
SETTING THE STAGE

28
PAGE

↓ Lecture 3 [17.04.25]

10 | Examples for topologically ordered systems that exist in nature (or in laboratories):

• Fractional quantum Hall states

Yes, this is all we actually know of (except for some special cases, see below)! There is a plethora
of theoretical models, some of which are actively studied in labs; but none of them have been
experimentally realized and characterized to the degree that fractional quantum Hall states have.
Examples of promising models that are theoretically known to be topologically ordered and actively
experimentally studied include ↑ topological quantum spin liquids like the → toric code (→ ??) [31, 32],
↑ Kitaev materials [33], and ↑ fractional Chern insulators [34].

• But actually, that’s not quite correct:

Integer quantum Hall states, first observed in 1980 byKlaus von Klitzing [13], are
also long-range entangled, i.e., cannot be transformed into product states via constant-depth
LU circuits [35]. However, their long-range entanglement is of a particularly simple type
(so called invertible topological order, → below) that does not give rise to anyonic excitations
and topological ground state degeneracies (→ Part III, see also Ref. [36]) which makes non-
invertible topological orders like fractional quantum Hall states so interesting. This is why
some use a different nomenclaturewhere“topologically ordered”only refers to non-invertible
topological order with anyonic excitations and non-vanishing → topological entanglement
entropy [37].

• But aaactually…that’s also not quite correct:

Surprisingly, conventional s-wave superconductivity in 3D systems (discovered in 1911 by
Heike Kamerlingh Onnes) is also an example of intrinsic topological order [35, 38].
This is not true for simplistic models like the BCS-Hamiltonian where the electromagnetic
gauge field is treated as a non-dynamical background. In the real world, however, the gauge
field is dynamical and a superconductor is described by the interactions between charged
particles (electrons) with themselves (which gives rise to pairing) and with the dynamical
electromagnetic field (which gives rise to string-like excitations, namely quantized ↑ flux
tubes, and massive photons). The combined system of charges and electromagnetic field
turns out to be topologically ordered [39, 40] and is described by a ↑ topological quantum
field theory called ↑ BF-theory [41]. The excitations of such systems are (1) Bogoliubov
quasiparticles (“broken Cooper pairs”), (2) flux lines/loops, and (3) massive photons. The
Bogoliubov quasiparticles have non-trivial braiding statistics with the flux lines/loops – which
demonstrates the (non-invertible) topological order of such systems.

11 | ‡ Invertible topological orders (ITO):

With our definition of gapped quantum phases, one can define a“multiplication” of such phases:

^ Two topological phases A and B (in the same dimension):

A � B„ ƒ‚ …
Stacking two TOs

D C„ƒ‚…
New TO

(0.23)
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Observation: Trivial phase E (= product states) acts as identity:

A � E D A (0.24)

! Commutative monoid of quantum phases [42]

In mathematics, a ↓ monoid is a set with an associative binary operation and an identity. It is
commutative if the binary operation is abelian. Elements are not required to have inverse elements
(if all elements have inverse elements, the monoid becomes a group).

^ Class of topological phases that have an inverse element:

⁂ Definition: Invertible topological order (ITO)

⁂ Invertible TOs (ITO) WD
˚

A j 9A�1 W A � A�1 D E
	

• The class of ITOs forms a group within the monoid of TOs.

• If they exist, the inverse phases are given by a time-reversal operation [43].

• In words: A topologically ordered ground state is invertible if and only if you can find another
ground state (of a gapped, local Hamiltonian) such that the combination of both can be
transformed into a product state by a constant-depth LU circuit.

�
�! The entanglement patters of ITOs are of a particularly simple kind [42,43]:

ITO ,

(
No → anyons
Vanishing → topological entanglement entropy

In that sense, ITOs are a rather “boring” type of long-range entanglement, which is why some do
not refer to ITOs as topologically ordered in the first place (in this course, we do).

Examples [35, 44]:

• → Integer quantum Hall states in 2D (Chapter 1)

• → Haldane model in 2D (??)

• → Kane-Mele model (Topological insulator) in 2D (??)
(This is the only example in this list that is truly short-range entangled.)

• → Majorana chain in 1D (??),

So despite their lack of fancy anyonic statistics, ITOs are not so boring after all and we will study
them in detail (and discover much interesting physics).
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12 | But wait! There is more…

Adding patterns of long-range entanglement to our labeling scheme produces a more fine-grained
classification of quantum phases. However, it can be useful to make this classification even more
fine-grained by adding additional symmetry constraints.

We can motivate this rationale by a classical analog:

★ Interlude: Restrictions on perturbations

^ Phase diagram of water:

(This argument draws inspiration from classical thermodynamic phases, not quantum phases.)

! Restrictions on allowed paths can be useful! (depending on the system…)

13 | ! Restrict Hamiltonians by (protecting) symmetries GP � GS :

⁂ Definition: Symmetry-protected quantum phases

^ Gapped, local Hamiltonians Ha and Hb with unique ground states j�ai and j�bi, and a
symmetry group GP (represented by unitaries Ug on the Hilbert space) with ŒHx ; Ug � D 0

for all g 2 GP and x D a; b.

The ground states belong to the same symmetry-protected quantum phase if and only if there
exists a family of gapped and local Hamiltonians OH.˛/ that depends continuously on ˛ 2 Œ0; 1�

such that

Ha D OH.0/ and Hb D OH.1/ (0.25)

and h
OH.˛/; Ug

i
D 0 for all g 2 GP and ˛ 2 Œ0; 1� : (0.26)

14 | ! Phases with the same entanglement pattern can split further:

In particular short-range entangled phases that belong to the trivial phase!
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! Conventional nomenclature:

⁂ Definition: SPT and SET phases

• ⁂ Symmetry-protected topological (SPT) phases WD

Short-range entangled phases protected by symmetries

• ⁂ Symmetry-enriched topological (SET) phases WD

Long-range entangled phases with additional symmetries

We use the terms“SPT(s)” and“SET(s)” to mean“symmetry-protected/enriched topologi-
cal quantum phase(s)” whenever the context requires it.

Comments:

• Typical examples for SPT phases are the→SSH chain in 1D (??) and the→ topological insulator
in 2D (??).

• Typical examples for SET phases are ↑ factional quantum Hall states with protected U.1/

symmetry (= particle number conservation) [35].

• We will not study SET phases in this course!

• Since SPT phases are LU-equivalent to product states (when ignoring symmetries), they
belong to the equivalence class E of “trivial” phases; in particular, they are ← invertible
topological orders (of a special kind, namely without any long-range entanglement).

15 | Important: Possible SPTs (and SETs) depend on the protecting symmetry GP :

¡! Note that SPTs (and SETs) are not properties of ground states (like intrinsic topological order)
but rather classifications of ground states with respect to a prescribed class of allowed Hamiltonian
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deformations (or a restricted class of constant-depth LU circuits). The relevance of this class
typically derives from physical considerations (recall the motivation above).

Second extension of Landau’s paradigm: Symmetry-protected topological phases

16 | These insights lead us to a second extension of our classification scheme:

¡! In this course we only study phases without SSB.

17 | Question: How to characterize SPT phases?

We cannot label them by patterns of long-range entanglement nor by the symmetries they break!

Answer: Complicated! (also: subject of ongoing research!)

! Make simplifying assumptions: Consider restricted classes of models/Hamiltonians:

• ^ Non-interacting fermions → Part I

The benefit of non-interacting fermions is that such models can be solved exactly. This
provides us with powerful tools to classify them systematically. Note that some of these
models will turn out to be invertible topological orders (we will not find non-invertible TOs
with anyons etc. for this class of Hamiltonians).

• ^ Interacting bosons/spins (in 1D) → Part II

Interacting systems of bosons/spins in 1D are usually not exactly solvable. However, since
there is no topological order in these systems, such models realize true SPT phases with
a powerful description in terms of matrix-product states (which again makes a systematic
classification possible).
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Let me comment on a few questions that might come up at this point:

• Why not interacting fermions?

In 1D, this classification derives (via Jordan-Wigner transformation) from the classification
of interacting spin systems (also in 1D) [29]. In higher dimensions, there are approaches to
classify interacting fermions (this is ongoing research [45]), but this goes beyond the scope
of this course.

• Why not non-interacting bosons?

Because non-interacting bosons form a Bose-Einstein condensate (which is a well-understood
non-topological quantum phase). Thus topological phases for bosons require interactions (in
contrast to fermions).

• Why not interacting bosons in higher dimensions?

This can be done with a generalization of the mathematical methods that we will discuss for
the 1D case (Part II) [46, 47]. We will not discuss these generalizations in this course.
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0.6. Overview and Outlook

We can combine all these concepts into a flowchart:

Highlight the three classes that we will discuss in this course.

(A few important original references are given that establish the various concepts.)

Quantum Phases

No broken symmetries
(Disordered phases)

Fermi liquids, Spin liquids, …

Broken symmetries [48–50]
Landau SSB, Group theory

Quantum ferromagnet, Superfluid, …

“old” condensed matter theory (… 1970s)

“new” condensed matter theory (1970s …)

Long-range entangled
(Intrinsic) Topological order (TO)

Short-range entangled

Non-invertible TO [30,51,52]
TQFT, Tensor category theory,
FQHE, Toric code, String-nets, …

Invertible TO [44,53]
Invertible TQFT

IQHE, Majorana chain, …

Symmetry constraints
Symmetry-enriched

topological order (SET)
…

Trivial
phase

Symmetry constraints
Symmetry-protected

topological phases (SPT)

Fermions Bosons / Spins

Interacting [6,47]
Group cohomology
Haldane chain, AKLT,
Bosonic TI & TS, …

Interacting [54,55]
“Group supercohomology?”,

Cobordism theory?

TI & TS + Interactions, …

Non-Interacting [56,57]
Topological band theory,
NL�M& K-Theory

Topological insulators (TI)
& superconductors (TS)

Part III

Part I

Part II
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⁂ Definition: Nomenclature

In this course, gapped quantum phases that…

(1) do not break any symmetries

(2) and are either…

(2a) topologically ordered (TO) or
(invertible and non-invertible, with and without additional protecting symmetries)

(2b) symmetry-protected (SPT)

…will jointly be referred to as topological phases (TP).

Note the difference between“topologically ordered phases” (which are long-range entangled) and“topo-
logical phases” (which can also refer to short-range entangled SPT phases)!

So far, we discussed topological phases on an abstract level. To further motivate these concepts, let us
briefly list a few features of these intriguing phases of matter. Note that not every topological phase exhibits
all these features! Some of them necessarily require long-range entanglement, some don’t. Conversely,
long-range entanglement does not necessarily imply all these features. It is quite a mess and we will study
various models in this course to shed light on these features and their origins.

Some features of topological phases

• TPs cannot be characterized by local order parameters
(all correlations of local operators decay exponentially, cf. our discussion of the TIM).

This is the defining property of topological phases and applies to intrinsic topological order and
SPT phases alike.

• For some TPs, the ground state degeneracy on closed manifolds depends on their topol-
ogy (whether it is a sphere, a torus, etc.) and is robust in the presence of perturbations [58].

This is true for non-invertible topological orders (like fractional quantum Hall states), but not for
SPT phases and invertible topological orders (topological insulators, integer quantum Hall states).

• Some TPs feature exponentially localized excitations (quasiparticles) that obey neither
fermionic nor bosonic statistics – they are anyons and obey fractional or anyonic statistics [59,
60].

The presence of anyons is closely related to the topological degeneracy mentioned above. For
example, integer quantum Hall states and topological insulators do not have anyonic quasiparticles,
but fractional quantum Hall states do.

• These quasiparticles can carry fractionalized charges (e.g. a fraction of the electron
charge) [15].

Fractional charges are a consequence of additional symmetries (for example, particle number
conservation). Fractional charges are therefore a consequence of anyonic excitations in the presence
of a conserved symmetry, i.e., SETorder. Fractional quantumHall stateswithU.1/ particle number
conservation are an example.

• Some TPs have an effective low-energy description in terms of a topological quantum field
theory (TQFT) [61] (a quantum field theory defined by an action that is a topological invariant).
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This is closely related to features of intrinsic topological orders (topological degeneracy, anyonic
excitations). Invertible topological orders are described by ↑ invertible TQFTs.

• In some TPs, (lattice) defects can exhibit anyonic statistics as well (under continuous
deformations of the Hamiltonian).

This can happen even for invertible topological phases like the Majorana chain in 1D and the
px C ipy superconductor in 2D. Note that such defects are not intrinsic quasiparticle excitations
but deformations of the Hamiltonian.

• Some TPs feature robust, gapless edge states on manifolds with boundaries that allow for
scattering-free transport [62].

This can happen for invertible topological phases and even SPT phases. Examples are the famous
chiral edge states of integer quantum Hall systems.

• The linear response of TPs can be quantized to a remarkable degree (even in the presence
of disorder!).

This can happen for invertible and non-invertible topological orders (like integer and fractional
quantum Hall states) and even SPT phases (like topological insulators). The quantization requires
some additional symmetry (like particle number conservation), even if the phase itself does not
require any symmetry protection.
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† Note: Why topology?

After this introductory info-dump you might wonder:

Why are topological phases called“topological”?

Where does topology enter the picture?

The answer to these questions is, as usual, complicated and cannot be fully appreciated at this point
(answering these questions is the purpose of this course). However, we can make a few high-level
comments to set your expectations:

First, remember that ↓ topology is the field of mathematics that is concerned with the formalization
of deformation-invariant properties of spaces. Topology is therefore considered with rather“robust”
qualities of (potentially abstract) objects – in contrast to geometry that is concerned with concepts like
distances and angles (for which one requires a metric). For instance, a donut (bagel) is topologically
equivalent to a coffee mug because you can continuously deform these two shapes into each other
(such a deformations is called a ↓ homotopy):

→ Example of a homotopy (Source: Wikipedia)

We say that the donut and the coffee mug are topologically equivalent but geometrically distinct. For-
malizing the concept of “topological equivalence” and studying its implications is the core subject
of topology.

Generally speaking, topological phase are called“topological” because various (!) concepts from
topology play a role in their description. It is important to appreciate that the term“topology” can
refer to different topological concepts and their application in physics. Broadly speaking, there are
two very distinct such applications in the realm of topological quantum many-body physics:

• “Classical topology”:

Our first encounter of topological concepts will concern so called → topological invariants
that can be used to characterize certain manifolds (parametric paths, Brillouin zones, band
structures,…) that describe non-interacting quantum systems (Part I). This is an application
of topology to single-particle quantum mechanics (with many-body ramifications like the
quantized Hall conductivity). As such, some (not all!) of these phenomena translate to
classical systems (→ topological edge modes) with several applications in engineering (??). The
SPT phases of non-interacting fermions (topological insulators and superconductors) are an
example of “classical topology” at play.

• “Quantum topology”:

A completely different application of methods from topology concerns the description of long-
range entangled quantum many-body phases, i.e., intrinsic topological order. The low-energy
physics of quantum phases in general can be described by ↑ quantum field theories (QFT). It
turns out that the quantum field theories of systems with topological order are of a particularly
elegant type: they are so called ↑ topological quantum field theories (TQFT). These are QFTs
that do not depend on the metric of the space on which the fields live; hence their degrees
of freedom only depend on the topology of this space. The algebraic properties of TQFTs
capture all the fascinating properties of topologically ordered systems (anyonic excitations,
topological ground state degeneracies,…). This application of topology is a genuine feature
of quantum systems and has no classical counterpart, hence“quantum topology”.
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Topological Phases
of Non-Interacting Fermions


