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Problem 4.1: The Hofstadter model and the magnetic Brillouin zone [Written | 10 pt(s) ]

ID: ex_hofstadter_model_magnetic_brillouin_zone:tqp25

Learning objective

The Hofstadter modela (Douglas R. Hofstadterb, 1976) is an exactly solvable model of non-interacting

fermions hopping on a square lattice in a magnetic field. It is a toy model for the integer quantum Hall

effect as it features topological bands with non-zero Chern numbers and a quantized Hall response. In

this exercise you study this model analytically.

aD. R. Hofstadter, “Energy levels and wave functions of Bloch electrons in rational and irrational magnetic

fields,” Physical Review B, Vol. 14, No. 6 (1976), doi:10.1103/physrevb.14.2239.
bHofstadter is quite an unconventional scientist. To the public he is best known for his Pulitzer Prize

winning book “Gödel, Escher, Bach: An Eternal Golden Braid”; an inspiring read on a wide span of topics such as

(in)completeness in mathematics, computability and the problem of (self-)consciousness.

Consider a two-dimensional square lattice L of size Lx × Ly and lattice constant a with periodic
boundary conditions. The number of unit cells in the i-th direction is denoted Ni := Li/a. Let
x̂ = (a, 0)T and ŷ = (0, a)T denote the lattice vectors in x- and y-direction, respectively.

We now place a fermion mode c
(†)
s ≡ c

(†)
m,n on each site s = a(m,n)T with coordinates m ∈

{1, . . . , Nx} and n ∈ {1, . . . , Ny}. In addition, we consider a two-component background gauge
fieldA : R2 → R2 that gives rise to the perpendicular magnetic field B := ∂xAy − ∂yAx.

The phase accumulated by a charged particle that hops from site s to an adjacent site s+ î is then

θis :=
e

h̄

∫ s+î

s

A(x) · dx for i ∈ {x, y} . (1)

Geometrically, one should think of θis ≡ θimn for i = x (i = y) as living on the horizontal (vertical)
edges between s and s+ î:

P

e−

s

s+ ŷ

s+ x̂

s+ x̂+ ŷ

θys θys+x̂

θxs+ŷ

θxs

In this setting, the tight-binding Hamiltonian of the Hofstadter model describes charged, spinless

fermions hopping on L:

H = −t
∑
s∈L

[
eiθ

x
s c†s+x̂cs + eiθ

y
sc†s+ŷcs

]
+ h.c. (2)
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a) To build trust in the Hamiltonian (2), consider an electron e⁻ that hops anti-clockwise around a 1pt(s)

plaquette P (blue path in the sketch above). Show that the electron accumulates a phase

γ = 2π
ΦP

Φ0

, (3)

where ΦP is the magnetic flux through P and Φ0 = h/e denotes the quantum of flux.

Note:This describes exactly the Aharonov-Bohm phase that an electron picks up when moving around a

magnetic flux, and makes Eq. (2) a reasonable discretization for charged particles in a magnetic field.

In the following, we consider a homogeneous magnetic field B and choose the Landau gauge:

Ax = 0 and Ay = Bx . (4)

The (constant1) number of magnetic flux quanta through each plaquette is denoted by Φ̂ = Φ/Φ0.

b) Show that the Hamiltonian (2) can be written in this gauge in the form 1pt(s)

H = −t
∑
m,n

[
c†m+1,ncm,n + ei2πΦ̂mc†m,n+1cm,n

]
+ h.c. (5)

Since the Hamiltonian (5) is quadratic in fermion operators, the fermions are not interacting. Conse-

quently, the many-body spectrum of the Hamiltonian is completely determined by the spectrum in

the single-particle sector of Fock space. In the following, we will therefore restrict our analysis to

single-particle states.

Note that the Hamiltonian (5) is generally not translation invariant in x-direction! This begs the

questions how this Hamiltonian can be diagonalized and whether a Brillouin zone can still be defined

(which would be needed to compute Chern numbers and the Hall response).

To make progress, we define generic translation operators on the single-particle sector of Fock space:

T̂j :=
∑
s∈L

eiχ
j
s c†

s+ĵ
cs for j ∈ {x, y} . (6)

Here χj
s ≡ χj

m,n are yet undetermined functions.

c) To construct a Brillouin zone, the translation operators should be symmetries of the Hamiltonian: 2pt(s)[
H, T̂j

]
!
= 0 for j ∈ {x, y} . (7)

Show that the choice χj
mn := 2πδj,xΦ̂n solves this condition in Landau gauge.

Hint: For single-particle operators, it is sufficient to show that they commute in the single-particle sector

of Fock space.

The operators T̂j with the property Eq. (7) are known as magnetic translation operators.

d) Show that the magnetic translation operators fulfill the magnetic translation algebra 1pt(s)

T̂xT̂y = e2πiΦ̂T̂yT̂x (8)

within the single-particle sector (i.e., they do not commute in general).

1As Φ̂P is the same for each plaquette, we drop the index P in the following.
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We need two independent conserved momenta as good quantum numbers to label the eigenstates in

the Brillouin zone. The translation operators that realize the corresponding symmetry therefore

must commute (to diagonalize them simultaneously). However, due to the magnetic translation

algebra (8), the magnetic translation operators obtain a phase factor e2πiΦ̂ when commuted!

To fix this problem, we define the new translation operators T̂
nj

j for some integers nj ∈ N, which
describe a translation by nj · ĵ on the lattice.

e) Show that whenever Φ̂ ∈ Q is a rational number, there exist nx, ny ∈ N such that 1pt(s)[
T̂ nx
x , T̂ ny

y

]
= 0 . (9)

Solutions nx, ny ∈ N with the smallest product nx · ny define a magnetic unit cell.

What is the size of the magnetic unit cell?

Hint: Every non-zero rational number Φ̂ ∈ Q can be uniquely expressed as Φ̂ = p/q with p and q > 0

coprime integers.

For Φ̂ = p/q with p and q > 0 coprime integers, we can choose nx = q and ny = 1 without loss of
generality. Then the magnetic unit cell comprises q of the original unit cells in x-direction and one
unit cell in y-direction, i.e., the magnetic unit cell is of size qa× a. This enlarged unit cell restores

translation invariance of the Hamiltonian at the price of more degrees of freedom per unit cell. To

keep the periodicity of the system, we assume a size Lx ∈ qN in x-direction in the following.

We can now invoke Bloch’s theorem to characterize the single-particle eigenstates |k〉 ≡ |kx, ky〉 of
H as simultaneous eigenstates of T̂ q

x and T̂y:

H |k〉 = E(k) |k〉 , T̂ q
x |k〉 = eikxqa |k〉 , T̂y |k〉 = eikya |k〉 . (10)

The momenta are periodic and define the magnetic Brillouin zone T 2 with kx ∈ [0, 2π/qa) and
ky ∈ [0, 2π/a). Note that this Brillouin zone is contracted by a factor of 1/q in kx-direction!

f) Show that every eigenenergy E = E(k) is (at least) q-fold degenerate. 1pt(s)

Hint: Use T̂x to construct q linearly independent states with the same energy.

g) To (partially) diagonalize the system, insert the single-particle wave function |Ψ〉 =
∑

s∈L Ψsc
†
s |0〉 3pt(s)

with coefficients Ψs ≡ Ψm,n ∈ C into the time-independent Schrödinger equation for the

Hamiltonian (5). Derive a coupled system of linear equations for the coefficients Ψm,n.

To solve this equation, use a discrete Fourier transform on the magnetic Brillouin zone,

Ψ̃r(kx, ky) :=
∑
m,n

e−i(kxa+2πΦ̂r)m−ikynaΨm,n , (11)

with k ∈ T 2 and r ∈ {0, . . . , q − 1} (show that this is bijective!).

Show that the eigenvalue problem becomes the Harper equation

−2t cos
(
kxa+ 2πΦ̂r

)
Ψ̃r(k)− t

[
eikyaΨ̃r+1(k) + e−ikyaΨ̃r−1(k)

]
= E(k)Ψ̃r(k) , (12)

which is a system of q coupled linear equations.

Problem Set Version: 1.0 | tqp25 Page 3 of 5



TOPOLOGICAL QUANTUM MANY-BODY PHYSICS Problem Set 4

Hint: Show that the inverse Fourier transform reads

Ψm,n =
1

LxLy

q−1∑
r=0

∑
k∈T 2

ei(kxa+2πΦ̂r)m+ikyna Ψ̃r(kx, ky) , (13)

given that Φ̂ = p/q with p and q > 0 coprime integers.

The Harper equation determines the spectrum and eigenstates of the Hamiltonian (2) for a homo-

geneous magnetic field with Φ̂ = p/q flux quanta per unit cell. The index r ∈ {0, . . . , q − 1} takes
into account the q sites within a single magnetic unit cell, i.e., there are q bands. Solving Eq. (12) is
best done numerically (which you will do in Problem 4.2).

With the eigenstates of the r-th band at hand, you could now apply the TKNN formula introduced in

the lecture to compute the Chern number C [r] and the corresponding Hall conductivity σxy directly.

This calculation was first carried out by Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) in

their famous 1982 paper2. However, the full derivation is quite technical, so we will not pursue it

here. If you are interested in the details, have a look at the textbook by Eduardo Fradkin 3 or the

textbook by Andrei Bernevig 4.

Instead, on the next problem set, we choose a different approach: using on the Streda formula we are

going to (heuristically) derive the Chern numbers and the quantized Hall conductivity by employing

high-level arguments for a general tight-binding model.

2D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional

Periodic Potential,” Physical Review Letters, vol. 49, no. 6, pp. 405–408, 1982, doi: 10.1103/physrevlett.49.405.
3 Fradkin, Eduardo. Field Theories of Condensed Matter Systems. Addison-Wesley Publishing Company, 1991.

[Section 9.8, pp. 287–292]
4B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors. Princeton University

Press, 2013. [Section 5.4, pp. 51–59]
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Problem 4.2: Hofstadter bands and Hofstadter butterfly (Numerics) [Oral | 6 pt(s) ]

ID: ex_hofstadter_model_numerics:tqp25

Learning objective

In Problem 4.1 you studied the physics of charged fermions hopping on a square lattice in a perpendicular

magnetic field (the Hofstadter model). As final result, you obtained the Harper equation which determines

the spectrum of the Hofstadter Hamiltonian on a lattice with periodic boundaries. In this exercise, you

solve the Harper equation numerically to compute the topological bands. You will find a remarkable

spectrum with fractal structure known as the Hofstadter butterfly.

We assume a homogeneous magnetic field with Φ̂ = p/q flux quanta per unit cell, where p and q > 0
are coprime integers. As derived in Problem 4.1, the eigenvalue problem of the Hofstadter model is

given by the Harper equation

−2 cos
(
kxa+ 2πΦ̂r

)
Ψ̃r(k)−

[
eikyaΨ̃r+1(k) + e−ikyaΨ̃r−1(k)

]
= Ẽ(k)Ψ̃r(k) . (14)

For every k = (kx, ky)
T ∈ T 2 in the magnetic Brillouin zone, this is a system of q coupled linear

equations in Ψ̃r(k), where the index r ∈ {1, . . . , q} (counted modulo q) corresponds to the q bands.
Here Ẽ(k) ≡ E(k)/t is the eigenenergy in units of the hopping strength t.

To compute the spectrum of the theory (i.e., the q values of Ẽ(k) for each k such that non-trivial

solutions Ψ̃r(k) exist), we consider finite but large system sizes Ni ≈ 100 such that the discrete
steps between momenta ∆kia = 2π/Ni < 0.1 are small (to produce smooth plots):

a) Use your favorite programming language to implement and solve the Harper Eq. (14) numerically. 4pt(s)

Study the spectrum for fluxes Φ̂ ∈
{

1
2
, 1
3
, 2
3
, 1
4
, 1
5
, 2
5

}
by plotting the eigenenergies Ẽ(k) over the

magnetic Brillouin zone k ∈ T 2 (in a 3D plot).

Are the bands always fully gapped?

For which flux do you find bands that resemble Landau levels most closely?

The bands you plotted are known as Hofstadter bands, they are the lattice analogue of Landau levels.

b) Compute the spectrum as a function of the magnetic flux for many (> 100) rational values 2pt(s)

Φ̂ ∈ Q[0,1]. Draw a black dot with coordinates (Φ̂, E) for every eigenvalue E.

Try to identify the bands that you plotted in a).

What happens for Φ̂ > 1?

The spectrum you plotted as a function of magnetic flux quanta per unit cell is a fractal known as

Hofstadter’s Butterfly. Its fractal structure is rooted in the fact that in the neighbourhood of every

rational flux Φ̂ = p/q there are other rational values with arbitrarily large denominator q (= numbers
of bands).

Fun fact: Hofstadter discussed this spectrum in his famous book Gödel, Escher, Bach.

Problem Set Version: 1.0 | tqp25 Page 5 of 5


