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Problem 5.1: The Streda formula and the quantized Hall conductivity [Oral | 4 pt(s) ]

ID: ex_hofstadter_model_Streda_formula_quantized_Hall_conductivity:tqp25

Learning objective

In Problem 4.1 you derived the Harper equation for the Hofstadter model which determines its spectrum

and the eigenstates for a homogeneous magnetic field. The direct evaluation (first carried out by TKNNa)

of the Chern numbers using the eigenstates is quite technical. Instead, in this exercise you derive the

Streda formula and employ heuristic arguments to derive the Chern numbers and the quantized Hall

conductivity for a general tight-binding model.

aD. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance

in a Two-Dimensional Periodic Potential,” Physical Review Letters, vol. 49, no. 6, pp. 405–408 (1982),

doi:10.1103/physrevlett.49.405.

a) As a preliminary step, derive the Streda formula1 for the Hall conductivity 1pt(s)

σxy =
∂ρ

∂B
. (1)

For a fixed position in space, the Streda formula relates the variation in charge density ρ to a
change in the magnetic field B.

Hint: Use the continuity equation to relate the off-diagonal current response to the charge density. Then

apply the Maxwell–Faraday law.

In the following, we consider a spinless tight-binding model [e.g. think of the Hofstadter model

from Problem 4.1] on a two-dimensional square lattice L of size Lx × Ly with periodic boundary

conditions. The number of unit cells in the i-th direction is denotedNi := Li/a where a is the lattice
constant. Additionally, we consider a perpendicular homogeneous magnetic field B.

The number of magnetic flux quanta through each plaquette is given by Φ̂ = Φ/Φ0, where Φ = Ba2

is the magnetic flux and Φ0 = h/e is the quantum of flux. We assume that Φ̂ = p
q
∈ Q 6=0 is rational

with p and q > 0 coprime integers. In Problem 4.1 you derived that this gives rise to magnetic

translation operators that define an enlarged magnetic unit cell of size aq× a. To preserve periodicity
of the system, we assume that Nx ∈ qN.
Bloch’s theorem then yields the single-particle eigenstates in a contracted magnetic Brillouin zone

T 2 = [0, 2π/qa)× [0, 2π/a). The q sites within a magnetic unit cell introduce additional degrees of
freedom that yield q bands.

Our goal is to derive the Chern numbers of these bands using the Streda formula, and re-derive the

quantization of the Hall conductivity via generic arguments2. To this end, we consider a generic

1P. Streda, “Theory of quantised Hall conductivity in two dimensions,” J. Phys. C: Solid State Phys. 15, pp. 717–721

(1982), doi:10.1088/0022-3719/15/22/005
2I.e., without actually computing Chern numbers from Bloch functions as derived in the lecture. For this, we would

first need to fix a model and solve for the eigenstates (e.g. the Harper equation in the Hofstadter model).
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insulator where the Fermi level is in the r-th gap, i.e., there are r ∈ {0, . . . , q} filled bands below
the Fermi level:

b) Use the Streda formula (1) to write the Hall conductivity in the form 1pt(s)

σxy =
e

a2
∂B(r/q) , (2)

where r/q is the fraction of filled bands.

Hint: Express the charge within the magnetic unit cell via the number of filled bands.

Note:We assume that the density of states of the occupied bands r/q is a differentiable function of B.

A linear Diophantine equation is a linear equation with integer coefficients for which only integer

solution are of interest. For three given integer parameters r, q and p, this is an equation of the form

r = qsr + ptr (3)

in the two integer variables sr and tr. The subscript r indicates that the integers sr and tr depend on
the value of r. The idea is to use the linear Diophantine equation to rewrite the integer quotient r/q
in Eq. (2) in a more useful form:

c) Use the linear Diophantine equation (3) to derive the expression 2pt(s)

σxy =
e2

h
tr (4)

for the Hall conductivity. Then use the TKNN formula (derived in the lecture) to compute the

Chern number C [r] = tr − tr−1 of the r-th band with t0 = 0 for r = 0.

Note:This result applies in particular to the Hofstadter model from Problem 4.1.

Concluding remarks

The solution space of the linear Diophantine equation (3) can be explicitly parametrized as

sr = rqϕ(p)−1 + pn and tr = r
1− qϕ(p)

p
− qn for n ∈ Z . (5)

Here, ϕ(p) denotes Euler’s totient function3 which counts the number of positive coprime integers
that are smaller than p. ϕ(p) varies wildly in the range {1, . . . , p − 1} for different arguments
p ∈ N≥2. Note that it is guaranteed that s, t ∈ Z thanks to Euler’s totient theorem4.

In Eq. (5), any two solutions of the linear Diophantine equation differ by an integer ∆tr ∈ qZ.
Therefore, to fix a unique solution tr in expression (4), we can demand that |tr| ≤ q/2.

This choice can be motivated as follows:

(1) Mathematically, we can fix a specific model and just perform the rigorous calculation of the

Chern numbers using the eigenstates. It can be shown that a quantized Hall conductance

always implies the existence of a linear Diophantine equation which determines its value5. The

direct calculation then yields the constraint |tr| ≤ q/2 for the solution of the linear Diophantine
equation. This calculation is quite lengthy and not suited for an exercise sheet.

3In German: Euler’sche Phi-Funktion
4Euler’s totient theorem states that if (and only if) q, p ∈ N are coprime, then qϕ(p) = 1 (mod p).
5B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors. Princeton University

Press, 2013. [Section 5.3, pp. 50–51]
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(2) Physically, there is Bragg scattering at the magnetic unit cell6 which can generally yield

negative Hall conductivities. Furthermore, for r = 0 it is tr = 0. This makes |tr| ≤ q/2 the
obvious choice.

The solutions tr (and thereby the Chern numbers C
[r]) generally behave quite erratically for different

bands r and magnetic fluxes p/q.

Note: To be precise, the constraint |tr| ≤ q/2 only fixes a unique solution for r 6= q/2. For q even with

r = q/2, there is an ambiguity in the solution tr = ±q/2 for sr = (1∓ p)/2. In this case for E = 0 there are

q zero nodes (Dirac nodes7) where the bands are degenerate [see Problem 4.2]. Thus in this case, the spectrum

is actually not gapped and we cannot talk about the Hall conductivity of both bands separately. Depending

on how this degeneracy is removed by perturbations, both tr = ±q/2 and even tr = 0 is possible.

Problem 5.2: The Chern number as Skyrmion number [Written | 6 pt(s) ]

ID: ex_chern_number_skyrmion_number:tqp25

Learning objective

For the special case of two-band Bloch Hamiltonians, the expression for the Chern number can be

interpreted as a winding number that counts how often the sphere S2 is wrapped when traversing the

Brillouin zone. This number counts the topological twists in the Bloch vector field on the Brillouin zone;

these twists are known as (Anti-)Skyrmions. In this exercise, you derive the expression for the Chern

number that leads to this interpretation.

Consider a translation invariant system in two dimensions. The most general two-band Hamiltonian

is given by

H =
⊕
k∈T 2

H̃(k) where H̃(k) = ε(k)1+ ~d(k) · ~σ (6)

is the Bloch Hamiltonian. Here ε : T 2 → R and ~d : T 2 → R3 are some function on the Brillouin

zone T 2 (= Torus) and σi for i ∈ {x, y, z} are the Pauli matrices. We denote d ≡ |~d| and d̂ ≡ ~d/d.

The Bloch Hamiltonian possesses a ground state |uk〉 and an excited state |vk〉 with eigenenergies
E±(k) = ε(k) ± d(k), respectively. We assume the system to be gapped, in particular ∆E(k) =
2d(k) > 0.

The expression for the Chern number of Bloch bands was derived in the lecture. For the lower band,

it reads

C =
i

2π

∫
T 2

{〈
∂̃yuk

∣∣∣∂̃xuk

〉
−

〈
∂̃xuk

∣∣∣∂̃yuk

〉}
d2k (7)

with ∂̃i ≡ ∂ki .

The goal of this exercise is to convert this expression into a new form with a straightforward

topological interpretation:

a) As a preliminary step, show that 1pt(s)

6 Fradkin, Eduardo. Field Theories of Condensed Matter Systems. Addison-Wesley Publishing Company, 1991.

[Section 12.8, pp. 478]
7Wen, X. G., and A. Zee. “Winding number, family index theorem, and electron hopping in a magnetic field,” Nuclear

Physics B 316.3, p. 641–662 (1989), doi:10.1016/0550-3213(89)90062-X
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εijk d̂i(∂̃xd̂j)(∂̃yd̂k) = εijk
di(∂̃xdj)(∂̃ydk)

d3
. (8)

b) Now show that 2pt(s)

〈
vk

∣∣∣∂̃xuk

〉
=

〈vk|
[
∂̃xH

]
|uk〉

−2d(k)
(9)

and use this to derive the expression for the Chern number

C = − 1

4π

∫
T 2

∂̃ydi∂̃xdj
d2

Im
[
〈uk|σi |vk〉 〈vk|σj |uk〉

]
d2k . (10)

Hint: Use that the Bloch functions {|uk〉 , |vk〉} for fixed k form a complete, orthonormal basis ofH(k).

You may use results from Problem 3.1.

c) Show that 〈uk|σk |uk〉 = −d̂k and use this to show that Im [〈uk|σi |vk〉 〈vk|σj |uk〉] = −εijkd̂k. 3pt(s)

Finally, using subtask a), derive the expression for the Chern number

C = − 1

4π

∫
T 2

d̂ ·
(
∂̃xd̂× ∂̃yd̂

)
d2k . (11)

Why is this an integer?

Identify the Berry curvature Fxy(k).

Hint: Use that ~σ is a vector-operator to show that the term 〈uk|~σ |uk〉 is a unit vector.

Geometrically, the Berry curvature in Eq. (11) is just the Jacobian for the (oriented) surface integral

over the sphere S2. The Chern number then counts how often d̂(k) covers S2 when sweeping k over

the Brillouin zone T 2.

In the lecture, you used this picture to motivate the interpretation of the Chern number and the

Berry curvature in terms of a total Skyrmion number and a Skyrmion density, respectively. Skyrmions

(after Tony Skyrme) are the localized “twists” or “knots” of d̂ that live on the Brillouin zone. The

total Skyrmion number C (counting Antiskyrmions negative) is then a topological invariant.
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Problem 5.3: The Berry curvature of Dirac Hamiltonians [Oral | 2 pt(s) ]

ID: ex_berry_curvature_dirac_hamiltonians:tqp25

Learning objective

In the lecture, we identified Dirac Hamiltonians as useful tools to study changes in Chern numbers. Here

you derive a simple expression for the integral of the Berry curvature of a general Dirac Hamiltonian

over its (non-compact) momentum space R2.

Consider a general gapped Dirac Hamiltonian

HD(k) =
2∑

i,j=1

kihijσ
j + hzσ

z , (12)

linear in k ∈ R2 with h ∈ R2×2 and “mass” hz 6= 0.

Show that the integral of the Berry curvature for the lower band yields

C = − 1

2π

∫
R2

Fxy d
2k = −sign[hz] sign[det(h)]

2
. (13)

Hint:Make the linear substitution k′ = hTk and use the result derived in Problem 5.2. Why can you do this?
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