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4 Lecture 23 [17.07.25]

10.3. Projective symmetries and group cohomology

Here we introduce the concept of projective representations of symmetry groups and their relation to the
second cohomology group. The latter is the mathematical framework to classify SPT phases of interacting
spin systems in one-dimension. We illustrate these rather abstract concepts with the bosonic SSH chain
and prove that its two phases belong to different phases protected by the D, symmetry.

7 Remember: 7 : G — C4*4 satisfies [Eq. (8.7)]
w(g1)m(g2) = m(g182) for g1,82€G (10.16)

— Linear representation of G

8 <Eq.(10.15): V : G — CP*P gatisfies almost the same relation:

V(g)V(g2) = y(g1.22)V(g1g2) for g1.g2€G (10.17)

x: G x G — U(l): & (2-)Cocycle or # factor system
V : G — CP*P: & Projective representation of G

» The reason for this “relaxed” multiplication law is that in Eq. (10.15) all phases y (g1, g2)
that violate the multiplication rules of the abstract group cancel because V(g) and VT (g)
always pair up.

« Projective representations are like “normal” (linear) representations “up to a phase.” Linear
representations are trivial projective representations with y(g1, g2) = 1 (up to a “gauge
freedom”, > below).

» Toderive Eq. (10.17) from the transformation (10.15) requires one additional input, namely
that the MPS | M) is 1 injective. This means that the set of d matrices {M !, ..., M?} spans
the full space of D x D-matrices C?*P. You can check this explicitly for both states |A4)
and | B) of the bosonic SSH chain by inspecting Egs. (9.24) and (9.27).

One can show that injectivity follows for MPS with exponentially decaying correlations [243].
[More precisely: Exponentially decaying correlations imply  normality, which leads to
1 injectivity after combining finitely many tensors/sites to new sites (blocking).] This is
always true for non-degenerate ground states of gapped Hamiltonians [27], so that we can
assume injectivity as given (potentially after blocking). Note that non-injective MPS are
typically associated to systems with « symmetry breaking [7].

So let us assume injectivity. First, without loss of generality, we can absorb the 1D represen-
tation y(g) into the representation 7 (g) so that Eq. (10.15) reads

Y FE@M =Vig)- M -V(g) (10.18)
J

where 77(g) := n(g)/y(g) is again a linear unitary representation of G. For g = g1g» the
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left hand side reads:

Y [ (g1g)liy M7 = [ (g0l (82)lk M7 (10.192)
J J.k

=T (go) - [Z[ﬁ(gn]ik M"} V(g2) (10.190)
k

V(g - Vg M V(g Viga). (10.19¢)

On the other hand, we have

j 10.18

Y 712l M7 ="V (g1g2) - M- V(g182) (10.20)
J
and therefore

Vigiga) - M- V(gig2) = Viga) - Vig) - M- V(g1) - V(ga). (10.21)

Both sides of the equation are linear maps from CP*? ~ C? @ CP toitself. Since this
relationis true foralli = 1,...,d and{M', ..., Md} forms a basis of CP*P | it follows

Vi(gi1g2) k) {11V (g182) = [VT(gz) : VT(gl)] k)| [V(g1) - V(g2)] (10.22)

with |k)(l| a basis of the virtual space C?*P fork,l = 1,...,D.

This condition is satisfied if and only if

V(g1)-V(g2) = x(g1.82) V(g182) (10.232)
Vi(g2) - Vg = x*(g1.22) VT(g1£2) (10.23b)

for an arbitrary g1, go-dependent phase x(g1, g2). This shows Eq. (10.17).

« Projective representations also play important roles in other places: Since quantum states are
only defined modulo phases (the state space of quantum mechanics is a * projective Hilbert
space, © Problemset 1), physical symmetries can be represented on the Hilbert space “up
to phases” as well. In quantum mechanics, we are therefore interested in projective repre-
sentations (10.17) of physical symmetry groups. For example, rotations in three-dimensional
space are described by the symmetry group SO(3). A neat fact from mathematics tells us
that (under some technical assumptions) the projective representations of a Lie group corre-
spond to the /inear representation of its ™ universal covering group - which for SO(3) happens
to be SU(2). Hence rotations on quantum states are described by linear representations
of SU(2). The half-integer spin representations (spin-1, spin-2, ...) then correspond to
projective representations of SO(3). (The integer spin representations correspond to linear
representations.)

9 | x(g1,g2) is not arbitrary:

<C Associativity (g122)83 = 81(g283) 5 & Cocycle condition

x(g1,82)x(g182.83) = x(g2.83)x(g1.8283) (10.24)

x(g1, g2) must satisfy this constraint to make Eq. (10.17) well-defined on the entire group G.
10 = Example:

Let us again illustrate these concepts with the bosonic SSH chain in the (topological) phase A:
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i Recall:
7(X) = 05,_105% Egs. (10.9) and (10.11) V(x) =¢6* 1025)
10.2
7(2) = 03195 V(z) = 6*
~————
Linear representation (on sites) Projective representation
[Eq. (10.5)] (on bonds)
. : : 4
i =~ Observation: xz = zxin D, <> V(X)V(z) = -V(2)V(x)
— V cannot satisfy Eq. (10.16) but satisfies Eq. (10.17)
— Projective representation
Note that we have two choices to define V(xz) = V(zx), namely:
V(1) =1 Vi(xz) = Vi(zx) := 6%6°
Fori =1,2: Vi(x) =6~ and or (10.26)
Vi(z) = 6% Va(xz) = Va(zx) := 6%6*
Both definitions satisfy Eq. (10.17) with different cocycles y (= below).
i =~ — Multiplication rules:
Vi(x)V1(z) =6%6% = +1-V1(x2),
V1(2)Vi(x) =6%6% = —1-Vi(zx) (10.272)
or Vz(x)Vz(Z) =066 =-1- Vz(XZ) s
V2(2)Va(x) = 6%6% = +1-Va(zx). (10.27b)
— Cocycles:
xi(x.z) =+1, xi(z,x)=-1 (10.282)
or ) =—1, za(zx) =+1. (10.281)
There are also other non-trivial elements, e.g., y1(xz,x) = —1 and y2(xz,z) = —1.
— Why this ambiguity (i = 1, 2)? Has this physical consequences?
i! Note that this choice is not fixed by Eq. (10.15) since the sign cancels.
11| Consider again the general transformation Eq. (10.15):
Y Ir@)AT =y Vi) A V(g) (10.292)
’ =@/ @VEI - 4" [f(®)V(g)] (10.29)
=y V(@' 4" V(g (10.29¢)

Here we introduced the new projective representation V (g) := f(g)V(g) (= below).
f G — U(1): Arbitrary g-dependent phase

— Projective representations V and V are equivalent!

Put differently: A symmetric MPS does not uniquely determine the projective representation on

its virtual bonds.
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12

13

Is V a valid projective representation?
Check Eq. (10.17) — Compute cocycle :
VgV (82) = f(g1) f(82) V(g1)V(82)

=T f(g) f(g2)x(g1, 82) V(g1£2)

= f(g1) f (&)L f(g182)]* 2(21.82) V (212)
=j(g1.82) V(g1g2) v

with new cocycle

N _ J(g1) f(g2)
x(g1.82) = —————x(g1.82)
f(g182)

Recall that f is a phase so that f(g1g2)* = f(g1g2)" .
Check that j satisfies Eq. (10.24) if y does!

V and V physically equivalent — Equivalence relation between cocycles:

(10.30a)

(10.30b)
(10.30¢)
(10.30d)

(10.31)

f(g1) f(g2)

~ Y : . —U :
K~k e A6 UM T

x(g1.82) = x(g1.82)

If y ~ j one calls the two cocycles are & cohomologous.

Define the Set of all U(1)-valued 2-cocycles of G:
Z2(G,U(1)) :={ y : G x G — U(1) | y satisfies Eq. (10.24) }

— Set of all equivalence classes wrt. (10.32):

& (2nd) Cohomology group of G in U(1):

H2(G,U(1)) := Z*(G. U(1) /

e H?(G,U(1)) is an abelian group with the natural multiplication on cocycles.

This means that for [y1], [x2] € H2(G,U(1)) itis

X1l o [x2] := [x1 - x2l = lx2 - x1l = [x2l o [x1] € H*(G, U(1))

where y; - y2 denotes the product of the two functions y; : G x G — U(1).

(10.32)

(10.33)

(10.34)

(10.35)

o Let[1] € H?(G,U(1)) be the identity element. Then every cocycle y € [1] can be written

in the form

f(g1) f(g2)
f(g182)

for some function f : G — U(1). This follows from Eq. (10.32).

x(g1.82) =
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14 | Intermediate status:

Symmetric MPS | M)

p(g) =m(g) ®...0m(g) [xm] € H*(G,UQ1)) (10.37)
Egs. (10.15), (10.17)

Linear (physical) representation and (10.32) Depends on p and | M)

This means that the action of a linear representation p(g) on an invariant MPS is #oz characterized
by a particular projective representation V(g) (with cocycle y) on its (virtual) bonds but by the
cohomology class [y] € H?(G,U(1)) that its cocycle belongs to.

15 Example:
With this concept of equivalence of cocycles, we can revisit phase A of the bosonic SSH chain:
i < Transformation f : G — U(1) to relate V7 and V5:
Egs. (10.26) and (10.27) —

() =1 =4+1-1(1) = f(1)- V(1) (10.38a)
Vi(x) =6% =+1-12(x) = f(x)-Va(x) (10.38b)
Vi(z) = 6% =4+1-W(z) = f(z) - Va(2) (10.38¢)
Vi(xz) =6%6% = —1-Va(xz) = f(xz2) - Va(x2) (10.38d)

— V1 and V5 are physically equivalent projective representations

i | Egs. (10.28) and (10.32) —

pizx) = —1 = =Ly e &7

0 = ren x2(z,x). (10.39)

— x1 and x» are cohomologous
— [x1] = [x2] € H*(D2.U(1))
16 = Classification of SPT phases:

We now have all tools to formulate the classification of SPT phases in 1D spin systems.

i <t Algorithm (10.40):

System Symmetric Projective Cohomology
parameters ground state representation class
—_—~— . —_—~—
A= HQRQ) = [MQV) » M'Q) = Vi = 2 =[xl
—— —— —— —— ——
Symmetric I D X D-matrices Cocycle e H2(G,U(1))
gapped 1D Injective
Hamiltonian MPS
Assumptions:

e A+ [x,] continuous
o H?(G,U(1)) discrete set (this is true for all relevant examples)
— [xa] = const (as long as the map A + [x,] is well-defined in the thermodynamic limit)

— This suggests:

Same phase = Same cohomology class (10.41)
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— Cohomology classes are “labels” of 1D SPT phases ©

It turns out that our intuition is correct. One can show that for any finite system size,
a variation of parameters in the Hamiltonian changes the cocycle in linear order only by
functions that belong to the trivial class [1], i.e., the equivalence class of the cocycle is “rigid”
and cannot change due to continuous deformations. See Ref. [7, Section II.F.3] for the
technical details.

Let us boldly hypothesize (though this is not obvious) that the inverse is also true:

>
Same phase <  Same cohomology class (10.42)

It turns out that this hypothesis is correct. The proof is rather technical as one has to construct
an explicit path connecting two Hamiltonians. To do so, one makes use of * entanglement
renormalization [244] to first connect the 1 parent Hamiltonians of MPS ground states to
certain fixpoint Hamiltonians with particularly simple MPS ground states (which are provably
in the same phase). One can then construct explicitly a gapped path connecting any such
fixpoint MPS that transforms under the same projective representation. See Ref. [7, Section
I1.F.2] for the technical details.

This suggests the following classification scheme:

Topological phases } ~ { 2nd Cohomology classes (10.43)

in 1D protected by G - [x] of G over U(1)
= H*(G.U(1)

o In words:

Let H4 and Hp be two one-dimensional, gapped Hamiltonians on a common Hilbert
space J¢ with symmetry p(g) for g € G and unique ground states | A) and | B), respec-
tively. The latter are invariant under the action of p and can be described by MPS with
matrices A’ and B’ of bond dimensions D4 = const and D = const for . — oo.
The action of the linear representation p(g) on these states induces projective represen-
tations V4 and Vp on their bond spaces with cocycles y4 and yp and matrix dimensions
DA and DB .

Then there exists a path H (L) of gapped, p-symmetric Hamiltonians on J with H(0) = Hy
and H(1) = Hp if and only if y4 ~ xB, i.e., iff V4 and Vg are projective representations
of the same cohomology class [xa] = [xB] € H*(G,U(1)).

This implies that two symmetric states |A) and | B) belong to the same quantum phase
if and only if their corresponding cocycles (defined via their MPS representation) are
representatives of the same cohomology class. This fact leads to the somewhat cryptic
statement that the one-dimensional symmetry-protected topological phases of inter-
acting spin systems (with symmetry group G), are in one-to-one correspondence with
elements of the second cohomology group H?2(G, U(1)).

« Itisimportant to stress that this concept of equivalence allows for the comparison of
projective representations Vy and Vg even if they do not have the same (bond) dimension
D4 # Dp as the equivalence relation (10.32) only relies on their cocycles y4 and y . In
this more general case, the equivalence y4 ~ xp does notimply V4(g) = f(g)Vr(g)
[this equation does not make sense because V4(g) and Vp (g) have different dimensions].
However, one can show that there is still a path of an extended Hamiltonian that connects
the two phases [6,7].
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i < H(A) that connects different phases:
Le., |A) and | B) belong to different cohomology classes: [y4] # [x5]
— Algorithm (10.40) must be ill-defined
— Two possibilities:
o H(A) is gapless for some A,

The construction of a well-defined projective representation via injective MPS ground
states fails because the bond dimension D). is unbounded in the thermodynamic limit
(the ground states of gapless Hamiltonians are weakly long-range entangled in one
dimension).

« H(}) violates the symmetry for some A*

The ground state | M (1*)) is no longer invariant under p(g) and the construction of a
well-defined projective representation fails even though D« remains bounded.

17 Example:
We can finally piece everything together to classify the two phases of the bosonic SSH chain:
i Summary for Phase A:
t=0( 86 A~y 829 923 ¢ 4ij 10 11 10.28
= Hggy = [A) = AV} = Va4 = ya (10.44)
w <0
with projective representation ... (V4 = V)
Va(l) =1, Va(x)=06%, Va(z) =6%, Va(xz)=06"6" (10.45)

i! The whole point of our previous discussion was that it does not matter which cocycle/pro-
jective representation from the cohomology class we choose.

...and representative cocycle (y4 = x1)

xa(x,z) =41 and ya(z,x) =-1 ] (10.46)

There are of course more combinations of group elements.
However, these two are sufficient for the arguments > below.

i ' Summary for Phase B:
t <0 6 A .
e B AE VB By S v S xp (10.47)

with projective representation ...
Vp()=1, Vpx)=1, Va(z)=1, Vp(xz)=1 (10.48)

This is straightforward to show:
Z"z 107,05 =0 =y()[1-B7 - 1]gp (10.492)

3 Zal 11057 11 = _Ui)sj/ =y(@)[l- B 1ap (10.49b)
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with the (non-trivial) one-dimensional representation y(g) of D5.

...and representative ¢rivial cocycle

xB(g1,82) =1 forall gi,g2€ Dy ={l,x,2,xz} (10.50)

This cocycle belongs to the cohomology class [1] which is the identity element of H2(D,, U(1)).

Note that this also follows directly from the fact that | B) is a product state and therefore has
bond dimension D = 1. Consequently, Vg (g) must be a phase (a 1 x I unitary matrix) and
the representation (10.48) can always be achieved by introducing appropriate factors f(g).

ii | Observation: | B) product state — Phase B = Trivial phase

Hypothesis: Phase A is non-trivial SPT phase protected by D ...
To show: [xal # [xB] = [1]

To prove this, we must show that the equivalence relation (10.32)

2 f(g1) f(g2) 1050 f(g1)f(g2)
XA(gl,gz)——f(glgz) 1B(g1.82) = Fgiga) (10.51)

has no solution f(g).
<t Reductio ad absurdum:

Assume f : G — U(1) exists —

10.46 st f(X)f(2) Dy f(@)f(x) 10s

1046
+1 =" yalx,z) = f(xz) abelian f(Zx) 1

xa(z,x) = 4

(10.52)

— [x4] # [1] is non-trivial element in H?(D,, U(1))
— Phase A = Non-trivial SPT phase protected by D, ©

o With this we showed that Phase A (represented by |A4)) is a non-trivial topological
phase protected by D, with the on-site representation px (a) = o5, _,05, (a = x,2).
Without either breaking this symmetry or closing the gap, |A) cannot be adiabatically
connected to a product state in Phase B!

o Inaddition, we showed that H2(D,, U(1)) # {1} isnon-trivial as it contains at least two
elements: [1] and [y4]. One can show that there are no more inequivalent classes and
therefore H2(D,, U(1)) = Z, (which is a well-known fact in mathematics). Physically,
this means that there are only 7wo phases possible in one-dimensional bosonic systems
that are protected by D, = Zj, X Zj: the trivial phase [1] (a representative of which is
| B)) and a topological phase [x4] (a representative of which is |A)). This can be read
off the respective classification tables for SPT phases, see e.g. Ref. [47, Table I].

iv . Comparison to « fermionic classification: (Chapter 6)

a | <Jordan-Wigner transformation J: (@ Problemset 8)

2i-2 2i—1
— Z + 1 — 4 +
Slai]l = l_[ 0505y and J[hi] = 1_[ 0% 0, (10.53)
k=1 k=1
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aij,b; (i =1,..., L): Fermionic annihilation operators

< Fermionic SSH chain for OBC —

3 I:I:ISSH] L Hyon (L'=L-1) (10.54)

— Hyss and Hggyy are unitarily equivalent!
This implies that Hyssy can be solved exactly (via the Jordan-Wigner transformation).
— Did we gain anything? Why not use the fermion classification in Chapter 6?

: Z z .,
b < Perturbations o3;_,05;:

L L-1
H, > Hyen + 6 0% 0% +§ 0%.0%, (10.55)
bSSH bSSH ? 2i—1Y2i w 2iY2i+1 :
i=1 i=1

8¢, 8w € R: Additional parameters
Question: Can 8;, 8, (together with 7, w) be used to adiabatically connect |A4) and | B)?
Observation:
[U,fa,f_H, X] 270 and [a,fa,f_H, Z] =) (10.56)
— Ground state of Eq. (10.55) remains D,-symmetric
— Cohomology classification:
We cannot use the new terms to connect |A) and | B) unless the gap closes!
¢ | Could we have concluded the same from the fermion classification?

— < Jordan-Wigner transformation of perturbation:

3|0 —2alan - 26]b0)| 2 0%, 03, (10.57)

4 Interactions!

— The classification of non-interacting fermions has nothing to say about this @

Note that the Jordan-Wigner transformed fermionic Hamiltonian of Eq. (10.55) for
8¢, 0w F 0 can no longer be encoded by a single-particle Hamiltonian so that our complete
fermionic classification toolbox (bands, SP matrices, ...) becomes useless!

— Cohomology classification is much more versatile ©

o There is of course another reason why the periodic table in Section 6.2 cannot
answer our question: Our D, symmetry is unitarily realized - and we factored out
all unitary symmetries and focussed only on the “generic symmetries” 7', C, and
S. This, however, is only a technical inconvenience and not a fundamental problem.
Within the framework of non-interacting fermions, one can also study SP'Ts pro-
tected by unitary symmetries. Conversely, we could have considered an antiunitary
time-reversal symmetry on the spin system (instead of D,, » Section 10.5). In
any case, the fundamental difference between the cohomology classification of
this chapter and the classification developed Chapter 6 is that the former captures
interacting systems and the latter does not.
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» Remember that we already know that the periodic table is changed if interactions
are allowed (¢ Section 6.4 and © Problemset 8). However, we only studied one
example and lack a systematic classification of interacting fermions (- below).

d = Corollary:

This example suggests that the cohomology classification of interacting spin systems in
one dimension can be used to classify interacting fermionic SP'T phases as well:

n

Interacting 1D Jordan-Wigner Interacting 1D
.y — ) (10.58)
fermionic SPTs transformation spin SPTs

o Thisis a special feature of one-dimensional systems because there local spin systems
(with parity symmetry) map to Jocal fermion systems and vice versa.

» There are a few subtleties regarding this mapping (related to fermion parity, recall
Section 5.5). For more details see Ref. [29, Section V].
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