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↓ Lecture 9 [15.05.25]

5 | Action of TRS on Fock space:

Nowwe generalize these single-particle concepts to the many-body Hilbert space and Hamiltonian:

i | ^ Representation TU of TRS on the fermionic Fock space OH :

⁂ Definition: Time-reversal symmetry

Time-reversal TU is antiunitary, TU iT
�1

U WD �i , and acts on fermion modes as

TU ci˛T �1
U WD

X
ˇ

U
�

˛ˇ
ciˇ and TU c

�
i˛T �1

U WD

X
ˇ

.U
�

˛ˇ
/�„ ƒ‚ …

Uˇ˛

c
�

iˇ
: (2.25)

Note that we assume that time-reversal only mixes internal degrees of freedom (˛; ˇ)
but not spatial ones (i). This restriction complies with our everyday experience and
simplifies the following discussion. Furthermore, we assume that TRS acts on every
site in the same way (which is reasonable for translational invariant systems).

ii | Let us check that this definition of TRS on OH is consistent with our definition on H above:

TU
OHT �1

U D

X
i˛0;jˇ 0

c
�
i˛0

X
˛;ˇ

h
U˛0˛H

�
i˛;jˇU

�

ˇˇ 0

i
cjˇ 0 (2.26a)

Š
D

X
i˛0;jˇ 0

c
�
i˛0Hi˛0;jˇ 0cjˇ 0 D OH (2.26b)

ı
�! [use the form Eq. (2.17)]h

OH; TU

i
D 0 , TUHT

�1
U D H

with TU D NUK where NU WD ˚iUi with Ui � U (2.27)

This is the form of TRS in the SP Hilbert space that we discussed earlier (where the role of
U is now played by NU since we have single-particle states on each site).

Note that NU is a unitaryNM �NM -matrix whereas U is a unitaryM �M matrix.

iii | We want to consider translation invariant systems !

TU ck˛T �1
U

2.6
D

1
p
N

X
i

e�ixi k
X

ˇ

U
�

˛ˇ
ciˇ D

X
ˇ

U
�

˛ˇ
c�kˇ (2.28)

! TU inverts momenta & mixes internal DOFs

iv | For a time-reversal symmetric many-body Hamiltonian we find:

TU
OHT �1

U

2.5
D

X
kI˛0;ˇ 0

c
�
�k˛0

X
˛;ˇ

h
U˛0˛H

�
˛ˇ .k/U

�

ˇˇ 0

i
c�kˇ 0 (2.29a)

Š
D

X
kI˛0;ˇ 0

c
�
�k˛0H˛0ˇ 0.�k/c�kˇ 0 D OH (2.29b)

In the last equation we substituted k ! �k.
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v | Thus we find a constraint on the Bloch Hamiltonians:

h
OH; TU

i
D 0 , QTUH.k/ QT �1

U D H.�k/

with QTU D UK

(2.30)

Note that QTU maps between themode spacesH .k/ andH .�k/ since TRS inverts momenta!

Summary:

Time-reversal invariance can be expressed equivalently as follows:

h
OH; TU

i
D 0 , TUHT

�1
U D H

, NUH� NU �
D H

, QTUH.k/ QT �1
U D H.�k/

, UH�.k/U �
D H.�k/

(2.31a)

(2.31b)

(2.31c)

(2.31d)

The last two lines are only defined if the system is translation invariant, the first two are generic.

• In words: A (non-interacting) many-body Hamiltonian OH is time-reversal invariant if its
single-particle HamiltonianH is unitarily equivalent to its complex conjugate.

• Note that often the formal distinction between TU and QTU is not made in the literature
(similarly for NU and U ) and one simply writes TU (or even just T ) for both.

• Conditions like NUH� NU � D H are sometimes referred to ↑ reality conditions on the Hamilto-
nian [92]. We will encounter another example when we discuss particle-hole symmetry later
in this course.

Furthermore:

T 2
U D C1 , QT 2

U D C1 , T 2
U $ C1

T 2
U D �1 , QT 2

U D �1 , T 2
U $ .�1/

ON

(2.32a)

(2.32b)

ON WD
P

i˛ c
�
i˛ci˛: total fermion number operator

P WD .�1/
ON is the fermion parity operator.

¡! Note that for T 2
U D �1 it is T 2

U D .�1/
ON and not T 2

U

�
D �1, i.e., the representation depends

on the fermion parity sector. This makes sense: If T 2
U D �1, the fermions have half-integer spins

(← above). According the rules of ↓ angular momentum addition, an even (odd) number of such
particles have integer (half-integer) total angular momentum, consistent with T 2

U D C1 (N even)
and T 2

U D �1 (N odd).

6 | Consequence of TRS for the Spectrum:

H.k/junki D En.k/junki (2.33a)

(2.31d)
HHHH) H.�k/U junki

�
D En.k/U junki

� (2.33b)
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! Eigenstate U junki� ofH.�k/ has same energyEn.k/ as eigenstate junki ofH.k/

! Inversion-symmetric band structure

This means that for TRI systems, one half of the BZ is determined by the other half via QTU . This
motivates the introduction of a so called → effective Brillouin zone (EBZ) (essentially “half” the
original BZ) which has the topology of a cylinder [100].

7 | Consequence of TRS for the Chern number: [Remember: H.k/ D ".k/1C Ed.k/ � E�]

• ^ Two bands from pseudo-spin-1
2
: QT0 D K

“Pseudo-spin-1
2
” refers to degrees of freedom that are not related to angular momentum and

therefore remain invariant under time reversal (e.g. sublattice degrees of freedom).

H�.k/ D H.�k/
(2.8)
,

(
dx;´.k/ D dx;´.�k/

dy.k/ D �dy.�k/
(2.34)

Note that Eq. (2.34) implies j Ed.k/j D j Ed.�k/j such that Odx;´.k/ D Odx;´.�k/ and Ody.k/ D

� Ody.�k/ follows also for the normalized Bloch vector.

• ^ Two bands from real spin-1
2
: QT 1

2
D �yK

�yH�.k/�y
D H.�k/

(2.8)
, Ed.k/ D � Ed.�k/ (2.35)

Again it follows also for the normalized Bloch vector Od.k/ D � Od.�k/.

Both cases !

C
2.13
D �

1

4�

Z �

��

dkx

Z �

��

dky�ijk
Odi .k/Q@x

Odj .k/Q@y
Odk.k/ $ 0 (2.36)

This follows since Odi .k/Q@x
Odj .k/Q@y

Odk.k/ is antisymmetric for both representations if i; j; k are
pairwise distinct (which is enforced by �ijk). !

¡! Important

Systems with Chern bands must break time-reversal symmetry.

This is true in general, i.e., even for models with more than two bands.

• Note that this is completely consistent with the IQHE (or the Hofstadter model) where we
found Chern bands and the magnetic field breaks TRS.

• This also makes sense from another perspective: Conductivity transforms as � 7! �� under
time-reversal since EJ D � EE and EJ 7! � EJ but EE 7! EE (↓ Maxwell equations). Thus in a
time-reversal invariant system it must be � D �a C�s D 0. Note that �a ¤ 0 indeed requires
a magnetic field (which breaks time-reversal symmetry) and �s ¤ 0 requires dissipation
(recall the ← Drude model) and breaks time-reversal symmetry because of entropy production.

• This is a restriction (and a hint) for the construction of a Chern insulator.
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2.1.3. Dirac fermions

As last preliminary step, we introduce a class of free fermion Hamiltonians in the continuum that is very
useful to understand topological bands; we will use it as a starting point to construct our first Chern
insulator on the lattice:

1 | ^ ↓ Dirac equation in 2D: („ D 1)

HD‰ D

 
ˇmC

2X
nD1

˛npn

!
‰ D i@t‰ (2.37)

For a motivation/derivation in 3D see my script on ↑ Quantum Field Theory [101, Section 3.1].

with

• ˛1; ˛2; ˇ: Hermitian matrices

• ˛2
1 D ˛2

2 D ˇ2 D 1

• f˛1; ˛2g D fˇ; ˛1g D fˇ; ˛2g D 0

! Solution: ˛1 D �x , ˛2 D �y , ˇ D �´ with 2-dimensional spinor ‰ D ‰.t;x/

In 3D there is a third ˛-matrix and the algebra can only be solved by 4 � 4-matrices (↓ 
 -matrices).

2 | Fourier transform of HD (k 2 R2):

Note that the spinor‰.t;x/ lives on continuous space x 2 R2, not on a lattice!

HD.k/ D kx�
x

C ky�
y

Cm�´
D Ed.k/ � E� with Ed.k/ D

0@kx

ky

m

1A (2.38)

Here we used that in Fourier space the momentum operator pn D �i@n is simply kn.

Fermions in condensed matter physics that are (approximately) described by a 2-band Bloch Hamil-
tonian of the form Eq. (2.38) are therefore known as ⁂ Dirac fermions (this also refers to more
general Hamiltonians linear in k, → below).

! Spectrum:

E˙.k/
2.9
D ˙j Ed.k/j D ˙

p
k2 Cm2 (2.39)

! Gapped if m ¤ 0

This is where the name“mass gap” comes from.

3 | Time-reversal symmetry:

• QT0 D K ! dx.k/
Š

D dx.�k/ ! HD not TRI!

• QT 1
2

D �yK ! d´.k/
Š

D �d´.�k/ ! HD not TRI for m ¤ 0!

!HD is only TRI form D 0, but there the gap closes anyway!

! Non-zero Chern number possible…

4 | Berry curvature: (of the lower band)

Fxy.k/ $
m

2.k2 Cm2/3=2
(2.40)
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Proof: → Problemset 5

Use the form Eq. (2.13) to show this and remember that here momentum space is not a torus
(Brillouin zone) but R2 (→ next).

5 | “Chern number”: (→ Problemset 5)

C
2.13
D �

1

2�

Z
R2

Fxy.k/ d2k D �

Z 1

0

mk

2.k2 Cm2/3=2
dk $ �

sign.m/
2

(2.41)

Why C … Z?

The quantization of C is based on Stokes theorem (← Section 1.3.1) which is only valid for integra-
tions over compact manifolds (sphere, torus). Here, however, we integrate over the non-compact
R2 instead, so we cannot expect C to be quantized.

Remember the geometric interpretation of the Chern number for two-band models as the number
of times the sphere S2 is covered by the Bloch vector when sweeping over momentum space
(← Section 2.1.1). When you are on a non-compact space like R2, you can start at one point where
the Bloch vector points, say, at the north pole of S2. Then you let the vector continuously move
towards the equator of S2 for jkj ! 1 where the direction on S2 is determined by the direction
of k in R2. This produces a continuous function Od.k/ that wraps S2 only“half.” Convince yourself
that this construction necessarily fails on a compact momentum space like S2 or T 2.

Eq. (2.41) ! Change from m < 0 to m > 0 ) Change of Chern number �C D �1

6 | ^ 2-Band lattice modelH�.k/ D "�.k/1C Ed�.k/ � E�

� : parameters of the model

We say that K 2 T 2 is a ⁂ Dirac point if

H�.K C k/ D vF

�
kx�

x
C ky�

y
C vFm� �

´
�

C O.k2/ (2.42)

m� D 0 ! Band structure at K : E˙.K C k/ D ˙vF jkj ! ⁂ Dirac cone

vF : Fermi velocity (corresponds to the speed of light c in the Dirac equation)

In the following we set always jvF j D 1.

Dirac points are interesting because they harbour“half a (anti-)skyrmion” (depending on the sign of
m� ). When the sign ofm� changes at a gap closing (by varying �), this can change the (quantized)
Chern number of the bands by ˙1 (as discussed ← above).
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2.2. The Qi-Wu-Zhang Model

Historically, the Haldane model (see → below) was the first Chern insulator. However, it is not the simplest
one (at least its momentum space representation is rather complex due to the honeycomb lattice). Later,
Qi,Wu and Zhang introduced a simpler model on the square lattice [102] which we will discuss first.
“Simpler” refers here to its representation in momentum space – the real-space representation of the
QWZmodel is rather unintuitive.

1 | Idea: “Regularize” Dirac Hamiltonian on a lattice !

^ HQWZ.k/ D Ed.k/ � E� with

dx WD sin.kx/ D kx C O.k2/ (2.43a)

dy WD sin.ky/ D ky C O.k2/ (2.43b)

d´ WD �mC 2 � cos.kx/ � cos.ky/ D �mC O.k2/ (2.43c)

m 2 R: only parameter of the theory

• The inverted sign ofm is convention and motivated by the results (→ below).

• The two bands are interpreted as spin-1
2
degrees of freedom of fermions hopping on a square

lattice (→ below).

2 | Spectrum: E˙.k/ D ˙j Ed.k/j ¤ 0 for all k 2 T 2 n f� ;X ;Y ;Mg with

In the sketch we indicate for which parameterm the gap closes at which point in the BZ. This follows
directly by inspection of d´ in Eq. (2.43c).
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