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Problem 10.1: The AKLT state - A prime example for a MPS [Written | 11 pt(s) ]

ID: ex_aklt_mps_part_1:tqp25

Learning objective

The goal of this exercise is to gain a better understanding of matrix product states (MPS). To this end,

you first construct the exact ground state wave function of the famous Affleck–Kennedy–Lieb–Tasaki

(AKLT) model in the MPS framework. You then study local order parameters and find that these can be

expressed as a product of two local expectation values. Combining these results, you can evaluate the

ferromagnetic order parameter for the AKLT state.

In the lecture, you learned that every state |ψ〉 ∈ H =
⊗L

i=1Cd
i can be written as matrix product

state (MPS) with periodic boundary conditions

|ψ〉 ≡
∑
s

ψs |s〉 =
∑
s

∑
α

M [1]s1
α0,α1

M [2]s2
α1,α2

. . .M [L−1]sL−1
αL−2,αL−1

M [L]sL
αL−1,α0

|s1, s2, . . . , sL−1, sL〉 . (1)

Here s = (s1, . . . , sL) where si ∈ {1, . . . , d} labels the local states in Cd
i on site i ∈ {1, . . . , L}, and

αi ∈ {1, . . . , Di} (including α0 due to periodic boundary conditions) denotes the virtual indices

with bond dimension Di. The sums over αi are the “matrix products” (and sum over α0 corresponds

to taking the trace). Note that for each i and each si theM
[i]si is a Di−1 ×Di-matrix.

Furthermore, you introduced the Affleck–Kennedy–Lieb–Tasaki (AKLT) model as an exactly solv-

able point in the symmetry-protected topological Haldane phase of the antiferromagnetic spin-1

Heisenberg chain. The AKLT Hamiltonian with periodic boundary conditions reads

HAKLT =
L∑
i=1

P S=2
i,i+1 =

L∑
i=1

[
1

2
SiSi+1 +

1

6
(SiSi+1)

2 +
1

3

]
, (2)

where Si = (Sx
i , S

y
i , S

z
i ) are spin operators on site i ∈ {1, . . . , L} in the spin-1 representation (so

that the dimension of the local Hilbert spaces is d = 3). P S=2
i,i+1 denotes the projector onto the spin-2

representation on sites i and i+ 1 (remember that 1⊗ 1 = 0⊕ 1⊕ 2).

The structure of the ground state |ψAKLT〉 of this
Hamiltonian is most transparent if one starts

with two (artificial) spin-1
2
representations on

each site and forms a valence bond (singlet state)

between the spins of adjacent sites (figure on

the right). The AKLT ground state is then ob-

tained by projecting the four-dimensional on-

site Hilbert space into the three-dimensional

spin-1 representation (remember that 1
2
⊗ 1

2
=

0⊕ 1).

In this exercise, you derive the representation of this AKLT state in the MPS framework and use it

to evaluate correlation functions.
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a) We start by considering two spin-1
2
forming a singlet state 2pt(s)∣∣ψsinglet

〉
= 1√

2
(|↓1↑2〉 − |↑1↓2〉) . (3)

Show that the matrix product state representation of this state reads∣∣ψsinglet

〉
=

∑
s1,s2,α1

M [1]s1
α1

M [2]s2
α1

|s1, s2〉 (4)

with matrices

M [1]↓ =
(

1√
2
, 0

)
, M [1]↑ =

(
0, 1√

2

)
and M [2]↓ =

(
0
−1

)
, M [2]↑ =

(
1
0

)
.

What is the bond dimension of this state? What is the entanglement entropy of this state?

Note: Since we only consider two spins, the bond index α0 is not needed (or alternatively D0 = 1), thus

the matricesM [1]s1 (andM [2]s2 ) are in this case 1×D1 row (andD1 × 1 column) vectors. Moreover, we

have D1 = 2, thus eachM [i]si has two entries. Note however, that these two entries live in the virtual

bond space, and not in the physical Hilbert space.

We now consider a chain of 2L spin-1
2
in a product of L such singlet states:∣∣ψsinglet-chain

〉
= 1√

2
(|↓1↑2〉 − |↑1↓2〉)⊗ 1√

2
(|↓3↑4〉 − |↑3↓4〉)⊗ . . .

. . .⊗ 1√
2
(|↓2L−1↑2L〉 − |↑2L−1↓2L〉)

≡
∑
s

M [1]s1M [2]s2M [1]s3M [2]s4 . . .M [1]s2L−1M [2]s2L |s〉 . (5)

Note: Note that we reuse the matricesM [1] andM [2] on every other site!

b) Draw the MPS pictorially (e.g. for L = 3). What are the bond dimensions at each bond? 1pt(s)

c) Next, consider an even site 2i and its neighbor 2i+ 1 (these belong to different singlets!). 1pt(s)

Calculate the projection of these two sites onto the spin-1 subspace∑
s2i,s2i+1

P S=1
2i,2i+1M

[2]s2iM [1]s2i+1︸ ︷︷ ︸
2× 2-matrix

|s2i, s2i+1〉 ≡
∑
ji

Aji |ji〉 , (6)

where ji ∈ {+, 0,−} denotes the three possible spin-1 states and Aji are the MPS matrices for

the spin-1 AKLT state (which do not depend on the site index i due to translation invariance).

The projection operator is given by (we omit site indices)

P S=1 = |−〉〈 ↓↓|+ |0〉 〈↓↑|+ 〈↑↓|√
2

+ |+〉〈 ↑↑| . (7)

By now, you have shown that the AKLT state (with periodic boundary conditions) can be written as

a matrix product state

|ψAKLT〉 =
∑
j

∑
α

Aj1
α0,α1

. . . AjL
αL−1,α0

|j〉 =
∑
j

tr
(
Aj1 · · ·AjL

)
|j〉 , (8)

Problem Set Version: 1.0 | tqp25 Page 2 of 6



TOPOLOGICAL QUANTUM MANY-BODY PHYSICS Problem Set 10

with the 2× 2-matrices Aji (after normalization)

A+ =
√

2
3
σ+ , A0 =

√
1
3
σz and A− = −

√
2
3
σ− . (9)

Note: The trace is taken to contract the indices of the first and last matrices to implement periodic boundary

conditions.

Now that we have an MPS representation of the AKLT ground state, we are interested in evaluating

expectation values 〈ψ|Oi |ψ〉 and local order parameters like 〈ψ|OiOk |ψ〉. To this end, it is useful

to introduce the transfer matrix, which is given by

T(α0,α′
0),(α1,α′

1)
≡ =

∑
j

(
Aj
)
α0,α1

(
Aj

α′
0,α

′
1

)∗
=
∑
j

Aj ⊗
(
Aj
)∗
. (10)

d) Calculate the transfer matrix T of the AKLT state (8). Then diagonalize it to find its eigenvalues 2pt(s)

ηi and eigenvectors φi. Thus, you can write the transfer matrix in its spectral decomposition as

T =
∑
i

ηiφiφ
†
i , (11)

where φiφ
†
i is the outer product of the 4-component column vector φi and the row vector φ†

i .

Note: The transfer matrix is a tensor with four indices, α0, α1, α
′
0, α

′
1. However, we can combine the

indices α0 and α
′
0 (α1 and α

′
1) into a single index β0 (β1) which leaves us with a 4× 4 matrix that can be

diagonalized as usual.

e) Use the spectral decomposition of the transfer matrix to show that the expectation value can be 2pt(s)

written in the limit L→ ∞ as

〈ψ|Oi |ψ〉 = tr
(
OiT

L−1
) L→∞

= φ†
1Oiφ1 ≡ (12)

where φ1 is the eigenvector of the transfer matrix with the largest eigenvalue η1 = 1. Determine

the 4× 4 matrix

Oi =
∑
j,j′

Aj
α0,α1

Oj,j′

i

(
Aj′

α′
0,α

′
1

)∗
(13)

and calculate the expectation value for Oi ∈ {Sz
i , S

x
i }, where

Sz
i =

1 0 0
0 0 0
0 0 −1

 and Sx
i =

1√
2

0 1 0
1 0 1
0 1 0

 . (14)
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f) Similarly, show that the correlation function of a local order parameter Oi in the limit L→ ∞ 2pt(s)

and for large distances |i− k| is given by

〈ψ|OiOk |ψ〉 = tr
(
OiT

|i−k|−1OiT
L−|i−k|−1

)
= 〈ψ|Oi |ψ〉 · 〈ψ|Ok |ψ〉+O(e−|i−k|/ξ) . (15)

What is the correlation length ξ for the AKLT state?

g) Finally, use Eq. (15) and your previous results to calculate the ferromagnetic order parameter 1pt(s)

〈ψ|Sz
i S

z
k |ψ〉 and 〈ψ|Sx

i S
x
k |ψ〉 in the limit |i− k| → ∞.

Problem 10.2: The AKLT state - A symmetry protected topological phase [Oral | 8 pt(s) ]

ID: ex_aklt_mps_part_2:tqp25

Learning objective

In Problem 10.1 you constructed the AKLT state as a matrix product state (MPS), and showed that the

correlations of the ferromagnetic order parameter vanish. This demonstrates that symmetry protected

topological (SPT) phases – such as the Haldane phase realized by the AKLT Hamiltonian – cannot

be characterized by local order parameters. In this exercise, you characterize the AKLT state by the

transformation of its matrices under symmetry transformations. Furthermore, you show that a non-local

string-order parameter can be used to characterize the topological Haldane phase.

The MPS representation of the AKLT state, derived in Problem 10.1, has the form

|ψAKLT〉 =
∑
j

∑
α

Aj1
α0,α1

. . . AjN
αL−1,α0

|j〉 =
∑
j

tr
(
Aj1 · · ·AjL

)
|j〉 , (16)

with spin-1 states |ji〉 ∈ C3
i on each site i = 1, . . . , L with ji ∈ {+, 0,−}, and matrices Aji

A+ =
√

2
3
σ+ , A0 =

√
1
3
σz and A− = −

√
2
3
σ− . (17)

In the lecture, you learned that the Haldane phase is protected by the dihedral symmetry group

D2 = Z2 × Z2. This symmetry group is realized by local π-rotations of the spins about any of the

three axes γ ∈ {x, y, z} and has four elements {1, Rx, Ry, Rz}. The rotations Rγ
i = eiπS

γ
i operate

on the spin-1 Hilbert spaces C3
i and read explicitly (on each site i)

Rx
i =

 0 0 −1
0 −1 0
−1 0 0

 , Ry
i =

0 0 1
0 −1 0
1 0 0

 and Rz
i =

−1 0 0
0 1 0
0 0 −1

 . (18)

TheD2 symmetry on the complete system then acts as Rγ =
⊗L

i=1R
γ
i . Since the ground state of the

AKLT Hamiltonian is uniquely given by |ψAKLT〉 for periodic boundary conditions, it cannot break

the D2 symmetry so that Rγ |ψAKLT〉 = α(γ) |ψAKLT〉 for some phase α(γ).

a) To understand in detail how the symmetries act on the AKLT state, we study the generalized 3pt(s)
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transfer matrix TRγ
defined as

TRγ

(α0,α′
0),(α1,α′

1)
≡ =

∑
j,j′

Aj
α0,α1

Rγ
jj′

(
Aj′

α′
0,α

′
1

)∗
=
∑
j,j′

Rγ
jj′ · A

j ⊗
(
Aj′
)∗

.

(19)

Calculate the generalized transfer matrices TRγ
for γ = x, z explicitly for the AKLT state.

Compute also their eigenvalues ηγi and eigenvectors φγ
i .

Then show that the dominant eigenvector (corresponding to the largest eigenvalue) of TRx
can

be interpreted as a 2× 2 matrix (φx
1)α,α′ = σx

α,α′ (up to normalization).

Show analogously that the dominant eigenvector of TRz
reads (φz

1)α,α′ = σz
α,α′ .

In the lecture, it was argued (under some technical assumptions) that the physical action of symme-

tries can be “pulled through” on the virtual indices

(20)

where the unitaries URγ form a projective representation of the symmetry group D2.

b) Use Eq. (20) to show that the unitary URγ is necessarily a left-eigenvector with eigenvalue 2pt(s)

|ηγ| = 1 of the generalized transfer matrix. I.e., show that

⇔ URγ

(α0,α′
0)
· TRγ

(α0,α′
0),(α1,α′

1)
= ηγ · URγ

(α1,α′
1)
. (21)

Hint: Show and use that
∑

j,β A
j
βα0

A∗j
βα1

= δα0,α1 .

Use this, in combination with your results from subtask (a), to identify the projective representa-

tions URx and URz .

As discussed in the lecture, a map U : G → GL(H) : g 7→ Ug from a symmetry group G into the

general linear group of the Hilbert space H that satisfies

Uf · Ug = χ(f, g)Ufg (22)

is called a projective representation of G in H. (Here it is G = D2 and f, g ∈ {1, Rx, Ry, Rz}.)
The function χ : G×G→ U(1) is called 2-cocycle and characterizes the projective representation.

Associativity of the group demands that it satisfies the cocycle condition

χ(f, g)χ(fg, h) = χ(g, h)χ(f, gh) , (23)
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i.e., χ is not arbitrary.

Two cocycles χ1 and χ2 describe equivalent projective representations if and only if there is a

function ϕ : G→ U(1) such that

χ1 ∼ χ2 :⇔ χ1(f, g) = χ2(f, g)
ϕ(f)ϕ(g)

ϕ(fg)
. (24)

A representation with χ ∼ 1 is linear and labels the trivial phase; by contrast, a representation with

χ � 1 labels non-trivial SPT phases.

c) In subtask (b) you identified the projective representation of D2 that acts on the virtual bonds: 1pt(s)

U1 = 12×2 , URx = σx , URz = σz , and URy = URz · URx = iσy . (25)

Note: Note that this definition is not unique (e.g., the order in the definition of URy is arbitrary). Why

does this not matter for the classification of the SPT phase?

Evaluate the 2-cocycle explicitly for the following products

URxURx = χ(Rx, Rx)U1 (26a)

URzURz = χ(Rz, Rz)U1 (26b)

URxURz = χ(Rx, Rz)URy (26c)

URyURy = χ(Ry, Ry)U1 (26d)

and use this [and Eq. (24)] to show that χ is non-trivial.

This shows that the AKLT state belongs to a non-trivial SPT phase protected by D2.

The non-triviality of the 2-cocycle χ also manifests in non-local order parameters, so-called string

order parameters. The z-string order parameter is defined as

Si,k(S
z) := 〈ψ|Sz

i

( ∏
i<l<k

Rz
l

)
Sz
k |ψ〉 (27)

for any given state |ψ〉.

d) Argue similar to subtask (f) and (g) in Problem 10.1 that in the limit L, |i− k| → ∞ the string 1pt(s)

order parameter can be evaluated as

Si,k(S
z) = tr

(
Oz

i (T
Rz

)|i−k|−1Oz
kT

L−|i−k|−1
)

= φ†
1O

z
iφ

z
1(φ

z
1)

†Oz
kφ1 = (28)

where φ1 = 1/
√
2(1, 0, 0, 1)T was the dominant eigenvector of normal transfer matrix T and

φz
1 is the dominant eigenvector of the generalized transfer matrix TRz

from subtask (a).
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e) Evaluate the z-string order parameter (27) explicitly for the AKLT state (16). 1pt(s)

Note: The string order of the AKLT state is sometimes also referred to as hidden antiferromagnetic order. This

nomenclature is warranted because when looking at the allowed spin configurations of the state |ψAKLT〉, one
finds an antiferromagnetic pattern (i.e., alternating |+〉 and |−〉 states) which is “hidden” in a sea of |0〉 states
(and therefore cannot be detected by local 2-point correlation functions).
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