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Problem 6.1: Time-reversal for spins and Kramers’ theorem [Oral | 7 pt(s) ]

ID: ex_kramers_theorem:tqp25

Learning objective

In Problem 1.2 you derived Wigner’s theorem which states that physical symmetries are represented by

unitary or antiunitary operators on the Hilbert space. Kramers’ theorem (Hans Kramers, 1930) applies to

systems with an antiunitary time-reversal symmetry: It guarantees the degeneracy of eigenenergies for

time-reversal invariant Hamiltonians of half-integer total angular momentum. This has consequences

in many situations, e.g., for atomic physics where it explains the degeneracy of energy levels with

half-integer total angular momentum in the absence of magnetic fields. In this exercise, you show how

time-reversal acts on systems with arbitrary spin and subsequently prove Kramers’ theorem.

In the lecture, you showed that time-reversal T is represented on the Hilbert space by an antiunitary

operator TU = UK that squares to plus or minus one. Here, K denotes complex conjugation (for

some fixed basis) and U is a unitary operator that determines the representation on the Hilbert

space.

Kramers’ theorem ascertains that every energy level of a time-reversal invariant system (that is

[H,TU ] = 0) with a time-reversal symmetry that squares to minus one (T 2
U = −1) possesses even

degeneracy (i.e. is at least two-fold degenerate). This two-fold degeneracy is due to degenerate

Kramers’ pairs {|Ψ〉 , TU |Ψ〉}.
A physically reasonable time-reversal operation should invert the direction of angular momentum,

TU
~JT−1

U = − ~J ⇔ {TU , ~J} = 0 , (1)

that is, its representation TU should anticommute with every component Ji for i ∈ {x, y, z} of the
angular momentum operator. In the following, we consider the angular momentum eigenbasis

|j,m〉 defined by J2 |j,m〉 = j(j + 1) |j,m〉 and Jz |j,m〉 = m |j,m〉 (we assume h̄ = 1).

In the first part of this exercise, you derive the representations U that satisfy Eq. (1), and in the

second part you prove Kramers’ theorem:

a) Show that condition (1) uniquely (up to a phase factor) defines 2pt(s)

TU =
∑
m

(−1)j−m |j,−m〉 〈j,m| K (2)

by explicitly calculating its matrix elements on the angular momentum Hilbert space. Here K
denotes complex conjugation in the angular momentum eigenbasis |j,m〉.
Why is U unitary?

Hint:What is the action of J2, Jz and the ladder operators J± ≡ Jx ± iJy on TU |j,m〉?
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b) Show that TU = eiπJ
yK satisfies condition (1). Here, K denotes complex conjugation in the 2pt(s)

angular momentum eigenbasis |j,m〉.
Why is U = eiπJ

y
unitary?

What do you obtain for the cases j = 0 and j = 1
2
? Compare this with TU derived in subtask a).

Hint: Show that the ladder operator J± ≡ Jx±Jy are real matrices in the angular momentum eigenbasis.

c) Show that T 2
U = (−1)2j × 1 for angular momentum j ∈ {0, 1

2
, 1, 3

2
, . . .}. 1pt(s)

What do you obtain for half-integer angular momenta?

Is this consistent with your physical intuition that applying time-reversal twice “does nothing?”

d) Finally: Prove Kramers’ theorem. 2pt(s)

What can you conclude for the degeneracy of electronic states in atoms with half-integer total

angular momentum?

Problem 6.2: Edge modes from Dirac Hamiltonians [Written | 5 pt(s) ]

ID: ex_edge_modes_dirac_hamiltonians:tqp25

Learning objective

In the lecture, we argued that both the Chern insulator and the Z2 topological insulator feature gapless

edge modes on boundaries of the system. The phenomenon that a topologically non-trivial bulk entails

gapless modes on the surface is known as bulk-boundary correspondence. In this exercise, you show that

the emergence of these gapless edge-localized modes already follows from the low-energy description in

terms of Dirac Hamiltonians.

Consider an infinite 2D system that is effectively described by the

Dirac Hamiltonian (in real space)

HD = −i∇ · ~σ +m(y)σz =

(
m(y) −i∂x − ∂y

−i∂x + ∂y −m(y)

)
(3)

with a y-dependent Dirac mass term m(y). Here ~σ ≡ (σx, σy)T and

σi for i ∈ {x, y, z} are the Pauli matrices.
The mass term varies continuously and is negative (positive) in the left

(right) half-plane. It vanishes on the x-axis which becomes the bound-
ary that separates the two gapped systems A and B. This functional

dependencem(y) is depicted in the sketch on the right.

E

kx

A B

m(y)

y

x

In Problem 5.3 you derived the expression

C = −sign[m(y)]

2
(4)

to calculate the change in the Chern numbers for a Dirac Hamiltonian. Consequently, because of

the sign change of the Dirac mass at the boundary, the Chern numbers of the two materials A and

B must differ by ∆C = ±1. One can think of material B as a trivial insulator with C = 0 and of
material A as a Chern insulator with C = 1. Both insulators share an interface along the x-axis.
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a) Use the Hadamard transform 4pt(s)

HD 7→ UHHDU
†
H with UH =

1√
2

(
1 1
1 −1

)
(5)

to solve the time-independent Schrödinger equation HDΨ(x, y) = EΨ(x, y) with the two-

component spinor Ψ(x, y) and determine a solution which is normalizable in y-direction.

Where is this solution localized in y-direction?

Hint: Make a product ansatz to separate the PDEs after the Hadamard transform. You may set the

separation constants to zero, as this excludes only solutions which are wave-like (i.e. not normalizable) in

y-direction. Use the behavior ofm(y) sketched above to select a unique, non-diverging solution.

b) What is the spectrum E(kx) of the solution? 1pt(s)

What is the group velocity along the boundary?

Problem 6.3: Edge modes of the Kane-Mele model (Numerics) [Oral | 5 (+6 bonus) pt(s) ]

ID: ex_edge_modes_kane_mele_model:tqp25

Learning objective

A characteristic feature of phases with topologically non-trivial bands is the emergence of gapless edge

modes on boundaries of the system [see also Problem 6.2]. These modes make the system conducting on

the boundaries whereas the bulk is a gapped insulator. Because it is a well-known fact that “one doesn’t

really understand what one cannot program,” in this exercise you study the edge modes of the Kane-Mele

topological insulator numerically.

In the lecture, we introduced the many-body Hamiltonian of the Kane-Mele model (here without

Rashba spin-orbit coupling) as two time-inverted copies of the Haldane Chern insulator:

Ĥ ′
KM =

∑
〈i,j〉,α

c†iαcjα +m
∑
i,α

εic
†
iαciα + λSO

∑
〈〈i,j〉〉,α,β

iηji c
†
iαµ

z
αβcjβ . (6)

Here, i, j ∈ L indexes the sites of the honeycomb lattice L and α ∈ {↑, ↓} denotes the spin in

the z-basis. The brackets 〈i, j〉 and 〈〈i, j〉〉 denote sums over nearest and next-nearest neighboring
sites on the honeycomb lattice, respectively. The sign εi = ±1 depends on the sublattice of the

honeycomb grid and introduces a staggered potential which opens a mass gap of 2m. The sign

ηji = −ηij = ±1 of the complex phase in the Kane-Mele spin-orbit (SO) coupling term is chosen

positive for an electron that moves clockwise (makes a right-turn) on a plaquette when hopping

from j to i. µz denotes the Pauli z-matrix that acts on the spin degree of freedom and is responsible

for inverting the hopping phase in the two spin sectors.

The goal of this exercise is to compute the band structure of Eq. (6) numerically for a strip geometry

with periodic boundaries in y-direction and two boundaries of “zig-zag” shape in x-direction (see
sketch below). We consider a strip with Nx (Ny) unit cells in x-direction (y-direction), so that the
strip is of width Lx = Nxa (length Ly = Nya) with lattice constant a.
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Since the strip is only periodic in y-direction, it is convenient to treat the system as a “1D chain” in

y-direction with a very large unit cell (green box) that encompasses all 2Lx sites along a strip in

x-direction:

∗a) Fourier transform the Hamiltonian (6) in y-direction and show that it takes the form +3pt(s)

ĤKM =
∑
ky∈BZ

Ψ†
ky
H(ky)Ψky (7)

with Bloch Hamiltonian

H(ky) =

(
H↑(ky) 0

0 H↓(ky)

)
(8)

that depends on the y-momentum ky ∈ [0, 2π/a) ≡ BZ in the Brillouin zone.

H(ky) is a 4Lx × 4Lx-matrix with two 2Lx × 2Lx-block tridiagonal submatrices of the form

Hα(ky) =


Gα(ky) D†

α(ky) 0 0 . . .

Dα(ky) Gα(ky) D†
α(ky) 0

. . .

0 Dα(ky) Gα(ky) D†
α(ky)

. . .
...

. . .
. . .

. . .
. . .

 . (9)

In Hα(ky), each block is a 2× 2-matrix and repeated for ∼ Lx times along the (off-)diagonals.

The blocks on the main diagonal are of the form

Gα(ky) =

(
m− 2λα

SO sin(kya) 1 + e−ikya

1 + eikya −m+ 2λα
SO sin(kya)

)
, (10)

and the blocks on the lower off-diagonal are given by

Dα(ky) =

(
iλα

SO(1− eikya) 1
0 −iλα

SO(1− eikya)

)
. (11)
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Here we define λ↑
SO = +λSO and λ

↓
SO = −λSO for α ∈ {↑, ↓}.

The fermion modes in the Hamiltonian (7) are given by 4Lx-component spinors of the form

Ψky =
(
c̃A1,ky ,↑, c̃B1,ky ,↑, . . . , c̃ALx,ky ,↑, c̃BLx,ky ,↑, c̃A1,ky ,↓, c̃B1,ky ,↓, . . . , c̃ALx,ky ,↓, c̃BLx,ky ,↓

)T
with fermion modes c̃βx,ky ,α with y-momentum ky , for different x-positions x ∈ {1, . . . , Nx} and
spins α ∈ {↑, ↓} on the different sublattices β ∈ {A,B}.
Hint:The generic site index i ↔ (x, y, β) ∈ L in the fermion modes ciα ↔ cβx,y,α of the Hamiltonian (6)

must be carefully translated into a triple of positions x ∈ {1, . . . , Nx} and y ∈ {1, . . . , Ny} and sublattice
β ∈ {A,B}, taking into account the connectivity of the honeycomb lattice (see sketch above). Then a

discrete Fourier transform in y-direction yields the modes c̃βx,ky ,α.

The Bloch Hamiltonian H(ky) can be interpreted as the single particle Hamiltonian of a periodic
1D-chain with 2× 2× Lx = 4Lx orbitals (fermion modes) per unit cell. We should therefore expect

a 1D band structure with 4Lx bands.

Henceforth, we set a = 1 and assume Ly → ∞ so that we can choose ky ∈ BZ continuously.

Use your preferred programming language to construct and diagonalize the Bloch Hamiltonian

H(ky) as a function of ky for given parameters Lx,m and λSO. You should have access to both the
eigenvalues and the corresponding eigenvectors.

Hint: In the following, it is useful to diagonalize the two spin sectorsHα(ky) separately, and plot their spectra

with different colors in the same plots to distinguish and compare the spin-polarized bands.

b) Let us start with graphene. Set Lx = 50 andm = λSO = 0 and plot the full spectrum of H(ky) 1pt(s)

over the Brillouin zone.

You should see (projections of) the two Dirac cones that make graphene a semimetal. Note that the

tips of the cones are connected by two flat bands. This is a peculiar feature of the zig-zag edges, as

already mentioned in the first paper by Kane & Mele in 20051.

c) Now add a small staggered potential withm ≈ 0.2. 1pt(s)

Both Dirac cones should obtain a gap. What is the size of the mass gap?

In this case, there are no gapless edge modes since the spin-polarized bands have no Chern number

(you already know this from the Haldane model discussed in the lecture).

d) Switch off the staggered potential by setting m = 0 and instead open a gap using a small 1pt(s)

Kane-Mele spin-orbit coupling λSO ≈ 0.03.

Compare your spectrum to Kane & Mele’s plot in their original paper (Figure 1 in Ref. [1]).

How many bands cross the gap?

e) Start now with λSO = 0.06 andm = 0 and ramp up the staggered potentialm to observe how 2pt(s)

the two spin-manifolds separate.

Plot the spectrum in the topological phase form = 0.1, at the critical point form = 3
√
3λSO,

and in the trivial phase form = 0.4.

Compare your spectra to Kane & Mele’s plot in their follow-up paper (Figure 1 in Ref. [2]).

Can you explain the differences in the region where the gapless bands connect to the bulk?

1 C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, PRL 95, 226801 (2005)
2 C. L. Kane and E. J. Mele, Z2 Topological Order and theQuantum Spin Hall Effect, PRL 95, 146802 (2005)

Problem Set Version: 1.0 | tqp25 Page 5 of 6

https://doi.itp3.info/10.1103/PhysRevLett.95.226801
https://doi.itp3.info/10.1103/PhysRevLett.95.146802


TOPOLOGICAL QUANTUM MANY-BODY PHYSICS Problem Set 6

In the topological phase, you should see four separate gapless bands which cross at four distinct

points. As you will verify in subtask g) below, the states of the crossing gapless bands are helical

edge states which make the strip conducting on the edges. But first, we focus on the four crossings

of these bands:

∗f) Consider a system with m = 0.25 and λSO = 0.06 in the topological phase close to the phase +1pt(s)

transition. Compare the spectra for a wide strip of width Lx = 50 and for a narrow strip of

width Lx = 10.

Which edge modes gap out for small systems and which do not? Can you explain this phe-

nomenon?

Hint: Remind yourself of Kramers’ theorem that you studied in Problem 6.1.

Finally, we want to identify the states of the gapless bands as helical edge states:

∗g) Consider the topological phase for λSO = 0.06 and m = 0.1 and select one eigenvector of the +2pt(s)

Bloch Hamiltonian with eigenenergy close to zero for each of the four bands that cross zero

energy (= Fermi energy).

Plot the absolute value of the 2Lx components in each spin sector as a function of the x-position
across the width of the strip. Use this to correlate …

i. where the states on the four crossing bands are located in x-direction,

ii. their spin polarization, and

iii. their group velocity in y-direction.

To demonstrate that the localization of these states is special, plot a few states picked from the

gapped bulk spectrum for comparison.

It is the exponential localization on the edges of the strip, combined with their gapless nature, that

marks them as gapless edge states/modes. Since spin and group velocity are locked, these are helical

edge modes. Physically, the strip has scattering-free conducting channels on its edges, where group

velocity and spin-polarization are correlated, while being a gapped insulator in the bulk. These edge

modes cannot be localized (via backscattering) unless time-reversal symmetry is broken!
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