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↓ Lecture 6 [02.05.25]

5 | ^ Special case: Coupling to uniform electric field E.t/ D Ee�i!t

i | Choose gauge such that E.t/ D �@tA.t/ (i.e. At D � D const)

Remember that in general E D �r� � @t A and B D r � A.

! A.t/ D Ee�i!t=.i!/

ii | ^ Perturbation Hamiltonian:

�HI .t/ D �J .t/ � A.t/ (1.63)

with (total) current operator J .t/

• At this point we do not want to fix the unperturbed Hamiltonian H0 that describes
the charge carriers without the field. Hence we do not know the form of J .t/ in the
interaction picture. We therefore play it safe and carry a potential time-dependence
along.

• This is a linearized version of the true coupling Hamiltonian that describes the effect of
the electromagnetic field on electrical charges. For instance, a free particle with charge
q (and with � D const D 0) is described by the Hamiltonian

H D
1

2m
.p � qA/2

D
p2

2m„ƒ‚…
�H0

�

�J‚…„ƒ
qp

m
�A„ ƒ‚ …

��H.t/

C����O.A2/ : (1.64)

There is also a quadratic term A2 which does not contribute to the Hall conductance
(so we can safely drop it).

• In therms of the ↓ current density j .r; t / the Hamiltonian reads

�HI .t/ D �

Z
d2r j .r; t / � A.r; t / (1.65)

with the usual current density j D
q

2m

P
i Œpi ı.r � ri / C ı.r � ri /pi � for many par-

ticles indexed by i . With a homogeneous electric field, this becomes

�HI .t/ D �J .t/ � A.t/ with total current J .t/ D

Z
d2r j .r; t / : (1.66)

For a homogeneous current, the total current is J D LxLy j D Aj where A D LxLy

denotes the area of the sample.

iii | ^ Current as observable: O D Ji !

(Remember that we set the static expectation value to zero: h0jJi j0i D 0.)

hJi .t/i
1.62
D �

1

„!

Z t

�1

h0j
�
Jj .t 0/; Ji .t/

�
j0iEj e�i!t 0

dt 0 (1.67a)

Time-translation invariance of H0; Substitution t 00
D t � t 0

$
�
�

1

„!

Z 1

0

h0j
�
Jj .0/; Ji .t

00/
�

j0i ei!t 00

dt 00

�
„ ƒ‚ …

DW �ij .!/ A

Ej e�i!t (1.67b)
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with ⁂ conductivity tensor �ij .!/

The sample area A D LxLy shows up because the conductivity tensor relates, by definition,
the current density ji to the electric field, and not the total current Ji D Aji .

To show the second equality, use that Jj .t 0/ D e
i
„

H0t 0

Jj e� i
„

H0t 0

[and similar for Ji .t/] and
that j0i is an eigenstate of H0.

iv | ! Hall conductivity:

�xy.!/ D �
1

„!A

Z 1

0

h0j
�
Jy.0/; Jx.t/

�
j0i ei!tdt (1.68)

This is the AC Hall conductivity as it is still frequency dependent.

v | Set t0 D 0 and use U0.t/ D
P

n e�iEnt=„jnihnj and Ji .t/ D U
�
0 .t/JiU0.t/:

!

�xy.!/ D �
1

„!A

Z 1

0

X
n

(
h0jJy jnihnjJxj0iei.En�E0/t=„

�h0jJxjnihnjJy j0iei.E0�En/t=„

)
ei!tdt (1.69a)

Integrate (using a regularization ! C i" to make the integral convergent)

D �
i

!A

X
n¤0

�
h0jJy jnihnjJxj0i

„! C En � E0
�

h0jJxjnihnjJy j0i

„! C E0 � En

�
(1.69b)

vi | Take DC limit ! ! 0 and use 1
„!CEn�E0

D
1

En�E0
�

„!
.En�E0/2 C O.!2/:

(Note the i=! that must be canceled to render the expression finite!)

�xy $
i„

A

X
n¤0

h0jJy jnihnjJxj0i � h0jJxjnihnjJy j0i

.En � E0/2
(1.70)

This is the Hall conductivity expressed in terms of current matrix elements. Our → next
project will be a (quite tedious) reformulation of this expansion with the goal to re-express it
in terms of a topological invariant, namely the ← Chern number.

vii | Comment on the constant term:

For the derivation of Eq. (1.70) it is crucial thatX
n¤0

h0jJy jnihnjJxj0i C h0jJxjnihnjJy j0i

En � E0

D 0 (1.71)

which makes the constant terms of the Taylor expansion cancel (this avoids the divergence
for ! ! 0!).

One way to see this is from rotation invariance of the system in the x-y-plane (a quantum
Hall system should be rotation invariant about the axis of the magnetic field). In particular,
�xy should be invariant under the �=2-rotation Jx 7! Jy and Jy 7! �Jx (note that J is a
vector operator). This means thatX
n¤0

h0jJy jnihnjJxj0i C h0jJxjnihnjJy j0i

En � E0

Š
D �

X
n¤0

h0jJxjnihnjJy j0i C h0jJy jnihnjJxj0i

En � E0

(1.72)
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which implies Eq. (1.71) so that only the antisymmetric part of �xy survives.

Note that this is a quite general argument: If we decompose the 2D conductivity tensor into
symmetric and antisymmetric parts, � D �s C �a, and demand rotational invariance of the
tensor, i.e., � D R�RT for a 2D rotationmatrix R, we have �s D R�sRT and �a D R�aRT

separately. The only symmetric matrix invariant under rotations is proportional to the identity,
�s D �xx � 1, so that there cannot be a symmetric contribution to the off-diagonals (that is,
the Hall conductivity �xy). Thus the most general form of a rotation invariant conductivity
tensor is

� D

�
�xx �xy

��xy �xx

�
: (1.73)

1.4.2. The TKNN invariant

Here wewant to connect theHall conductivity [given by theKubo formula Eq. (1.70)] to the Chern number
and thereby explain the quantization of the former. To do so, we consider non-interacting electrons in a
two-dimensional periodic potential, so that the momentum space is a torus.

The rationale of the following discussion is similar to the original approach by Thouless et al. [17].

1 | ^ Single electron in a periodic potential with Hamiltonian H0:

System size: Lx � Ly & periodic boundaries

We take the thermodynamic limit Lx ; Ly ! 1 later.

2 | ↓ Bloch theorem:

• Eigenfunctions: ‰nk D eikxunk.x/

with unk.x C R/ D unk.x/ for lattice vectors R and band index n D 1; 2; : : :

• Eigenenergies "n.k/ continuous in k ! “Bands”

• ‰nkCK D ‰nk for reciprocal lattice vectors K

If R D anxex C anyey describes a square lattice with lattice constant a, the reciprocal
lattice is K D m1k1 C m2k2 with ki D

2�
a

ei .

! Brillouin zone = Torus T 2
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Since our system is finite, momenta are discrete. The size of the Brillouin zone is determined
by the inverse lattice constant and remains fixed in the following.

3 | ^ Many-body Fock states with Fermi energy EF :

¡!While we can understand the integer quantumHall effect within the framework of non-interacting
fermions, the quantization of the Hall conductivity is a genuine quantum many-body phenomenon.
It is crucial that you understand the difference (and relation) between these concepts.

Ground state D j0i 7! j0i D Filled Fermi sea (1.74a)

Excited states D jni 7! jni D Fermi sea with particle-hole excitations (1.74b)

Current operator D Ji 7! Ji D Second-quantized current operator (1.74c)

In the following, bold states live in the fermionic Fock space (= many-body states), whereas states
in normal font live in the single-particle Hilbert space.

4 | Eq. (1.70) ! Hall conductivity of fermionic many-body system:

�xy $
i„

A

X
n¤0

h0jJyjnihnjJxj0i � h0jJxjnihnjJyj0i

.En � E0/2
(1.75)

Note that the sum goes over all possible excited many-body states (which are all states except the
Fermi sea ground state). However, below we will see that only states with a single particle-hole
excitation contribute.

5 | Current operator = Single-particle operator:

Ji D

X
nk;mq

h‰nkjJi j‰mqi c
�
nk

cmq (1.76)

c
�
nk

: Creation operator for fermion in Bloch state j‰nki

Remember that this recipe produces an operator on Fock space that acts like the single-particle
operator Ji within the one-fermion subspace.
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6 | Eq. (1.75) ! [Here nk0 is short for .nk/0 D n0k0.]X
n¤0

h0jJyjnihnjJxj0i

.En � E0/2
D

X
nk0;mq0

X
nk;mq

h‰nkjJy j‰mqih‰nk0 jJxj‰mq0i

X
n¤0

h0jc
�
nk

cmqjnihnjc
�
nk0cmq0 j0i

.En � E0/2„ ƒ‚ …
ınkDmq0 ımqDnk0 ı"m.q/>EF

ı"n.k/<EF

Œ"m.q/�"n.k/�2

(1.77)

$
X

nk;mq
"n.k/<EF <"m.q/

h‰nkjJy j‰mqih‰mq jJxj‰nki

Œ"m.q/ � "n.k/�2
(1.78)

To evaluate the sum
P

n¤0 over all excited many-body states, convince yourself that you can w.l.o.g.
replace the denominator by Œ"m.q/ � "n.k/�2 (which is independent of n!). Then

P
n¤0 jnihnj

can be written as 1 � j0ih0j and the rest follows.

7 | Assume "n.k/ 7 EF for all k 2 T 2

¡! This means that the Fermi energy falls into a band gap. This is absolutely crucial for what follows.

(Note that statements like “"n < EF ” are now well-defined since "n.k/ < EF is true for all
momenta and only depends on the band index n.)

!

�xy $
i„

A

X
n;m

"n<EF <"m

X
k;q2T 2

(
h‰nkjJy j‰mqih‰mq jJxj‰nki

�h‰nkjJxj‰mqih‰mq jJy j‰nki

)
Œ"m.q/ � "n.k/�2

(1.79)

8 | As a first simplification, we want to get rid of one of the two momentum summations. To do so, we
must show that the current operator cannot change the momentum of a state:

i | Define the single-particle current operator

J WD e Px D i
e

„
ŒH0; x� (1.80)

Here we use the ↓ Heisenberg equation of motion to express the velocity operator in terms of a
commutator. Remember that we are in the interaction picture, i.e., operators evolve in time
under the unperturbed Hamiltonian H0.

ii | ^ Translation operator TR with lattice vector R:

TRxT �1
R D x C R (1.81a)

TRH0T �1
R D H0 (1.81b)

TRj‰nki D eikR
j‰nki (1.81c)

• The first equation follows from the definition of the translation operator.

• The commutativity with the Hamiltonian follows from our assumption that the system
features a discrete translation invariance (“periodic potential”).

• The energy eigenstates of such a Hamiltonian are Bloch states j‰nki which are also
eigenstates of these lattice translations (this is just the statement of ← Bloch’s theorem).
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iii | Consequently

TRJ T �1
R D i

e

„
ŒH0; x C R� D i

e

„
ŒH0; x� D J (1.82)

! J cannot change lattice momenta

Formally: h‰nkjJi j‰mqi D h‰nkjJi j‰mkiık;q

iv | Thus Eq. (1.79) !

�xy $
i„

A

X
n;m

"n<EF <"m

X
k2T 2

(
h‰nkjJy j‰mkih‰mkjJxj‰nki

�h‰nkjJxj‰mkih‰mkjJy j‰nki

)
Œ"m.k/ � "n.k/�2

(1.83)

9 | ^ Continuum limit: Lx; Ly ! 1

In the thermodynamic limit, the sum overmomenta turns into an integral over the Brillouin zoneT 2:

�xy $ i„
X
n;m

"n<EF <"m

Z
T 2

d2k

.2�/2

(
h‰nkjJy j‰mkih‰mkjJxj‰nki

�h‰nkjJxj‰mkih‰mkjJy j‰nki

)
Œ"m.k/ � "n.k/�2

(1.84)

• The continuum limit is convenient because we can now use tools from calculus to simplify
this expression further.

• Here we used the usual approximation of a Riemann sum:

1

Li

X
ki

D
1

2�

X
ki

2�

Li

Li !1

�����!

Z
dki

2�
(1.85)

Remember that A D LxLy .

10 | Our next goal is to get rid of the current operators:

i | Use j‰nki D eikxjunki (← Bloch theorem) and define QJ .k/ WD e�ikxJ eikx so that

h‰nkjJi j‰mki D hunkj QJi .k/jumki (1.86)

¡! Note that in eikx, x is the position operator.

ii | Define QH0.k/ WD e�ikxH0eikx so that

H0j‰nki D "n.k/j‰nki , QH0.k/junki D "n.k/junki (1.87)

iii | With these preliminaries, we can write:

QJi $
e

„

Q@i
QH0 with Q@i WD

@

@ki
(1.88)

To show this use the definition of QH0.k/ and show that Q@i
QH0 D i Œ QH0; x�.

iv | Eqs. (1.84), (1.86) and (1.88) !

�xy $ i
e2

„

X
n;m

"n<EF <"m

Z
T 2

d2k

.2�/2

(
hunkjQ@y

QH0jumkihumkjQ@x
QH0junki

�hunkjQ@x
QH0jumkihumkjQ@y

QH0junki

)
Œ"m.k/ � "n.k/�2

(1.89)
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11 | Use

hunkjQ@y
QH0jumki D hunkjQ@y

�
QH0jumki

�
� hunkj QH0jQ@yumki (1.90a)

D Œ"m.k/ � "n.k/�hunkjQ@yumki (1.90b)

D Œ"n.k/ � "m.k/�hQ@yunkjumki (1.90c)

The first line is just the product rule, in the second line we used that QH0 D QH
�
0 and that

hunkjumki D 0 for n ¤ m (which is the case in our expression for the Hall conductivity). The last
line follows if in the first line the derivative acts on the bra to the left instead on the ket to the right.

!

�xy $ i
e2

„

X
n;m

"n<EF <"m

Z
T 2

d2k

.2�/2

(
hQ@yunkjumkihumkjQ@xunki

�hQ@xunkjumkihumkjQ@yunki

)
(1.91)

Yay! The denominator is gone…,

12 | Use X
m

jumkihumkj D 1 (1.92a)

)

X
mW"m>EF

jumkihumkj D 1 �

X
mW"m<EF

jumkihumkj (1.92b)

These statements are true on the subspace spanned by the Bloch functions junki for fixed k.

More rigorously, one should replace 1 by the projector Pk onto states with lattice momentum k

and do the derivatives in the expression for �xy properly; the result will be the same, though.

!

�xy $ i
e2

„

X
nW"n<EF

Z
T 2

d2k

.2�/2

n
hQ@yunkjQ@xunki � hQ@xunkjQ@yunki

o
(1.93)

Only the term with 1 survives. The second term vanishes as it replaces the sum over empty bands
by a sum over filled bands. But then the sum in the expression for the Hall conductance vanishes
identically if one shifts the derivatives to the states with mk in the first term [using Eq. (1.90)] and
substitutes n $ m in the sums (the last step only works because m and n now run over the same
range of filled bands).

13 | Finally, we can relate our findings to the geometrical quantities introduced in Section 1.3:

i | Define the Berry connection of band n:

A
Œn�
i .k/ WD �ihunkjQ@iunki (1.94)

This is a U.1/ connection on the Brillouin zone which is the compact 2D manifold T 2. The
parameters are the momenta (� D k) and the local Hilbert spaces are one dimensional:
V Œn�.k/ D span fjunkig; these are the non-degenerate eigenspaces (no band crossings!) of
the Hamiltonian family QH0.k/ with discrete spectrum "n.k/ (fix k as a parameter!). Thus
n D 1 and k D 2 in the context of our general discussion in Section 1.3; in the present
context, n denotes the band index.
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ii | ! Berry curvature of band n:

F
Œn�

ij .k/ D Q@j A
Œn�
i � Q@iA

Œn�
j

D �ihQ@j unkjQ@iunki C ihQ@iunkjQ@j unki (1.95)

The cross terms cancel.

iii | ! Chern number of band n:

C Œn�
D

1

2�

Z
T 2

Fijd� ij
D �

1

2�

Z
T 2

Fxy d2k

D
i

2�

Z
T 2

n
hQ@yunkjQ@xunki � hQ@xunkjQ@yunki

o
d2k (1.96)

The integral is best evaluated with differential forms where F D dA is a 2-form and A D

Axdkx C Aydky is a 1-form. Then

C D
1

2�

Z
T 2

F D
1

2�

Z
T 2

�
Q@yAx dky ^ dkx C Q@xAy dkx ^ dky

�
(1.97a)

D �
1

2�

Z
T 2

�
Q@yAx � Q@xAy

�
„ ƒ‚ …

Fxy

dkx ^ dky„ ƒ‚ …
d2k

(1.97b)

where we used dki ^ dkj D �dkj ^ dki .

14 | Compare Eq. (1.93) with Eq. (1.96) !

¡! Important: TKNN formula

�xy D
e2

2�„

X
nW"n<EF

C Œn�
D

e2

h
� with � WD

X
nW"n<EF

C Œn�
2 Z (1.98)

• In summary: The Hall conductivity of a system with non-degenerate bands that are either
completely filled or completely empty is an integer multiple � of e2=2�„ D e2=h, where
� is the sum of the Chern numbers of the filled bands. This quantization is robust and
independent of microscopic details because the Chern numbers are topological invariants
that are necessarily integer, as long as they are well-defined (= no gaps close).

• ¡! If the Fermi energy lies within a (then partially filled) band, our proof of the quantization of
theHall conductivity breaks down (where?). In this situation, we cannot make any statements
about the value of �xy .

• ¡! Youmight wonder: Where is themagnetic field? In our derivation of theTKNN formulawe
didn’t use it. But in experiments, the quantized Hall plateaus arise when tuning the magnetic
flux through the sample. The answer is that the quantization of the Hall conductivity itself
has nothing to do with a magnetic field. The statement is very clear: Whenever the Fermi
energy lies within a gap, the Hall conductivity is quantized and given by the sum of Chern
numbers of the filled bands. Note that our result is perfectly consistent with these Chern
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numbers (and thereby the Hall conductivity) being zero! In that sense we didn’t prove the
exact “staircase” shape of the Hall resistance observed in 2DEGs penetrated by a magnetic
field. We only showed that if the Hall conductivity happens to be non-zero, then it must
come in steps. The role of the magnetic field is twofold: First, it opens gaps „!B between
the Landau levels, so that the conditions for a quantization of �xy are met (namely when all
Landau levels are either full or empty). Second, and this is both crucial and not obvious, it
makes the Landau levels“topological” in that their Chern number isC Œn� D ˙1 (the same for
all n, the sign depends on conventions and the direction of the perpendicular magnetic field).
This then explains the exact structure of the famous Hall resistance plots. One can study
the emergence of Landau levels and their Chern numbers in the ↑ Hofstadter model [17, 78]
(→ Problemset 4). Two different approaches to explicitly compute the Chern numbers of
Landau levels are discussed by Fradkin [63, Chapter 12].)

• In our proof, we explicitly used that the many-body ground state is given by a Fermi sea.
This description is invalidated by interactions between the fermions (e.g. Coulomb interac-
tions). Similarly, our use of Bloch wave functions is invalidated by disorder in the system.
Remarkably, it can be shown that the quantization Eq. (1.98) remains robust under general
perturbations (that break translation invariance and/or add interactions) if these perturbations
are not too strong [76, 79].

• Another subtlety is that all our calculations refer to bulk properties (namely the linear response
of the bulk to a homogeneous electric field). This is not what one measures in experiments
where one attaches point contacts to the boundary of a “Hall bar” (which hosts the 2DEG).
The conductivity (both longitudinal and transversal) is then determined by the properties of
the system boundary and not the bulk. However, due to the → bulk-boundary correspondence,
the topological nature of the bulk directly influences the property of the edge (→ below); in
particular, the total Chern number of the bulk (= filled Landau levels) correlates one-to-one
with gapless chiral edge modes on the boundary. It is the scattering-free transport in these
edge modes that one measures in actual experiments, and the quantized Hall resistance is
due to the number of edge modes that contribute (= are partially filled). Formally, this is
described by the ↑ Landauer-Büttiger formalism [80].

• This formula was first derived by Thouless, Kohmoto, Nightingale, and Nijs in Ref. [17];
hence the name. It is one of the achievements that earned D. J. Thouless the 2016 Nobel
Prize in Physics. Since Thouless got a half-share of the prize, and the Nobel Committee
cited both his description of the KT phase transition and the TKNN result as motivation,
one can put a Prize tag on Eq. (1.98): 1=4 of a Nobel Prize. I hope you are duly impressed
(you can also be a bit proud of having followed the derivation to this point,).

• One can show that, without adding additional symmetry constraints, the TKNN invariant
(Chern number) is the only quantized topological invariant that can be used to distinguish
gapped bands [81].

• Historically, the first convincing (butmore heuristic) argument for the quantization of theHall
plateaus was already given by Robert Laughlin in 1981 [82]. However, from this derivation
one cannot establish a connection to the Chern number as a topological invariant.

15 | Closing remarks:

The salient feature of the integer quantumHall effect is that a quantity that describes a macroscopic
response of system (theHall conductivity) is exactly quantized and hence impervious tomicroscopic
disorder. This magic turns into comprehension when we go back [to Eq. (1.70)] and realize that
we only showed that the antisymmetric part of the conductivity tensor has a topological character
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(remember that we argued the symmetric part away to evade a divergence in the DC limit). Note
that in a conventional conductor (w/o magnetic field) the conductivity tensor is not antisymmetric
but symmetric. So in general we should start with the decomposition

� D �s C �a (1.99)

with �T
s D �s and �T

a D ��a. W/o magnetic field �a vanishes (this is an example of an Onsager
relation [83]). Strictly speaking, we have only shown that the contribution of this antisymmetric
part is topologically quantized. But this contribution is also special in another way. The current
J is the response due to an external electric field: J D �E . The power that is dissipated in
an equilibrium setting (through bumps of the charge carriers with the crystal structure) is then
P D J � E (if J is the current density this is of course the power density); this is known as Joule’s
law. Putting everything together, we find

P D ET �E D ET �sE (1.100)

since ET �aE D .ET �aE/T D ET �T
a E D �ET �aE D 0. Thus only the symmetric part of

the conductivity tensor plays a role for dissipation! But we didn’t show that this part is quantized,
only the“non-dissipative” contribution �a is. So our intuition that a dissipative quantity should
depend on microscopic details and hence not be quantized was right, after all. What we missed
is that not everything about the conductivity tensor is dissipative; there is also a topological (or
geometric) contribution that has nothing to do with microscopic physics. It is this contribution
that gives rise to the integer quantum Hall effect.

There is much more to be said about the physics of the integer quantum Hall effect. Since this a course on
the broader topic of topological phases, we should not linger too long, though. However, there are three
last topics that must be mentioned to prevent misconceptions and embed the IQHE into the Big Picture.
For students who want to dig deeper into quantumHall physics, I can highly recommend the lecture notes
by David Tong [64].
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