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Problem 11.1: The AKLT model and DMRG - Numerical exploration [Oral | 8 (+2 bonus) pt(s) ]

ID: ex_aklt_numerics:tqp25

Learning objective

In Problem 10.1 and Problem 10.2 you examined the exact ground state of the Affleck–Kennedy–Lieb–Tasaki

(AKLT) model analytically. In this exercise, you complement this analysis with numerical methods based

on matrix product states (MPS).

You employ the density matrix renormalization group (DMRG) algorithm to study the topological ground

state manifold of the AKLT model. You first verify prior analytical results, and then explore regimes

that are no longer accessible by exact methods. This implies the famous Haldane conjecture and the

connection between the AKLT- and the Haldane model (antiferromagnetic spin-1 Heisenberg chain). To

this end, you make use of the TeNPy library a b which implements optimized DMRG algorithms.

ahttps://scipost.org/10.21468/SciPostPhysLectNotes.5
bhttps://tenpy.readthedocs.io/en/latest/literature.html

To get started with the TeNPy library, you can download a Jupyter notebook that contains the

template code for this exercise here:

https://itp3.info/akltipynb

If you prefer to run native Python instead, you can download the same code as a Python script here:

https://itp3.info/akltpy

Before you start, make sure that you have all required libraries installed:

pip install physics-tenpy numpy matplotlib ipykernel

You should now be able to run the preliminary check in the Jupyter notebook or the Python script.

We start by verifying some analytical results you derived previously in Problem 10.1 and Problem 10.2:

a) Implement the AKLT-like Hamiltonian 1pt(s)

H =
L−1∑
i=1

[
J SiSi+1 + β (SiSi+1)

2] , (1)

for an open chain of length L = 20 with parameters J = 1 and β = 1
3
(up to a constant, this is

the AKLT point). Here, Si denote spin-1 operators for i = 1, . . . , L.

Run the DMRG algorithm to find a ground state of this Hamiltonian.

What ground state energy and entanglement entropy do you expect?

Compare your expectations with the numerical results.
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b) Use the ground state |Ψ〉 obtained in subtask a) to calculate the expectation value of the ferro- 1pt(s)

magnetic order parameter 〈ψ|Sz
i S

z
j |ψ〉 for i = 4 and j ∈ {4, 5, . . . , L}.

Then calculate the string order parameter 〈ψ|Sz
i

(∏
i<k<j R

z
k

)
Sz
j |ψ〉 where Rz

k = exp(iπSz
i ).

Plot both order parameters as a function of |i− j|.
Compare your results with the analytical results from Problem 10.1 and Problem 10.2.

For the AKLT model with open boundary conditions, we expect a four-fold degenerate ground state

manifold, where each ground state can be distinguished by its fractional (spin-1
2
) edge degrees of

freedom. Let us verify this hallmark of one-dimensional SPTs numerically:

c) Plot the local onsite magnetization 〈ψ|Sz
i |ψ〉 for i ∈ {1, 2, . . . , L} of the ground state obtained 1pt(s)

in subtask a) to visualize the spin-1
2
boundary degrees of freedom.

Does this result meet your expectations? Which “trick” in the code is responsible for this result?

d) The DMRG algorithm implemented by TeNPy can also find low-lying excited states. 2pt(s)

Use this to find the next four excited states (and eigenenergies) of the Hamiltonian (1).

Do you find the expected four-fold ground state degeneracy?

How do the boundary spin-1
2
of the four ground states differ from each other?

Note: One way to get excited states via DMRG is to add a large energy penalty to the Hamiltonian for

the projector onto all previously found low-lying eigenstates. TeNPy uses a related approach, where the

state during the DMRG sweep is always projected onto the orthogonal complement of the previously

found states.

In the lecture you learned about the Haldane conjecture, which states that for integer spin, the

antiferromagnetic Heisenberg model has a gap, whereas for half-integer spin the model is gapless.

Since these models cannot be solved exactly in general, let us again use DMRG to verify this claim

numerically:

e) Demonstrate the validity of the Haldane conjecture explicitly for chains with spin S ∈ {1
2
, 1}. 2pt(s)

Do so by calculating and plotting the eigenenergies of the five lowest eigenstates of the antifer-

romagnetic Heisenberg model for different system sizes L ∈ {20, 30, 40, 50, 100}.
Interpret your results.

Hint:The antiferromagnetic Heisenberg model is obtained from the Hamiltonian (1) for β = 0.

Note: Of course you can also show this for higher spins (e.g. S ∈ {3
2 , 2}). However, due to the larger

Hilbert space dimension, these simulations take longer to run (try it …).

The AKLT model was introduced because, first, its ground state can be computed analytically, and

second, it is believed to be in the same symmetry-protected topological phase as the antiferromagnetic

spin-1 Heisenberg model (which cannot be solved exactly). This SPT phase is know as the Haldane

phase.

Let us use the magic of DMRG to validate this (still unproven) claim numerically:

f) Demonstrate that the antiferromagnetic spin-1 Heisenberg model can be adiabatically (= without 1pt(s)

closing the gap) connected to the AKLT model by tuning the parameter β in the Hamiltonian (1)

from β = 0 to β = 1
3
.

Note: To validate that this gap is not a finite size effect, you should compute it for different system sizes.
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By tuning the parameter β, you essentially added a symmetry preserving perturbation to the

Hamiltonian. Your results demonstrate that the four-fold ground state degeneracy of the AKLT

model (or the Haldane chain) is robust against such perturbations in the thermodynamic limit

(L→ ∞).

Conversely, by adding a symmetry-breaking perturbation to the Hamiltonian, this degeneracy should

be lifted. You can verify this numerically:

∗g) Which symmetries protect the Haldane phase, and why does a magnetic field Hpert = hz
∑

i S
z
i

+2pt(s)

break these symmetries?

What do you expect happens to the four-fold ground state degeneracy of the AKLT model when

you add such a magnetic field to the Hamiltonian (1)?

Verify your expectation numerically.

Problem 11.2: Twisted group cohomology [Oral | 6 (+1 bonus) pt(s) ]

ID: ex_twisted_group_cohomology:tqp25

Learning objective

In the lecture, we studied unitary symmetries and how their (second) cohomology groups classify

symmetry-protected topological phases. By contrast, in our prior study of quadratic fermion theories,

antiunitary symmetries played an important role (think of time-reversal symmetry). In this exercise,

you retrace and generalize the cohomology classification for symmetry groups where some elements

are represented as antiunitary operators. This leads to the concept of “twisted” group cohomology. You

show for the simple group G = Z2 that these “twists” directly affect the possibility to protect non-trivial

topological phases.

On Problem 1.2 you provedWigner’s theorem. It states that, in quantum mechanics, every symmetry

operation can be represented by either a unitary or an antiunitary operator that acts on the Hilbert

space.

Let us consider a symmetry group (G, •) and a representation ρ acting on the Hilbert space of

some quantum system. Then the operator ρ(g) for each group element g ∈ G is either unitary or

antiunitary. We can encode this property by a map

σ : G→ Z2 with g 7→ σ(g) =

{
+1 if ρ(g) is unitary,

−1 if ρ(g) is antiunitary.
(2)

a) Show that σ must be a group homomorphism, i.e., show that σ(g1 • g2) = σ(g1) · σ(g2). 1pt(s)

What are the possible choices of σ for G = Z2 and G = Z3?

As shown in the lecture (using the matrix product state formalism), to characterize symmetry-

protected topological phases of one-dimensional spin systems, we must study the projective repre-

sentations of the protecting symmetry group. Such representations satisfy the multiplication rule of

conventional linear representations “up to a phase,”

ρ(g) · ρ(h) = χ(g, h) ρ(g • h) for all g, h ∈ G , (3)
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where χ : G×G→ U(1) is called (2-)cocycle and characterizes the projective representation.

Your goal is now to trace the modifications required (compared to the lecture) if some ρ(g) are
antiunitary (as encoded by some given homomorphism σ):

b) Show that χ must satisfy the σ-twisted cocycle condition 1pt(s)

χ(g1, g2)χ(g1g2, g3) = χσ(g1)(g2, g3)χ(g1, g2g3) (4)

where χ−1 = χ∗ denotes complex conjugation.

Hint: Use the associativity of G and note that we omit the group multiplication • for simplicity.
Note: For the trivial homomorphism σ ≡ 1 this reduces to the “untwisted” cocycle condition derived in

the lecture.

The set of σ-twisted cocycles is denoted

Z2
σ(G,U(1)) := { χ : G×G→ U(1) | χ satisfies Eq. (4) } (5)

and forms a group under pointwise multiplication (why?).

As motivated in the lecture, two projective representations ρ̃(g) = f(g)ρ(g) related by an element-
dependent phase factor f(g) ∈ U(1) are equivalent.

c) Show that two representations ρ and ρ̃ are equivalent if and only if their cocycles fulfill 1pt(s)

χ̃(g, h) =
f(g)fσ(g)(h)

f(gh)
χ(g, h) , (6)

for some function f : G→ U(1).

We denote the equivalence relation (6) by Rσ and write χ
Rσ∼ χ̃ for two equivalent cocycles.

The σ-twisted (second) cohomology group of G in U(1) is then defined as the group of 2-cocycles
modulo this equivalence relation:

H2
σ(G,U(1)) := Z2

σ(G,U(1))
/
Rσ. (7)

It classifies the inequivalent projective representations of G, where group elements are represented
antiunitarily according to σ.

In the remainder of this exercise we study the group G = Z2. We denote the trivial homomorphism

by σ0 and the (only) nontrivial homomorphism by σ1 [recall subtask a)].

d) Show that the untwisted cohomology group H2
σ0
(Z2, U(1)) ∼= Z1 is trivial. 1pt(s)

Are there SPT phases protected by a unitary Z2 symmetry?

e) Now show that the twisted cohomology group H2
σ1
(Z2, U(1)) ∼= Z2 is non-trivial. 2pt(s)

Are there SPT phases protected by an antiunitary Z2 symmetry?

In the lecture you showed that H2
σ0
(D2, U(1)) ∼= Z2 for the dihedral group D2 = Z2 × Z2.

∗f) Compare your results from subtasks d) and e) and the result from the lecture with the findings +1pt(s)

reported in Chen et al.:

Symmetry protected topological orders and the group cohomology of their symmetry group

Physical Review B 87, 155114 (2013)

Hint: To simplify notation one usually writes H2(G,U(1)) ≡ H2
σ0
(G,U(1)) for a general symmetry

group G. Chen et al. use furthermore the shorthand notation H2(ZT
2 , U(1)) ≡ H2

σ1
(Z2, U(1)).
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