous gauge transformation |u±(k)〉 7→ eiϕk |u±(k)〉 and compute the Berry 1pt(s)

connection and the Zak phase after the transformation.

Does the gauge affect the distinction between topological and trivial phase?
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