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↓ Lecture 24 [18.07.25]

10.4. Symmetry fractionalization and edge modes

Here we consider one dimensional systems with open boundary conditions. We show how the projective
representations on virtual indices, identified in Section 10.2, necessitate physical degrees of freedom on
the edges. These edge modes transform under projective representations of the symmetry and lead to
robust ground state degeneracies. We exemplify this phenomenon with the bosonic SSH chain.

18 | ^ Bosonic SSH chain with open boundary conditions (OBC):

OH OBC
bSSH
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(10.59)

ı
�! Fixpoint ground states as matrix product states with open boundaries: [← Eq. (9.10)]

• Trivial Phase B (t < 0 and w D 0):

The OBC do not cut entangled pairs, so that the ground state is the same as for PBC:

jBi
9.25
D

LO
nD1

�
j0i2n�1j1i2n C j1i2n�1j0i2n

�
(10.60a)

Š
D

X
i

Bi1i2
Bi3i4

: : : Bi2L�1i2L
ji1i2; : : :i (10.60b)

! Same (site-independent) matrices:

B i i 0

� Bi i 0
9.26
D �x

ii 0 (10.61)

Note that these are numbers (1 � 1-matrices), so that this matrix product state can be
interpreted both in OBC form [Eq. (9.10)] and in PBC form [Eq. (9.29)].

Here the bond dimension isD D 1 so that we can omit the virtual indices k and k0.

• Topological Phase A (t D 0 and w < 0):

One coupling term less due to OBC
!One triplet pair less
!One dangling spin-1

2
on each boundary:

jA.˛; ˇ/i D j˛i0 ˝

L�1O
nD1

.j0i2nj1i2nC1 C j1i2nj0i2nC1/˝ jˇi2L (10.62a)

D

X
i

L˛
i1i2„ƒ‚…

1�2

�Ai3i4
� � �Ai2L�3i2L�2„ ƒ‚ …

2�2

�R
ˇ
i2L�1i2L„ ƒ‚ …

2�1

ji1i2; : : :i (10.62b)

! 4-fold degenerate ground state: ˛; ˇ 2 f";#g

– Same 2 � 2matrices In the bulk:�
Ai i 0

�
kk0
� .Ai i 0/kk0

9.23
D ıik�

x
i 0k0 k; k0

2 f1; 2 D Dg (10.63)

For explicit matrices see ← Eq. (9.24).
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– New 1 � 2 and 2 � 1matrices On the boundaries:�
L˛

ii 0

�
k0 D ıi˛�

x
i 0k0 and

�
R

ˇ
ii 0

�
k
D ıikıi 0ˇ (10.64)

Since these are row and column vectors, there is only one virtual index k and k0 with
bond dimensionD D 2 for each“matrix.”

Explicitly, the left-boundary vectors read ("D 0 and #D 1):

L
"

00 D
�
0 1

�
L

"

01 D
�
1 0

�
L

"

10 D
�
0 0

�
L

"

11 D
�
0 0

�
(10.65a)

L
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#
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�
(10.65b)

Similarly, the right-boundary vectors are:

R
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�
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�
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"
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�
R
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�
0

1

�
R

"
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0

�
(10.66a)
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19 | Action of symmetries:

¡! Here we change several symbols for indices to match our current nomenclature.

Let us again study how the symmetry operators act these matrices:

i | ^ Trivial Phase B:

! SameMPS matrices
! Same transformationX

i;j

�x
i 0i�

x
j 0j B

ij 10.49a
D B.x/ Œ1 � B

i 0j 0

� 1� (10.67a)

X
i;j

�´
i 0i�

´
j 0j B

ij 10.49b
D B.´/ Œ1 � B

i 0j 0

� 1� (10.67b)

In particular, the state is still invariant under the global symmetry operators �.g/ for g 2 D2,
and there is no ground state degeneracy.

Mathematically speaking, the ground state space forms a one-dimensional representation
L

B .g/ of the symmetry groupD2.

ii | ^ Topological Phase A:

! SameMPS matrices in the bulk
! Same transformation on the bulkX

i;j

�x
i 0i�

x
j 0jA

ij

kk0

10.9
D A.x/

h
O�x
� Ai 0j 0

� O�x
i

kk0
(10.68a)

X
i;j

�´
i 0i�

´
j 0jA

ij

kk0

10.11
D A.´/

h
O�´
� Ai 0j 0

� O�´
i

kk0
(10.68b)

iii | Transformation on the boundary?

The matrices (10.64) on the boundaries are new, so we have to evaluate the action of the
symmetry on them explicitly:
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^ Left boundary & Action of �.x/ D X :X
i ;j

�x
i 0i�

x
j 0j

�
L˛

ij

�
k0
D

X
i

�x
i 0iıi˛

X
j

�x
j 0j�

x
j k0 (10.69a)

$
X

i

�x
i 0iıi˛

X
k

�x
kk0�

x
j 0k (10.69b)

D

X
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�x
i 0i

"X
k

�
ıi˛�

x
j 0k

�
�x

kk0

#
(10.69c)

10.64
� L.x/„ƒ‚…

1

X
i

ŒUL.x/„ƒ‚…
�x

�i 0i

h
1 �L˛

ij 0 � O�
x
i

k0
(10.69d)

Here we used the definition Eq. (10.64) in the last line and the same reordering as in Eq. (10.9)
in the second line (for the second summand).

¡! Note that the left sum
P

i cannot be rewritten as a sum
P

k over virtual bond indices
because i D 0; 1 whereas the left bond dimension isD D 1, i.e., k D 0 (which is why we
omit this index completely), cf. Eq. (10.9). Therefore the unitary action UL.x/ D �x has
to act on the physical index and cannot descent to a “gauge transformation” V �1

A .x/ on the
virtual bonds of the row vector L˛

ij 0 .

• ^ Left boundary & Action of �.´/ D Z! Analogous result
ı
�! Transformation valid for all g 2 D2:X

i ;j

Œ�1.g/�i 0i Ij 0j

�
L˛

ij

�
k0
D L.g/

X
i

ŒUL.g/�i 0i

h
L˛

ij 0 � VA.g/
i

k0
(10.70)

Here we omit the trivial multiplication 1 � : : : by a 1 � 1-identity matrix on the left of
the row vector.

with…

“Half” physical symmetry:

(
UL.x/ D �

x

UL.´/ D �
´ (10.71a)

Virtual (gauge) transformation [Eq. (10.45)]:

(
VA.x/ D O�

x

VA.´/ D O�
´ (10.71b)

• ^ Right boundary & Eq. (10.64)
ı
�! Transformation valid for all g 2 D2:X

i ;j

Œ�L.g/�i 0i Ij 0j

�
R

ˇ
ij

�
k
D R.g/

X
j

ŒUR.g/�j 0j

h
V

�
A .g/ �R

ˇ
i 0j

i
k

(10.72)

Note that here the gauge transformation on the right virtual bond is necessarily trivial
and the physical “half” symmetry acts on the rightmost spin (index by j and j 0).

with…

“Half” physical symmetry:

(
UR.x/ D �

x

UR.´/ D �
´ (10.73a)

Virtual (gauge) transformation:

(
V

�
A .x/ D O�

x

V
�

A .´/ D O�
´

(10.73b)
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iv | Observation:

UL.x/UL.´/ D �UL.´/UL.x/ and UR.x/UR.´/ D �UR.´/UR.x/ (10.74)

! Projective representations as physical symmetry operators on boundaries!

¡! Note that the site-local physical symmetries �k are not projective but linear.

That this must happen can also be seen by very general arguments: Consider either the left
boundary with transformation (10.70) or the right boundary with Eq. (10.72). Now apply
two consecutive symmetry transformations g D g1 � g2 2 D2. Then the left-hand side
transforms according to the linear representation �k.g/ [Eq. (8.13)] whereas the single bond
representation on the right-hand side transforms projectively according to Eq. (10.45). But the
latter violates the multiplication law of linear representations by phases (here by signs) given
by the cocycle �A.g1; g2/ on the left and ��

A.g1; g2/ on the right boundary [Eq. (10.46)].

The relations (10.70) and (10.72) can therefore be only valid if these additional phases are can-
celed by conjugate phases that arise from themultiplication law of the physical representations
UL=R on the respective boundary:

UL.g1/UL.g2/ D �
�
A.g1; g2/ UL.g1g2/ ; (10.75a)

UR.g1/UR.g2/ D �A.g1; g2/ UR.g1g2/ : (10.75b)

That is, the boundary spin must also transform projectively to ensure that the the combined
action of boundary symmetry and virtual “gauge” symmetry transforms linearly:

ŒUL.g1/˝ VA.g1/� ŒUL.g2/˝ VA.g2/� D �
�
A.g1; g2/�A.g1; g2/ UL.g1g2/VA.g1g2/

D UL.g1g2/VA.g1g2/ ; (10.76)

in accordance with the the on-site symmetry on the left-hand side of Eq. (10.70).

v | Conclusion:

• For periodic boundaries, the emergence of projective representations is “hidden,” as
they affect only the virtual bonds of the MPS (where they obstruct the deformation into
trivial product state).

• By contrast, for open boundaries, the projective class of the topological phase is “re-
vealed” by the – now projective – action of the physical symmetry on the boundaries.

This is the mathematical reason for the emergence of degenerate edge states at the
boundaries (→ below).

20 | Symmetry fractionalization:

Upshot of our findings for topological Phase A of the bosonic SSH chain:

• Eqs. (10.70) and (10.72): Projective symmetry representation on the left/right boundaries

• Eq. (10.10): Invariant bulk (= trivial representation)

!Generally true for 1D SPT phases:

^ Ground state jGŒ��i of 1D OBC SPT with Œ�� 2 H 2.G;U.1//
ı
�! Action of global symmetry:

�.g/„ƒ‚…
Linear

jGŒ��i D

Left boundary‚…„ƒ
UL.g/„ƒ‚…
Projective

2 Œ���1DŒ���

˝

Bulk‚…„ƒ
1 ˝

Right boundary‚…„ƒ
UR.g/„ƒ‚…
Projective

2 Œ��

jGŒ��i (10.77)
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• ¡! Note that the ground states are only invariant in the bulk (this is the condition of “no
symmetry breaking”). However, on the boundaries the projective symmetries act non-
trivially, so that the ground state is no longer an invariant state and the ground state manifold
is degenerate (→ below).

• For our example of the bosonic SSH chain (in the topological Phase A), it is

jGŒ�A�i 2 span fjA.";"/i; jA.";#/i; jA.#;"/i; jA.#;#/ig (10.78)

and UL.g/ (UR.g/) act only on the left (right) boundary spin-1
2
.

• Notice how the product of both boundary representations is again linear:

ŒUL.g1/˝ UR.g1/� ŒUL.g2/˝ UR.g2/�

10.75
D ��.g1; g2/�.g1; g2/ UL.g1g2/˝ UR.g1g2/ (10.79a)

DUL.g1g2/˝ UR.g1g2/ ; (10.79b)

consistent with �.g/ being a linear representation of G.

This spatial “separation” of a linearly realized symmetry into two (or more) projective “parts” is
known as…

⁂ Symmetry fractionalization (10.80)

Note that this is an emergent phenomenon on the ground state manifold. There is nothing intrinsically
“fractionalized” about the symmetry representation � on the full Hilbert space.

• This boundary-based approach was applied byTurner and collaborators in Ref. [184] to
systematically derive the breakdown of the Z topological index to Z8 in symmetry class BDI
for d D 1-dimensional interacting fermion systems, recall ← Section 6.4.

• Symmetry fractionalization can become physically relevant whenever a global (linear) sym-
metry acts trivially on an extended system, except for a few spatially separate regions (here:
boundaries). In systems with ← intrinsic topological order with → anyonic excitations, global
symmetries act trivially on the vacuum (no anyons = excitations), but can act non-trivially on
the anyons. Hence the symmetry can fractionalize, so that anyons transform under projective
representations of the symmetry. Since charges are mathematically speaking“the generators
of (continuous) symmetry groups,” these anyons can carry ↑ fractional charges. This interplay
between long-range entanglement and symmetry fractionalization is crucial to understand
← symmetry-enriched topological order (SET) [245,246].

21 | Ground state degeneracy:

Let us again focus on the bosonic SSHchain to understand howprojective symmetries on boundaries
and robust ground state degeneracy are related:

i | ^ Fixpoint in Phase A (t D 0 andw < 0):

! Projective boundary symmetries Eqs. (10.71a) and (10.73a):

UL.x/ D �
x
1 ; UL.´/ D �

´
1 ; UL.x´/ D �

x
1 �

´
1 (10.81a)

UR.x/ D �
x
2L ; UR.´/ D �

´
2L ; UR.x´/ D �

x
2L�

´
2L (10.81b)

Here we interpret the physical symmetries as operators on the full Hilbert space and indicate
the subsystems (spin-1

2
) on which they act by spin indices i D 1 (left boundary) and i D 2L

(right boundary).
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! Œ�L� D Œ�R�
10.45
D Œ�A�

10.52
¤ Œ1� 2 H 2.D2;U.1//

Strictly speaking Œ�L� D Œ�A�
�1 but sinceH 2.D2;U.1// D Z2 these are identical.

ii | Observation:

These boundary operators are symmetries independently of each other:

Eqs. (10.59) and (10.81) & t D 0!

�
H OBC

bSSH; UL.g/
�
D 0 and

�
H OBC

bSSH; UR.g/
�
D 0 (10.82)

• It is a feature of the fixpoint wherew D 0 that these boundary representations are exact
symmetries of the HamiltonianHbSSH.

• For t ¤ 0 and finite chain length L < 1, this holds only approximately as long as
jt j < jwj, i.e., in the topological phase. Then, the operators UL and UR are no longer
localized on the left- and rightmost spins but “leak” into the bulk. For L!1, the
symmetry (10.82) is restored for t ¤ 0 where the ground state degeneracy is lifted for
L <1 and restored for L!1. Only at t D 0 the degeneracy is exact even for finite
chains.

This is similar to the fermionic edge modes of the SSH chain on → Problemset 7.

iii | Eq. (10.81)!

UL.x/UL.´/ D �UL.´/UL.x/

UR.x/UR.´/ D �UR.´/UR.x/
and ŒUL.g/; UR.g/� D 0 (10.83)

Note that the anti-commutation relations are a manifestation of Œ�L� D Œ�R� ¤ Œ1� being
non-trivial cohomology classes.

Eqs. (10.82) and (10.83)
ı
�! (4-fold) Degenerate ground state space

• Let jA.";"/i be one ground state of HOBC
bSSH. Then the following three states are also

ground states [Eq. (10.82)] and linearly independent [Eq. (10.83)]:

UL.x/jA.";"/i D jA.#;"/i (10.84a)

UR.x/jA.";"/i D jA.";#/i (10.84b)

UL.x/UR.x/jA.";"/i D jA.#;#/i (10.84c)

Note that this is a consequence of the non-abelian algebra of the boundary symmetry
operators – and this algebra is a consequence of the projective representation ofD2.

• Again, these conclusions can be generalized to 1D SPT phases in general:

To this end, assume that Eq. (10.82) is valid (at least in the limit L ! 1) for some
boundary operators UL.g/ and UR.g/, and that Œ�L� D Œ��

R� ¤ Œ1� 2 H 2.G;U.1//.
Since UX .g/ is a symmetry of the Hamiltonian (X D L;R), we can consider the
representation of these operators on the ground state manifold. The claim is that this
manifold must be at least two-dimensional, i.e., there must be a robust (→ below) ground
state degeneracy.

To see why, assume that the ground state is unique instead. Then UX W G ! U.1/ are
one-dimensional projective representations:

UX .g1/UX .g2/ D �X .g1; g2/ UX .g1g2/ : (10.85)
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Since the UX .g/ are U.1/ phases, we can express the cocycle as

�X .g1; g2/ D 1 �
UX .g1/UX .g2/

UX .g1g2/
(10.86)

which shows that �X � 1 is the trivial cocycle [using UX W G ! U.1/ as the function
f in Eq. (10.32)]. This contradicts our assumption that the boundary symmetries
transform in a non-trivial projective representation!

This argument shows that non-trivial projective representations must be at least two-
dimensional, which implies a degeneracy of the ground state manifold.

iv | Conclusion:

Let us summarize the line of arguments we have built throughout this section:

(i) Sections 9.1 and 10.1: Ground states of gapped 1D spin systems can be represented as
matrix product states.

(ii) Sections 10.2 and 10.3: Symmetric matrix product states are characterized by a pro-
jective representation V on their virtual bonds which, in turn, is characterized by a
cohomology class Œ�� 2 H 2.G;U.1//.

(iii) Eq. (10.43): This cohomology class cannot change under arbitrary perturbations that
do not close the gap or violate the protecting symmetry.

(iv) Eq. (10.77): For open boundaries, the global symmetry acts on ground state(s) via bound-
ary representations UL;R in the same (or inverse) non-trivial cohomology class Œ��
(← symmetry fractionalization)– so this class is robust to perturbations as well.

(Even though the specific form and domain of the operators UL;R may change.)

(v) Eq. (10.82): In the thermodynamic limit (or at the fixpoint), the ground state space
carries projective representations of both UL and UR separately.

(vi) Eq. (10.86): Non-trivial projective representations cannot be one-dimensional.

!Hence the ground state space must be degenerate.

This line of arguments remains valid as long as the gap does not close and the protecting
symmetry is not violated; i.e., the ground state degeneracy is robust.

!

1D SPT Phase $ Cohomology class Œ�� 2 H 2.G;U.1//

$ Œ��-projective boundary symmetries

! Robust ground state degeneracy

• This is an explicit example of a ↑ bulk-boundary correspondence: A topological bulk
necessitates the presence of robust zero-energy degrees of freedom on the boundary.

• In finite systems, Eq. (10.82) is only approximately valid for generic parameters in
the topological phase. Therefore the conclusion that the ground state space carries a
representation of UL and UR separately is no longer exactly valid; only their product
�.g/ D UL.g/UR.g/ is a true symmetry of the system. Since this symmetry is rep-
resented linearly, we cannot exclude the possibility that �.g/ / 1 acts with the trivial
representation on a one-dimensional ground state space. This is what happens in finite
systems where the ground state degeneracy is lifted.
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10.5. ‡ Antiunitary symmetries and twisted group cohomology

In this section, we show that a single unitary Z2-symmetry cannot protect a SPT phase (in contrast to the
D2 D Z2 � Z2 symmetry discussed previously). We then show how antiunitary symmetries fit into the
cohomology framework by introducing a“twisted” cocycle condition. With this new concept, we then
show that a antiunitary Z2-symmetry protects a non-trivial SPT phase. We demonstrate this with the
bosonic SSH chain.

You study the following derivations in detail on → Problemset 11.

The following discussion is loosely based on Refs. [247, 248].

1 | So far:

• Only symmetries represented by local unitary operators: � D � ˝ � � � ˝ �

• Only example of non-trivial cohomology: H 2.D2;U.1// D Z2

! Goal of this section:

• How to incorporate antiunitary symmetries into the cohomology framework?

• Determine more cohomology groups to identify non-trivial SPT phases.

2 | ^ Symmetry group G

← Wigner’s theorem: (→ Problemset 1)

In principle, each g 2 G can be represented by a unitary or antiunitary operator.

! Label group elements as follows:

� W G ! Z2 ; g 7! �.g/ D

(
C1 , g represented unitarily
�1 , g represented antiunitarily

(10.87)

ı
�! � : Group homomorphism

¡! Since the product of two antiunitary operators is unitary, the map � must be a group homo-
morphism: �.g1 � g2/ D �.g1/ � �.g2/. Note that this restricts the possibilities for antiunitary
representations, e.g., the cyclic group Z3 does not allow for any antiunitary representation as it is
of odd order.

Example: ^ G D Z2 D f1; T g! Two possible homomorphisms:(
�0.1/ D 1

�0.T / D 1

)
or

(
�1.1/ D 1

�1.T / D �1

)
(10.88)

�0: T represented unitarily
�1: T represented antiunitarily

3 | Henceforth we are interested in a groupG augmented by such a group homomorphisms: ^ .G; �/

!⁂ Twisted cocycle condition: [cf. Eq. (10.24)]

�.g1; g2/�.g1g2; g3/ $ ��.g1/.g2; g3/�.g1; g2g3/ (10.89)

Here, ��1 is just the complex conjugate since �.g1; g2/ 2 U.1/.
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This is easy to showby applying the group associativity and taking into account complex conjugations
due to antiunitary operators. Indeed, let � be a projective representation ofG with �.g1/ antiunitary
(i.e., �.g1/ D �1) and �.g2/, �.g3/ arbitrary for g1; g2; g3 2 G. Then associativity implies the
relation

Œ�.g1/�.g2/��.g3/ D �.g1; g2/�.g1g2/�.g3/ D �.g1; g2/�.g1g2; g3/�.g1g2g3/

Š
D �.g1/Œ�.g2/�.g3/� D �.g1/�.g2; g3/�.g2g3/ D �

�.g2; g3/�.g1; g2g3/�.g1g2g3/ ; (10.90)

where we used that �.g1/�.g2; g3/ D �
�.g2; g3/�.g1/. Thus the cocycle condition Eq. (10.89) is

“twisted” whenever g1 is represented antiunitarily.

! Set of ⁂ � -twisted 2-cocycles:

Z2
� .G;U.1// WD f � W G �G ! U.1/ j� satisfies Eq. (10.89) g (10.91)

This is the generalization of Eq. (10.33).

4 | A similar “twist” occurs when we multiply the operators by g-dependent phases (remember that
we are ultimately interested in projective representations):
ı
�! Twisted equivalence R� of cocycles: [cf. Eq. (10.32)]

�
R�
� Q� W,

9f W G ! U.1/ W
f .g1/f

�.g1/.g2/

f .g1g2/
�.g1; g2/ D Q�.g1; g2/ (10.92)

This follows along Eq. (10.30) by taking the antiunitarity of operators into account. Let Q�.g/ WD
f .g/�.g/ with phase factor f W G ! U.1/; then

Q�.g1/ Q�.g2/ D f .g1/�.g1/f .g2/�.g2/ (10.93a)

D f .g1/f
�.g1/.g2/ �1.g1/�1.g2/ (10.93b)

D f .g1/f
�.g1/.g2/�.g1; g2/ �.g1g2/ (10.93c)

D
f .g1/f

�.g1/.g2/

f .g1g2/
�.g1; g2/ Q�.g1g2/ (10.93d)

� Q�.g1; g2/ Q�.g1g2/ : (10.93e)

5 | This relation allows us to define the…

⁂ � -twisted 2nd cohomology group of G in U.1/:

H 2
� .G;U.1// WD Z

2
� .G;U.1//

ı
R�

(10.94)

This is the generalization of Eq. (10.34) (which is recovered for the trivial homomorphism � � 1).

The elements of Eq. (10.94) correspond to physically distinct projective representations ofG where
the elements with �.g/ D �1 are represented by antiunitary operators.

Examples:
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In the following, we consider the simplest example of G D Z2 with the two homomorphisms
Eq. (10.88):

H 2.Z2;U.1// � H 2
�0
.Z2;U.1// (10.95a)

H 2.ZT
2 ;U.1// � H

2
�1
.Z2;U.1// (10.95b)

The left-hand notation is often used in the literature, e.g. in Refs. [46, 47, 54]; the “T” in the
superscript stands for “time reversal” and indicates the antiunitary representation of T in Z2 D

f1; T g.

6 | Evaluation of H 2.Z2;U.1//:

i | Cocycle condition (10.89)
�0
�!

.g1; g2; g2/ � .1; T; T / ) �.1; T /�.T; T / D �.T; T /�.1; 1/

) �.1; T / D �.1; 1/ (10.96a)

.T; T; T / ) �.T; T /�.1; T / D �.T; T /�.T; 1/

) �.1; T / D �.T; 1/ (10.96b)

!Only �.1; 1/ and �.T; T / are independent

ii | ^ Trivialization: [Eq. (10.51)]

�.1; 1/
Š
D
f .1/f .1/

f .1/
D f .1/ and �.T; T /

Š
D
f .T /f .T /

f .1/
(10.97)

! Can be solved for f .1/ and f .T / for arbitrary cocycles �.g1; g2/

! All cocycles are trivial!

H 2.Z2;U.1// D H 2
�0
.Z2;U.1// D Z1 D f1g (10.98)

! No SPT protected by unitary Z2 symmetry

7 | Evaluation of H 2.ZT
2 ;U.1//:

i | Cocycle condition (10.89)
�1
�!

.1; T; T / ) �.1; T /�.T; T / D �.T; T /�.1; 1/

) �.1; T / D �.1; 1/ (10.99)

This is the same as for �0.

By contrast:

.T; T; T / ) �.T; T /�.1; T / D ��1.T; T /�.T; 1/

) �2.T; T / D
�.T; 1/

�.1; T /
; (10.100a)

.T; 1; 1/ ) �.T; 1/�.T; 1/ D ��1.1; 1/�.T; 1/

) �.T; 1/ D
1

�.1; 1/
; (10.100b)
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! Again only �.1; 1/ and �.T; T / are independent.

However: Eqs. (10.99), (10.100a) and (10.100b)!

�2.T; T / D
1

�2.1; 1/
) �.T; T / D

˙1

�.1; 1/„ ƒ‚ …
2 consistent solutions

(10.101)

Are both solutions trivial?

ii | ^ Trivialization: [Eqs. (10.51) and (10.92)]

�.1; 1/
Š
D
f .1/f .1/

f .1/
D f .1/ (10.102a)

and �.T; T /
Š
D
f .T /f �1.T /

f .1/
D

1

f .1/
D

1

�.1; 1/
(10.102b)

!Only solution �.T; T / D C��1.1; 1/ can be trivialized

! Solution �.T; T / D ���1.1; 1/ is non-trivial!

H 2.ZT
2 ;U.1// D H

2
�1
.Z2;U.1// D Z2 (10.103)

! One non-trivial SPT protected by antiunitary Z2 symmetry

8 | Summary:

We have now identified the following cohomology groups & allowed SPTs:

H 2.D2;U.1// D Z2 ! 1 Topological phase (10.104a)

H 2.Z2;U.1// D Z1 ! No topological phase (10.104b)

H 2.ZT
2 ;U.1// D Z2 ! 1 Topological phase (10.104c)

• You can check that these results match the literature [47, Table I] (for d D 1).

• We can illustrate these abstract results with the bosonic SSH chain for open boundary
conditions at the fixpoint jA.˛; ˇ/i [t D 0 andw < 0, Eq. (10.62)]. To this end, we consider
global symmetries that induce edge symmetries in the respective cohomology class, and
probe whether these allow for perturbations (= magnetic fields) that lift the ground state
degeneracy by polarizing the edge spins:

– H 2.D2;U.1// D fŒ1�; Œ�1�g withD2 D f1; x; ´; x´g and Œ�1�
10.46
� Œ�A�:

* ^ Global symmetry �.x/ WD X and �.´/ WD X ofHbSSH:

! Boundary representation on jA.˛; ˇ/i:

UL.1/ WD 1

UL.x/ WD �
x
1

UL.´/ WD �
x
1

UL.x´/ WD 1

9>>>=>>>; ) �.g1; g2/ D 1 ) � 2 Œ1� (10.105)

^ PerturbationHpert D hx�
x
1

!Allowed since ŒHpert; UL.g/� D 0 for allg 2 D2 &Lifts ground state degeneracy

!No topological phase 7 (consistent with � 2 Œ1�)
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* ^ Global symmetry �.x/ WD X and �.´/ WD Z ofHbSSH:

! Boundary representation on jA.˛; ˇ/i:

UL.1/ WD 1

UL.x/ WD �
x
1

UL.´/ WD �
´
1

UL.x´/ WD �
x
1 �

´
1

9>>>=>>>; ) �.´; x/ D �1 D ��.x; ´/ ) � 2 Œ�1� (10.106)

^ Any perturbationHpert D ha�
a
1 for a D x; y; ´

!Not allowed since ŒHpert; UL.g/� ¤ 0 for all a D x; y; ´ and some g 2 D2

! Symmetry-protected topological phase 3 (consistent with � 2 Œ�1� ¤ Œ1�)

– H 2.Z2;U.1// D fŒ1�g with Z2 D f1; T g:

* ^ Global symmetry �.T / WD X ofHbSSH:

! Boundary representation on jA.˛; ˇ/i:

UL.1/ WD 1

UL.T / WD �
x
1

)
) �.g1; g2/ D 1 ) � 2 Œ1� (10.107)

^ PerturbationHpert D hx�
x
1

!Allowed since ŒHpert; UL.g/� D 0 for all g 2 Z2 &Lifts ground state degeneracy

!No topological phase 7 (consistent with � 2 Œ1�)

– H 2.ZT
2 ;U.1// D fŒ1�; Œ�1�g with Z2 D f1; T g and T represented antiunitarily:

* ^ Global symmetry �.T / WD XK ofHbSSH:

! Boundary representation on A.˛; ˇ/:

UL.1/ WD 1

UL.T / WD �
x
1 K

)
) �.T; T / D C1 D �.1; 1/ ) � 2 Œ1� (10.108)

^ PerturbationHpert D hx�
x
1

!Allowed since ŒHpert; UL.g/� D 0 for all g 2 Z2 &Lifts ground state degeneracy

!No topological phase 7 (consistent with � 2 Œ1�)

* ^ Global symmetry �.T / WD YK ofHbSSH:

! Boundary representation on A.˛; ˇ/:

UL.1/ WD 1

UL.T / WD �
y
1 K

)
) �.T; T / D �1 D ��.1; 1/ ) � 2 Œ�1� (10.109)

^ Any perturbationHpert D ha�
a
1 for a D x; y; ´

!Not allowed since ŒHpert; UL.T /� ¤ 0 for all a D x; y; ´

! Symmetry-protected topological phase 3 (consistent with � 2 Œ�1� ¤ Œ1�)

These considerations allow us to conclude:

The topological Phase A of the bosonic SSH chain can be protected by…

… eitherD2 (180ı spin rotations)

… or ZT
2 (time reversal).
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