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Information on lecture and tutorials

Here a few infos on the modalities of the course “Topological Quantum Many-Body Physics”:

• The C@MPUS-ID of this course is 045500002.

• You can find detailed information on lecture and tutorials on the website of our institute:

https://itp3.info/tqp25

• You can also find detailed information on lecture and tutorials on ILIAS:
https://ilias3.uni-stuttgart.de/go/crs/4023335

• Written problems have to be handed in via ILIAS or during the tutorial and will be corrected by the

tutors. You must earn at least 66% of the written points to be admitted to the exam.

• Oral problems have to be prepared for the exercise session and will be presented by a student at

the blackboard. You must earn at least 66% of the oral points to be admitted to the exam.

• Every student is required to present at least 2 of the oral problems at the blackboard to be admitted

to the exam.

• Problems marked with an asterisk (∗) are optional and can earn you bonus points.

• If you have questions regarding the problem sets, feel free to contact your tutor at any time.

Problem 1.1: Fermions, bosons and hard-core bosons [Oral | 9 pt(s) ]

ID: ex_hardcore_boson:tqp25

Learning objective

In this exercise, we review the fermionic and bosonic creation and annihilation operators, which are

essential to describe systems of many identical particles in quantum mechanics. Beyond that, we

introduce the concept of hard-core bosons and compare them to fermions and bosons. Finally, as an

application of the formalism, we solve the simple model of free fermions and bosons hopping on a

one-dimensional lattice. Most of these concepts should be already familiar to you and will be used

throughout this course.

Recall that the annihilation (creation) operators bi (b
†
i ) that operate on a bosonic Fock space fulfill

the commutation relations

[bi, b
†
j] = δi,j and [bi, bj] = 0 . (1)

Similarly, on a fermionic Fock space the annihilation (creation) operators ai (a
†
i ) fulfill the anti-

commutation relations

{ai, a†j} = δi,j and {ai, aj} = 0 . (2)
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By contrast, hard-core bosons behave like bosons on different sites but as fermions on the same site.

Formally, they are defined via the algebra

{ci, c†i} = 1, {ci, ci} = 0 and [ci, c
(†)
j ] = 0 for i 6= j , (3)

where ci (c
†
i ) are the annihilation (creation) operators (we do not assume Einstein summation!). The

occupation number operator of the i-th mode is given as usual by n̂i = c†ici. Let |nnn〉 = |n1, n2, . . .〉
denote the common eigenbasis of n̂1, n̂2, . . . with eigenvalues n1, n2, . . . respectively.

a) Let us focus on the representation (= Hilbert space) that can be constructed from the hard-core 2pt(s)

boson algebra Eq. (3). Using these (anti)commutation relations, show that for hard-core bosons

ci|n1, n2, . . .〉 =
√
ni|n1, . . . , 1− ni, . . .〉, (4a)

c†i |n1, n2, . . .〉 =
√
1− ni|n1, . . . , 1− ni, . . .〉. (4b)

Furthermore, show that for hard-core bosons there exists a state |G〉 with ci|G〉 = 0 and a state
|H〉 with c†i |H〉 = 0. Use this to show

|n1, n2, . . .〉 =
[∏

i
(c†i )

ni

]
|G〉. (5)

Compare with the fermionic and the bosonic case (known from your quantummechanics course).

Hint: Use the fact that the norm is positive definite.

b) Show that the hard-core boson algebra Eq. (3) can be realized in a system of spin-1
2
degrees of 1pt(s)

freedom via the identification

ci ↔ σ−
i and c†i ↔ σ+

i (6)

where σ±
i = 1

2
(σx

i ± iσy
i ) with Pauli matrices σ

x,y,z
i .

Note:This shows that you can always interpret a local model of hard-core bosons as a spin-12 system.

In this picture, the states |G〉 and |H〉 correspond to the spin-polarized states |↓↓ . . .〉 and |↑↑ . . .〉,
respectively. The Hilbert space you constructed in subtask a) is therefore not a Fock space but simply the

tensor productH =
⊗

iC2
i .

Let us now consider a general unitary transformation

x̃i =
∑

j
Uijxj with U †U = UU † = 1, (7)

where x ∈ {a, b, c} is an annihilation operator.

c) Show that the transformed bosonic operators b̃ and b̃† still fulfill the bosonic/CCR1 algebra (1). 1pt(s)

Also show that the transformed fermionic operators ã and ã† still fulfill the fermionic/CAR2

algebra (2).

d) Now calculate the (anti-)commutation relations for the transformed operators c̃i and c̃
†
i of hard- 1pt(s)

core bosons. Under which class of unitary transformations remains the hard-core boson algebra

valid?

1Canonical Commutation Relations
2Canonical Anti-commutation Relations
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We now considerN � 1 spinless particles in a deep, one-dimensional lattice with sites i ∈ {1, . . . L},
lattice spacing a and periodic boundary conditions. The Hamiltonian for this system is given by

H = −t
∑
〈i,j〉

x†
ixj. (8)

Here xi (x
†
i ) is the annihilation (creation) operator of a particle localized at lattice site i. The kinetic

term t describes the particle hopping from a lattice site i to an adjacent site j, indicated by 〈i, j〉.

e) Let us first consider the fermionic case where x(†) = a(†). The Hamiltonian (8) then describes 2pt(s)

free fermions and its ground state is given by the Fermi sea. Diagonalize the Hamiltonian and

determine the ground state (and its eigenenergy) of the system at half-filling N = L/2.

Hint: In subtask c) you showed that the fermionic algebra is conserved under unitary transformations

U . Show that the basis transformation Ul,j = eiklxj/
√
L with l, j ∈ {1, . . . L} is unitary and use it to

diagonalize the Hamiltonian. Note that this unitary transformation corresponds to a Fourier transform

from the site basis xj = ja to plane waves given by their momenta kl = 2πl/La.

f) Now consider the bosonic case with x(†) = b(†) and again diagonalize the Hamiltonian Eq. (8). 1pt(s)

What is the many-body ground state and ground state energy of the system at half-filling

N = L/2?

g) Finally consider the hard-core bosonic case with x(†) = c(†). Retrace your steps from subtasks e) 1pt(s)

and f) and convince yourself that the Hamiltonian Eq. (8) can no longer be diagonalized by a

simple Fourier transform.

Note:The particular Hamiltonian Eq. (8) can still be exactly diagonalized for hard-core bosons by means

of a Jordan-Wigner transformation (which you will encounter later in this course). This only works in one

dimension, though.

In conclusion, you have shown that quadratic Hamiltonians of fermions (xi = ai) and bosons

(xi = bi) can be exactly solved and their many-body eigenstates (in particular their ground states)
can be constructed from their single-particle eigenstates (either as a Fermi sea or a Bose-Einstein

condensate). By contrast, quadratic Hamiltonians of hard-core bosons cannot be exactly diagonalized

in general, and their many-body eigenstates do not derive from their single-particle eigenstates. We

say that hard-core bosons are intrinsically interacting particles, whereas quadratic Hamiltonians

of fermions or bosons describe non-interacting particles. This has important consequences for our

discussion of symmetry-protected topological phases of interacting bosons later in this course.
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Problem 1.2: Wigner’s Theorem [Written | 6 (+1 bonus) pt(s) ]

ID: ex_wigners_theorem_kramers_theorem:tqp25

Learning objective

Wigner’s theorem (Eugene Wigner, 1931) is a central insight in quantum mechanics that characterizes

how physical symmetries – such as rotations, translations or time-reversal – are represented on the

Hilbert space. The proof of Wigner’s theorem provides a repetition of concepts like ray spaces, transition

probabilities and Born’s rule. A crucial result is that symmetries can be represented by antiunitary

operators, a fact that will be used throughout this course.

In quantum mechanics, physical states are represented by rays in a Hilbert space. A ray is an

equivalence class of normalized vectors with |Ψ〉 and |Ψ′〉 belonging to the same ray if |Ψ〉 = eiϕ |Ψ′〉
for some phase ϕ ∈ R.
Consider the system in a state represented by a rayR with |Ψ〉 ∈ R. If a measurement is performed

to test whether the system is in a state represented by another ray Rk with |Ψk〉 ∈ Rk, then by

Born’s rule the probability is given by the expectation value

P (R 7→ Rk) = 〈Pk〉Ψ = | 〈Ψk|Ψ〉 |2 (9)

of the projection operator Pk = |Ψk〉 〈Ψk|.
We define a symmetry transformation as a mathematical transformation between two equivalent

descriptions (= observers) of the same physical situation; equivalent here means that the two

descriptions lead to the same results for all possible experiments: If one observer O describes a

system by a state represented by a rayR (orRk), then an equivalent observer O
′ describes the same

system by a different state represented by a different rayR′ (orR′
k). Crucially, since these observers

describe the same physical process, they must find the same transition probabilities for all possible

measurements:

T : R 7→ R′ is a symmetry :⇔ P (R 7→ Rk)︸ ︷︷ ︸
Observer O

= P (R′ 7→ R′
k)︸ ︷︷ ︸

Observer O′

for all raysR,Rk (10)

Wigner’s theorem ascertains that for any such symmetry transformation T : R 7→ R′ acting on

a ray space, there exists a compatible operator U : |Ψ〉 7→ |Ψ′〉 acting on the Hilbert space that is
either unitary (and linear) or antiunitary (and antilinear). Furthermore, U is unique up to a phase

factor.

• In this context, an operator U acting on the Hilbert space is called compatible with the trans-

formation T acting on the ray space, if it fulfills U |Ψ〉 ∈ T (R) for every state-vector |Ψ〉 ∈ R
in the Hilbert space.

• The adjoint of an (anti-)linear operator A is defined by 〈Φ|AΨ〉 =
〈
A†Φ

∣∣Ψ〉(∗)
. (Anti-)Unitary

operators are defined by 〈UΦ|UΨ〉 = 〈Φ|Ψ〉(∗), they fulfill U † = U−1.

This exercise guides you step-by-step through the proof of Wigner’s theorem:

a) Consider a complete orthonormal set of state vectors |Ψk〉 ∈ Rk. Let |Ψ′
k〉 ∈ T (Rk) be an 1pt(s)

arbitrary choice of state vectors belonging to the symmetry transformed rays. Show that the

state vectors |Ψ′
k〉 again form a complete set of orthonormal state vectors.

Problem Set Version: 1.0 | tqp25 Page 4 of 5



TOPOLOGICAL QUANTUM MANY-BODY PHYSICS Problem Set 1

b) Consider now an arbitrary state given by a rayR with some state vector |Ψ〉 =
∑

m Cm |Ψm〉 ∈ 2pt(s)

R. Under a symmetry transformation T the ray is transformed to T (R), represented by some
state vector |Ψ′〉 =

∑
m C ′

m |Ψ′
m〉 ∈ T (R).

Show that the coefficients of the new state vector |Ψ′〉 must obey

either C ′
k =

[
ei(ϕk−ϕl)

C ′
l

Cl

]
Ck or C ′

k =

[
ei(ϕk−ϕl)

C ′
l

C∗
l

]
C∗

k , (11)

where w.l.o.g. we assume Cl 6= 0. Note that |C ′
m| = |Cm| for allm.

The phase factors eiϕm are determined by the phases chosen for the basis vectors |Ψ′
m〉 ∈ T (Rm),

i.e., they are independent of the state-vector |Ψ〉.
Hint: Compare the coefficients Cm = 〈Ψm|Ψ〉 with the amplitudes 〈Φk|Ψ〉 with respect to |Φk〉 =

(|Ψl〉+ |Ψk〉)/
√
2 ∈ Sk for k 6= l.

c) Show that for a given symmetry transformation the same choice in (11) must be made for all 1pt(s)

coefficients C ′
k of a state-vector |Ψ′〉.

This leaves essentially two choices for the transformation of a state vector: Either all its coeffi-

cients are complex conjugated or they are not.

∗d) Now consider two arbitrary state vectors |A〉 =
∑

k Ak |Ψk〉 and |B〉 =
∑

k Bk |Ψk〉. +1pt(s)

Show that for both state vectors the same choice in (11) must be made.

This leaves us with only two choices for the transformation on the Hilbert space: either all state

vectors are complex conjugated or they are not.

Hint: Assume that |A〉 and |B〉 transform under different choices in (11). Consider the scalar product

〈B|A〉 and show that the coefficients must fulfill
∑

k,l Im (A∗
kAl) Im (B∗

kBl) = 0. Then argue that there

always exists a third state-vector |C〉 which transforms under the same choice in (11) as both |A〉 and
|B〉.

At this point, we have proven that all state-vectors |Ψ′〉 in the Hilbert space must fulfill

either |Ψ′〉 = C ′
l

Cl

∑
k

Ck

[
ei(ϕk−ϕl) |Ψ′

k〉
]

or |Ψ′〉 = C ′
l

C∗
l

∑
k

C∗
k

[
ei(ϕk−ϕl) |Ψ′

k〉
]
. (12)

The phase factors ei(ϕk−ϕl) compensate for the fact that the relative phases of |Ψ′
k〉 are still arbitrary.

Similarly, the coefficients C ′
l/C

(∗)
l compensate for the fact that the phase of |Ψ′〉 relative to the basis

vectors is still arbitrary. With this knowledge, we can finalize the proof of Wigner’s theorem:

e) For a given symmetry transformation T : R 7→ R′ acting on the ray space, show that we can 2pt(s)

always define a compatible operator U : |Ψ〉 7→ U |Ψ〉 acting on the Hilbert space which is

either unitary (and linear) or antiunitary (and antilinear).

What are the degrees of freedom left in the choice of U?

Hint: Which choices for the relative phase factors of the state vectors must be made such that their

transformation becomes (anti-)linear?
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