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↓ Lecture 23 [17.07.25]

10.3. Projective symmetries and group cohomology

Here we introduce the concept of projective representations of symmetry groups and their relation to the
second cohomology group. The latter is the mathematical framework to classify SPT phases of interacting
spin systems in one-dimension. We illustrate these rather abstract concepts with the bosonic SSH chain
and prove that its two phases belong to different phases protected by theD2 symmetry.

7 | Remember: � W G ! Cd�d satisfies [Eq. (8.7)]

�.g1/�.g2/ D �.g1g2/ for g1; g2 2 G (10.16)

! Linear representation of G

8 | ^ Eq. (10.15): V W G ! CD�D satisfies almost the same relation:

V.g1/V .g2/
�
D �.g1; g2/V .g1g2/ for g1; g2 2 G (10.17)

� W G �G ! U.1/: ⁂ (2-)Cocycle or ⁂ factor system

V W G ! CD�D : ⁂ Projective representation of G

• The reason for this “relaxed”multiplication law is that in Eq. (10.15) all phases �.g1; g2/

that violate the multiplication rules of the abstract group cancel because V.g/ and V �.g/

always pair up.

• Projective representations are like“normal” (linear) representations“up to a phase.” Linear
representations are trivial projective representations with �.g1; g2/ � 1 (up to a “gauge
freedom”, → below).

• To derive Eq. (10.17) from the transformation (10.15) requires one additional input, namely
that the MPS jM i is ↑ injective. This means that the set of d matrices fM 1; : : : ;M d g spans
the full space ofD �D-matrices CD�D . You can check this explicitly for both states jAi
and jBi of the bosonic SSH chain by inspecting Eqs. (9.24) and (9.27).

One can show that injectivity follows for MPS with exponentially decaying correlations [243].
[More precisely: Exponentially decaying correlations imply ↑ normality, which leads to
↑ injectivity after combining finitely many tensors/sites to new sites (blocking).] This is
always true for non-degenerate ground states of gapped Hamiltonians [27], so that we can
assume injectivity as given (potentially after blocking). Note that non-injective MPS are
typically associated to systems with ← symmetry breaking [7].

So let us assume injectivity. First, without loss of generality, we can absorb the 1D represen-
tation 
.g/ into the representation �.g/ so that Eq. (10.15) readsX

j

Œ Q�.g/�ijM
j
D V �.g/ �M i

� V.g/ (10.18)

where Q�.g/ WD �.g/=
.g/ is again a linear unitary representation of G. For g D g1g2 the
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left hand side reads:X
j

Œ Q�.g1g2/�ijM
j 10.16
D

X
j;k

Œ Q�.g1/�ik Œ Q�.g2/�kjM
j (10.19a)

10.18
D V �.g2/ �

"X
k

Œ Q�.g1/�ik M
k

#
� V.g2/ (10.19b)

10.18
D V �.g2/ � V

�.g1/ �M
i
� V.g1/ � V.g2/ : (10.19c)

On the other hand, we haveX
j

Œ Q�.g1g2/�ijM
j 10.18
D V �.g1g2/ �M

i
� V.g1g2/ (10.20)

and therefore

V �.g1g2/ �M
i
� V.g1g2/ D V

�.g2/ � V
�.g1/ �M

i
� V.g1/ � V.g2/ : (10.21)

Both sides of the equation are linear maps from CD�D ' CD ˝ CD to itself. Since this
relation is true for all i D 1; : : : ; d and fM 1; : : : ;M d g forms a basis of CD�D , it follows

V �.g1g2/jkihl jV.g1g2/ D
h
V �.g2/ � V

�.g1/
i
jkihl j ŒV .g1/ � V.g2/� (10.22)

with jkihl j a basis of the virtual space CD�D for k; l D 1; : : : ;D.

This condition is satisfied if and only if

V.g1/ � V.g2/ D �.g1; g2/ V .g1g2/ (10.23a)

V �.g2/ � V
�.g1/ D �

�.g1; g2/ V
�.g1g2/ (10.23b)

for an arbitrary g1; g2-dependent phase �.g1; g2/. This shows Eq. (10.17).

• Projective representations also play important roles in other places: Since quantum states are
only defined modulo phases (the state space of quantum mechanics is a ↑ projective Hilbert
space, → Problemset 1), physical symmetries can be represented on the Hilbert space“up
to phases” as well. In quantum mechanics, we are therefore interested in projective repre-
sentations (10.17) of physical symmetry groups. For example, rotations in three-dimensional
space are described by the symmetry group SO.3/. A neat fact from mathematics tells us
that (under some technical assumptions) the projective representations of a Lie group corre-
spond to the linear representation of its ↑ universal covering group – which for SO.3/ happens
to be SU.2/. Hence rotations on quantum states are described by linear representations
of SU.2/. The half-integer spin representations (spin-1

2
, spin-3

2
, …) then correspond to

projective representations of SO.3/. (The integer spin representations correspond to linear
representations.)

9 | �.g1; g2/ is not arbitrary:

^ Associativity .g1g2/g3 D g1.g2g3/
ı
�!⁂ Cocycle condition

�.g1; g2/�.g1g2; g3/ D �.g2; g3/�.g1; g2g3/ (10.24)

�.g1; g2/must satisfy this constraint to make Eq. (10.17) well-defined on the entire groupG.

10 | Example:

Let us again illustrate these concepts with the bosonic SSH chain in the (topological) phase A:
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i | Recall:

�.x/ D �x
2k�1�

x
2k

�.´/ D �´
2k�1

�´
2k

)
„ ƒ‚ …

Linear representation (on sites)
[Eq. (10.5)]

Eqs. (10.9) and (10.11)
�������������!

(
V.x/ D O�x

V.´/ D O�´„ ƒ‚ …
Projective representation

(on bonds)

(10.25)

ii | Observation: x´ D ´x inD2

 
 ! V.x/V .´/ D �V.´/V .x/

! V cannot satisfy Eq. (10.16) but satisfies Eq. (10.17)

! Projective representation

Note that we have two choices to define V.x´/ D V.´x/, namely:

For i D 1; 2:

Vi .1/ D 1

Vi .x/ D O�
x

Vi .´/ D O�
´

9>=>; and

8̂<̂
:
V1.x´/ D V1.´x/ WD O�

x
O�´

or

V2.x´/ D V2.´x/ WD O�
´
O�x

(10.26)

Both definitions satisfy Eq. (10.17) with different cocycles � (→ below).

iii | !Multiplication rules:

V1.x/V1.´/ D O�
x
O�´
D C1 � V1.x´/ ;

V1.´/V1.x/ D O�
´
O�x
D �1 � V1.´x/ (10.27a)

or V2.x/V2.´/ D O�
x
O�´
D �1 � V2.x´/ ;

V2.´/V2.x/ D O�
´
O�x
D C1 � V2.´x/ : (10.27b)

! Cocycles:

�1.x; ´/ D C1 ; �1.´; x/ D �1 (10.28a)

or �2.x; ´/ D �1 ; �2.´; x/ D C1 : (10.28b)

There are also other non-trivial elements, e.g., �1.x´; x/ D �1 and �2.x´; ´/ D �1.

!Why this ambiguity (i D 1; 2)? Has this physical consequences?

¡! Note that this choice is not fixed by Eq. (10.15) since the sign cancels.

11 | Consider again the general transformation Eq. (10.15):X
j

Œ�.g/�ijA
j
D 
.g/ V �.g/ � Ai

� V.g/ (10.29a)

D 
.g/ Œf .g/V .g/�� � Ai
� Œf .g/V .g/� (10.29b)

� 
.g/ QV .g/� � Ai
� QV .g/ (10.29c)

Here we introduced the new projective representation QV .g/ WD f .g/V .g/ (→ below).

f W G ! U(1): Arbitrary g-dependent phase

! Projective representations V and QV are equivalent!

Put differently: A symmetric MPS does not uniquely determine the projective representation on
its virtual bonds.
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12 | Is QV a valid projective representation?

Check Eq. (10.17)! Compute cocycle Q�:

QV .g1/ QV .g2/ D f .g1/f .g2/ V .g1/V .g2/ (10.30a)

10.17
D f .g1/f .g2/�.g1; g2/ V .g1g2/ (10.30b)

D f .g1/f .g2/Œf .g1g2/�
��.g1; g2/ QV .g1g2/ (10.30c)

� Q�.g1; g2/ QV .g1g2/ 3 (10.30d)

with new cocycle

Q�.g1; g2/ WD
f .g1/f .g2/

f .g1g2/
�.g1; g2/ (10.31)

Recall that f is a phase so that f .g1g2/
� D f .g1g2/

�1.

Check that Q� satisfies Eq. (10.24) if � does!

V and QV physically equivalent! Equivalence relation between cocycles:

� � Q� W, 9f W G ! U.1/ W
f .g1/f .g2/

f .g1g2/
�.g1; g2/ D Q�.g1; g2/

(10.32)

If � � Q� one calls the two cocycles are ⁂ cohomologous.

13 | Define the Set of all U.1/-valued 2-cocycles of G:

Z2.G;U.1// WD f � W G �G ! U.1/ j� satisfies Eq. (10.24) g (10.33)

! Set of all equivalence classes wrt. (10.32):

⁂ (2nd) Cohomology group of G in U.1/:

H 2.G;U.1// WD Z2.G;U.1// =� (10.34)

• H 2.G;U.1// is an abelian group with the natural multiplication on cocycles.

This means that for Œ�1�; Œ�2� 2 H
2.G;U.1// it is

Œ�1� ı Œ�2� WD Œ�1 � �2� D Œ�2 � �1� D Œ�2� ı Œ�1� 2 H
2.G;U.1// (10.35)

where �1 � �2 denotes the product of the two functions �i W G �G ! U.1/.

• Let Œ1� 2 H 2.G;U.1// be the identity element. Then every cocycle � 2 Œ1� can be written
in the form

�.g1; g2/ D
f .g1/f .g2/

f .g1g2/
(10.36)

for some function f W G ! U.1/. This follows from Eq. (10.32).
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14 | Intermediate status:

�.g/ D �.g/˝ : : :˝ �.g/„ ƒ‚ …
Linear (physical) representation

Symmetric MPS jM i

������������!
Eqs. (10.15), (10.17)

and (10.32)

Œ�M � 2 H
2.G;U.1//„ ƒ‚ …

Depends on � and jM i

(10.37)

This means that the action of a linear representation �.g/ on an invariant MPS is not characterized
by a particular projective representation V.g/ (with cocycle �) on its (virtual) bonds but by the
cohomology class Œ�� 2 H 2.G;U.1// that its cocycle belongs to.

15 | Example:

With this concept of equivalence of cocycles, we can revisit phase A of the bosonic SSH chain:

i | ^ Transformation f W G ! U.1/ to relate V1 and V2:

Eqs. (10.26) and (10.27)!

V1.1/ D 1 D C1 � V2.1/ � f .1/ � V2.1/ (10.38a)

V1.x/ D O�
x
D C1 � V2.x/ � f .x/ � V2.x/ (10.38b)

V1.´/ D O�
´
D C1 � V2.´/ � f .´/ � V2.´/ (10.38c)

V1.x´/ D O�
x
O�´
D �1 � V2.x´/ � f .x´/ � V2.x´/ (10.38d)

! V1 and V2 are physically equivalent projective representations

ii | Eqs. (10.28) and (10.32)!

�1.´; x/ D �1 D
1 � 1

�1
� 1

10.38
D

f .´/f .x/

f .´x/
�2.´; x/ : (10.39)

! �1 and �2 are cohomologous

! Œ�1� D Œ�2� 2 H
2.D2;U.1//

16 | Classification of SPT phases:

We now have all tools to formulate the classification of SPT phases in 1D spin systems.

i | ^ Algorithm (10.40):

System
parameters‚…„ƒ
� 7! H.�/„ƒ‚…

Symmetric
gapped 1D
Hamiltonian

7!

Symmetric
ground state‚ …„ ƒ
jM.�/i„ ƒ‚ …

#

Injective
MPS

7! M i .�/„ƒ‚…
D � D-matrices

7!

Projective
representation‚…„ƒ

V� 7! ��„ƒ‚…
Cocycle

7!

Cohomology
class‚…„ƒ
Œ���„ƒ‚…

2 H 2.G;U.1//

Assumptions:

• � 7! Œ��� continuous

• H 2.G;U.1// discrete set (this is true for all relevant examples)

! Œ��� D const (as long as the map � 7! Œ��� is well-defined in the thermodynamic limit)

! This suggests:

Same phase ) Same cohomology class (10.41)
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! Cohomology classes are “labels” of 1D SPT phases,

It turns out that our intuition is correct. One can show that for any finite system size,
a variation of parameters in the Hamiltonian changes the cocycle in linear order only by
functions that belong to the trivial class Œ1�, i.e., the equivalence class of the cocycle is“rigid”
and cannot change due to continuous deformations. See Ref. [7, Section II.F.3] for the
technical details.

Let us boldly hypothesize (though this is not obvious) that the inverse is also true:

Same phase
?
(H Same cohomology class (10.42)

It turns out that this hypothesis is correct. The proof is rather technical as one has to construct
an explicit path connecting two Hamiltonians. To do so, one makes use of ↑ entanglement
renormalization [244] to first connect the ↑ parent Hamiltonians of MPS ground states to
certain fixpoint Hamiltonians with particularly simpleMPS ground states (which are provably
in the same phase). One can then construct explicitly a gapped path connecting any such
fixpoint MPS that transforms under the same projective representation. See Ref. [7, Section
II.F.2] for the technical details.

ii | This suggests the following classification scheme:

�
Topological phases
in 1D protected by G

�
¶

�
2nd Cohomology classes

[�] of G over U.1/

�
D H 2.G;U.1//

(10.43)

• In words:

LetHA andHB be two one-dimensional, gapped Hamiltonians on a common Hilbert
space H with symmetry �.g/ for g 2 G and unique ground states jAi and jBi, respec-
tively. The latter are invariant under the action of � and can be described by MPS with
matrices Ai and B i of bond dimensionsDA D const andDB D const for L ! 1.
The action of the linear representation �.g/ on these states induces projective represen-
tations VA and VB on their bond spaces with cocycles �A and �B and matrix dimensions
DA andDB .

Then there exists a pathH.�/ of gapped,�-symmetric Hamiltonians on H withH.0/ D HA

andH.1/ D HB if and only if �A � �B , i.e., iff VA and VB are projective representations
of the same cohomology class Œ�A� D Œ�B � 2 H

2.G;U.1//.

This implies that two symmetric states jAi and jBi belong to the same quantum phase
if and only if their corresponding cocycles (defined via their MPS representation) are
representatives of the same cohomology class. This fact leads to the somewhat cryptic
statement that the one-dimensional symmetry-protected topological phases of inter-
acting spin systems (with symmetry groupG), are in one-to-one correspondence with
elements of the second cohomology groupH 2.G;U.1//.

• It is important to stress that this concept of equivalence allows for the comparison of
projective representations VA and VB even if they do not have the same (bond) dimension
DA ¤ DB as the equivalence relation (10.32) only relies on their cocycles �A and �B . In
this more general case, the equivalence �A � �B does not imply VA.g/ D f .g/VB.g/

[this equation does notmake sense becauseVA.g/ andVB.g/ have different dimensions].
However, one can show that there is still a path of an extendedHamiltonian that connects
the two phases [6, 7].
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iii | ^ H.�/ that connects different phases:

I.e., jAi and jBi belong to different cohomology classes: Œ�A� ¤ Œ�B �

! Algorithm (10.40) must be ill-defined

! Two possibilities:

• H.�/ is gapless for some �c

The construction of a well-defined projective representation via injective MPS ground
states fails because the bond dimensionD�c

is unbounded in the thermodynamic limit
(the ground states of gapless Hamiltonians are weakly long-range entangled in one
dimension).

• H.�/ violates the symmetry for some ��

The ground state jM.��/i is no longer invariant under �.g/ and the construction of a
well-defined projective representation fails even thoughD�� remains bounded.

17 | Example:

We can finally piece everything together to classify the two phases of the bosonic SSH chain:

i | Summary for Phase A:

t D 0

w < 0

)
8.6
7! OHA

bSSH

8.29
7! jAi

9.23
7! fAij

g

10.9
10.11
7! VA

10.28
7! �A (10.44)

with projective representation… (VA � V1)

VA.1/ D 1 ; VA.x/ D O�
x ; VA.´/ D O�

´ ; VA.x´/ D O�
x
O�´ (10.45)

¡! The whole point of our previous discussion was that it does not matter which cocycle/pro-
jective representation from the cohomology class we choose.

…and representative cocycle (�A � �1)

�A.x; ´/ D C1 and �A.´; x/ D �1 (10.46)

There are of course more combinations of group elements.
However, these two are sufficient for the arguments → below.

ii | Summary for Phase B:

t < 0

w D 0

)
8.6
7! OHB

bSSH

8.31
7! jBi

9.26
7! fB ij

g
ı
7! VB

ı
7! �B (10.47)

with projective representation…

VB.1/ D 1 ; VB.x/ $ 1 ; VB.´/ $ 1 ; VB.x´/ D 1 (10.48)

This is straightforward to show:

QB
i 0j 0

˛ˇ

10.8
9.26
D

X
i;j

�x
i 0i�

x
j 0j�

x
ij D �

x
i 0j 0 � 
.x/ Œ1 � B

i 0j 0

� 1�˛ˇ (10.49a)

QB
i 0j 0

˛ˇ
D

X
i;j

�´
i 0i�

´
j 0j�

x
ij D ��

x
i 0j 0 � 
.´/ Œ1 � B

i 0j 0

� 1�˛ˇ (10.49b)
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with the (non-trivial) one-dimensional representation 
.g/ ofD2.

…and representative trivial cocycle

�B.g1; g2/ D 1 for all g1; g2 2 D2 D f1; x; ´; x´g (10.50)

This cocycle belongs to the cohomology class Œ1�which is the identity element ofH 2.D2;U.1//.

Note that this also follows directly from the fact that jBi is a product state and therefore has
bond dimensionD D 1. Consequently, VB.g/must be a phase (a 1 � 1 unitary matrix) and
the representation (10.48) can always be achieved by introducing appropriate factors f .g/.

iii | Observation: jBi product state! Phase B = Trivial phase

Hypothesis: Phase A is non-trivial SPT phase protected byD2 …

To show: Œ�A� ¤ Œ�B � D Œ1�

To prove this, we must show that the equivalence relation (10.32)

�A.g1; g2/
?
D
f .g1/f .g2/

f .g1g2/
�B.g1; g2/

10.50
D

f .g1/f .g2/

f .g1g2/
(10.51)

has no solution f .g/.

^ Reductio ad absurdum:

Assume f W G ! U(1) exists!

C1
10.46
D �A.x; ´/

10.51
D

f .x/f .´/

f .x´/

D2
D

abelian

f .´/f .x/

f .´x/

10.51
D �A.´; x/

10.46
D �1  

(10.52)

! Œ�A� ¤ Œ1� is non-trivial element inH 2.D2;U.1//

! Phase A = Non-trivial SPT phase protected byD2 ,

• With this we showed that Phase A (represented by jAi) is a non-trivial topological
phase protected byD2 with the on-site representation �k.a/ D �

a
2k�1

�a
2k

(a D x; ´).
Without either breaking this symmetry or closing the gap, jAi cannot be adiabatically
connected to a product state in Phase B!

• In addition, we showed thatH 2.D2;U.1// ¤ f1g is non-trivial as it contains at least two
elements: Œ1� and Œ�A�. One can show that there are no more inequivalent classes and
thereforeH 2.D2;U.1// D Z2 (which is a well-known fact in mathematics). Physically,
this means that there are only two phases possible in one-dimensional bosonic systems
that are protected byD2 D Z2 � Z2: the trivial phase Œ1� (a representative of which is
jBi) and a topological phase Œ�A� (a representative of which is jAi). This can be read
off the respective classification tables for SPT phases, see e.g. Ref. [47, Table I].

iv | Comparison to ← fermionic classification: (Chapter 6)

a | ^ Jordan-Wigner transformation J : (→ Problemset 8)

J Œai � D

2i�2Y
kD1

�´
k
� �C

2i�1 and J Œbi � D

2i�1Y
kD1

�´
k
� �C

2i (10.53)
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ai ; bi (i D 1; : : : ; L): Fermionic annihilation operators

^ Fermionic SSH chain for OBC
ı
�!

J
h
OHSSH

i 8.6
10.53
4.10
D OHbSSH (L0

D L � 1) (10.54)

! OHbSSH and OHSSH are unitarily equivalent!

This implies that OHbSSH can be solved exactly (via the Jordan-Wigner transformation).

!Did we gain anything? Why not use the fermion classification in Chapter 6?

b | ^ Perturbations �´
2i�1�

´
2i :

OHbSSH 7! OHbSSH C ıt

LX
iD1

�´
2i�1�

´
2i C ıw

L�1X
iD1

�´
2i�

´
2iC1 (10.55)

ıt ; ıw 2 R: Additional parameters

Question: Can ıt ; ıw (together with t; w) be used to adiabatically connect jAi and jBi?

Observation: h
�´

k
�´

kC1
; X
i

8.17
D 0 and

h
�´

k
�´

kC1
; Z
i

8.17
D 0 (10.56)

!Ground state of Eq. (10.55) remainsD2-symmetric

! Cohomology classification:

We cannot use the new terms to connect jAi and jBi unless the gap closes!

c | Could we have concluded the same from the fermion classification?

! ^ Jordan-Wigner transformation of perturbation:

J
h
.1 � 2a

�
i ai /.1 � 2b

�
i bi /„ ƒ‚ …

 Interactions!

i
$ �´

2i�1�
´
2i (10.57)

! The classification of non-interacting fermions has nothing to say about this/

Note that the Jordan-Wigner transformed fermionic Hamiltonian of Eq. (10.55) for
ıt ; ıw ¤ 0 can no longer be encoded by a single-particle Hamiltonian so that our complete
fermionic classification toolbox (bands, SP matrices,…) becomes useless!

! Cohomology classification is much more versatile,

• There is of course another reason why the periodic table in Section 6.2 cannot
answer our question: OurD2 symmetry is unitarily realized – and we factored out
all unitary symmetries and focussed only on the“generic symmetries” T , C , and
S . This, however, is only a technical inconvenience and not a fundamental problem.
Within the framework of non-interacting fermions, one can also study SPTs pro-
tected by unitary symmetries. Conversely, we could have considered an antiunitary
time-reversal symmetry on the spin system (instead of D2, → Section 10.5). In
any case, the fundamental difference between the cohomology classification of
this chapter and the classification developed Chapter 6 is that the former captures
interacting systems and the latter does not.
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• Remember that we already know that the periodic table is changed if interactions
are allowed (← Section 6.4 and → Problemset 8). However, we only studied one
example and lack a systematic classification of interacting fermions (→ below).

d | Corollary:

This example suggests that the cohomology classification of interacting spin systems in
one dimension can be used to classify interacting fermionic SPT phases as well:

�
Interacting 1D
fermionic SPTs

�
Jordan-Wigner
 �������!
transformation

�
Interacting 1D

spin SPTs

�
(10.58)

• This is a special feature of one-dimensional systems because there local spin systems
(with parity symmetry) map to local fermion systems and vice versa.

• There are a few subtleties regarding this mapping (related to fermion parity, recall
Section 5.5). For more details see Ref. [29, Section V].
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