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Problem 2.1: The integer quantum Hall effect in the symmetric gauge [Written | 10 pt(s) ]

ID: ex_integer_quantum_hall_effect_symmetric_gauge:tqp25

Learning objective

In this task you revisit the Hamiltonian of a charged particle in two dimensions in a magnetic field. In

contrast to the lecture, here you work in the symmetric gauge to construct an alternative set of basis

functions for the Landau levels. The benefit of this approach is that the basis wave functions can be

naturally expressed in complex coordinates, a feature that is handy especially in the context of the

fractional quantum Hall effect. This exercise is also nice application of methods from complex analysis

to quantum mechanics.

We consider an electron in 2D in a perpendicular magnetic field B ≡ Bz = ∂xAy − ∂yAx. In the

lecture it was shown that the Hamiltonian can be written as a harmonic oscillator:

H =
(p+ eA)2

2m
=

π2
x + π2

y

2m
= h̄ωB

(
a†a+

1

2

)
. (1)

Here π = p+ eA is the (gauge independent) kinetic momentum operator and ωB = eB/m is the

cyclotron frequency. The ladder operators are defined by

a :=
1√
2eh̄B

(πx − iπy) and a† :=
1√
2eh̄B

(πx + iπy) with
[
a, a†

]
= 1 . (2)

Note: Recall that p is the canonical momentum whereas π is the kinetic momentum. In particular, different

components of the kinetic momentum do not necessarily commute due to the magnetic field!

So far these results are gauge invariant (we did not yet fix a gauge). The result in Eq. (1) already

determines the spectrum of the problem, but leaves open the question for eigenstates and the

degeneracy of the eigenenergies (the Landau levels). The goal of this exercise is to answer these

questions.

a) As a first step, define the additional “momentum operators” 1pt(s)

π̃ := p− eA (3)

and show that [π̃x, π̃y] = ieh̄B. Is π̃ gauge invariant?

b) Compute all commutators [πi, π̃j] (for i, j ∈ {x, y}) of the kinetic momentum π with the 1pt(s)

additional momentum π̃.

What does the result tell you about the possibility to construct good quantum numbers to label

eigenstates?
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c) Show that by fixing the symmetric gauge 1pt(s)

A := −yB

2
ex +

xB

2
ey (4)

all commutators [πi, π̃j] vanish. Then define the additional ladder operators

b :=
1√
2eh̄B

(π̃x + iπ̃y) and b† =
1√
2eh̄B

(π̃x − iπ̃y) (5)

and show that
[
b, b†

]
= 1 and [a, b] =

[
a, b†

]
= 0.

d) Write down the eigenstates of Hamiltonian (1) and label themwith appropriate quantum numbers 1pt(s)

n ∈ N0 for n̂ := a†a andm ∈ N0 for m̂ := b†b. Which states are energetically degenerate?

Now that we formally derived a full basis set for each Landau level n = 0, 1, 2, . . . , we can construct
these states in real space. To do so, it is convenient to switch to complex coordinates:

z := x− iy and z̄ := x+ iy. (6)

With the complex (Wirtinger) derivatives

∂ :=
1

2
(∂x + i∂y) and ∂̄ :=

1

2
(∂x − i∂y) (7)

it follows ∂z = ∂̄z̄ = 1 and ∂z̄ = ∂̄z = 0. A function f of complex variables is then holomorphic (=

satisfies the Cauchy-Riemann equations) if and only if ∂̄f = 0, i.e. f = f(z).

Note:The unconventional sign of z and z̄ makes the functions below holomorphic instead of antiholomorphic.

e) Use p = −ih̄∇ and the symmetric gauge for A to express the ladder operators a, a†, b, b† in 1pt(s)

terms of ∂, ∂̄, z, and z̄.

f) Show that the wave functions in the lowest Landau level (LLL) n = 0 take the form 1pt(s)

〈z, z̄|n = 0〉 = Ψn=0(z, z̄) = f(z) e−zz̄/4l2B (8)

with an arbitrary holomorphic function f(z). Here lB =
√
h̄/eB denotes the magnetic length.

g) Derive now the real space representation 〈z, z̄|n = 0,m = 0〉 for the LLL state withm = 0. 1pt(s)

Use the result to show that

〈z, z̄|n = 0,m〉 = Ψn=0,m(z, z̄) ∝
(

z

lB

)m

e−|z|2/4l2B (9)

form ∈ N0. How does this relate to the result in Eq. (8)?

Hint: Recall from your course on complex analysis the properties of holomorphic functions.

h) Show that the angular momentum operator for rotations in the xy-plane can be written as 2pt(s)

J = h̄(n̂− m̂). (10)

Is the angular momentum a good quantum number? What are its eigenvalues for the LLL?

Why is a single quantum number sufficient to specify the angular momentum eigenstates?
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Now that we know the real space wave functions for the LLL, we can finally derive its degeneracy:

i) Show that the probability densities of the LLL wave functions (9) are rotationally symmetric 1pt(s)

with a peak at radius r =
√
2mlB . Use this to show that in the LLL there exists (approximately)

one independent state per quantum of flux.

Compare your result to the one derived in the lecture using the Landau gauge.

Hint: Consider the LLL wave functions with maximum within a disc-shaped region of radius R.

Problem 2.2: Berry phase of a spin in a magnetic field [Oral | 8 (+2 bonus) pt(s) ]

ID: ex_berry_phase_spin_magnetic_field:tqp25

Learning objective

In the lecture we (will) introduce on very general grounds the concepts of Berry connection, Berry

curvature, Berry phase and the Chern number. The simplest model to observe these concepts in action is

a single spin-12 in a slowly varying magnetic field. In this exercise you study this example in detail.

Consider a spin-1
2
with Hilbert spaceH = C2 in an external magnetic fieldB. The Hamiltonian is

H = −B · σ +B with B = |B| (11)

where σ = (σx, σy, σz)
T the vector of Pauli matrices. We consider the magnetic field

B = B

sin θ cosφ
sin θ sinφ
cos θ

 (12)

as tunable parameters (in the lecture called Γ), given in spherical coordinates. The parameter space

(= “the space of magnetic fields at the position of the spin”) is then isomorphic to R3.

We are interested in the evolution of an initial ground state of the Hamiltonian (11) under a slow

variation of the magnetic field B = B(t). The adiabatic theorem ascertains that the physical

system remains in its instantaneous eigenstate (here: ground state) if there is a gap to the rest of the

spectrum and the time evolution is slow compared to this gap.

a) Write the Hamiltonian (11) as a 2×2-matrix that parametrically depends on θ, φ andB. Compute 2pt(s)

its spectrum and show that it is gapped and the ground state is non-degenerate for B > 0.

Show that the eigenstates can be written as

|n+(B)〉 =
(
e−iφ cos(θ/2)
sin(θ/2)

)
and |n−(B)〉 =

(
e−iφ sin(θ/2)
− cos(θ/2)

)
. (13)

For which parametersB is the ground state |n+(B)〉 well-defined?

In the lecture we show that for a closed path Γ : t 7→ B(t) with t ∈ [0, T ] in parameter space, an
initial ground state |Ψ(0)〉 = |n+(B(0))〉 picks up a Berry phase,

|Ψ(T )〉 = eiγ(Γ) |Ψ(0)〉 with γ(Γ) = −
∮
Γ

A[+] · dB , (14)
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where A[+]
l (B) := −i 〈n+(B)| ∂l |n+(B)〉 is called the Berry connection. Due to the spherical

symmetry, it is convenient to use spherical coordinates l ∈ {B, θ, φ} in the following, but the

physical results are independent of your choice of coordinates on the parameter manifold (e.g.

Cartesian coordinates l ∈ {Bx, By, Bz}).
Note that the choice of a (differentiable) basis vector |n+(B)〉 for the ground state is a gauge. The

Berry connection can be interpreted as a gauge field in parameter space that depends on this basis

choice.

The Berry curvature is the corresponding (gauge invariant) field strength tensor, defined via

Flm := ∂mAl − ∂lAm . (15)

b) Consider only parameters for which the ground state |n+(B)〉 is well-defined and compute the 2pt(s)

Berry connection A[+]
l = −i 〈n+(B)| ∂l |n+(B)〉 in spherical coordinates l ∈ {B, θ, φ}.

Show that the only non-vanishing term of the Berry curvature is

F [+]
θφ = −sin(θ)

2
. (16)

c) Make the gauge transformation |ñ+(B)〉 := eiφ |n+(B)〉. 2pt(s)

For which parameters is this gauge well-defined?

Compute again the Berry connection and the Berry curvature and compare your results with b).

∗d) Show that the Berry curvature of the ground state manifold reads in Cartesian coordinates Bi +2pt(s)

with labels i, j ∈ {x, y, z}

F [+]
BiBj

(B) = εijkg
Bk

B3
with g = −1

2
. (17)

This is the field strength of a magnetic monopole atB = 0 with charge g.

Note: Note that FBiBj is the field strength in parameter space, not in real space!

e) Compute the Berry phase γ(Γ) for a closed path Γ : t 7→ B(t) that avoids the origin,B(t) 6= 0 1pt(s)

for all t ∈ [0, T ]. Show that it can be written as

eiγ(Γ) = exp

(
i
ΩΓ

2

)
(18)

where 0 ≤ ΩΓ ≤ 4π is the solid angle that is traced out by the path.

Hint: Employ Stokes’ theorem and use that F [+]
ij dσij = g/B3B · dσ with the surface element dσ.

For a compact, closed two-dimensional parameter spaceM, the Chern number is defined as

C =
1

2π

∫
M

Flmdσ
lm . (19)

If there exists a gauge that is continuous on the complete parameter space, the Chern number is

zero. In the lecture, we show that the Chern number is always an integer, C ∈ Z.
We can use this mathematical fact, in conjunction with the physical system under study, to draw

conclusions on the “magnetic monopole charge” g:
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f) Consider the sphereM = S2 ⊂ R3 as a two-dimensional submanifold of magnetic fields and 1pt(s)

compute the Chern number C for the Berry curvature in Eq. (17).

What follows in this particular case for g = −1/2? Is it important thatM = S2 is a sphere?

What follows for the magnetic monopole charge g in general?

Note:This result is mathematically equivalent to the famous Dirac quantization condition for magnetic

monopoles.
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