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↓ Lecture 22 [11.07.25]

6 | Generalization:

The MPS in Eq. (9.10) treats the first and last spin differently (their matrices are actually vectors).
This seems fine if we consider a 1D system with open boundary conditions. However, the above
construction is generic (it does not know about boundary conditions or the Hamiltonian). For
systems with periodic boundaries these special matrices seem out of place…

i | Motivation: ^ Bosonic SSH chain with PBC

Ground state (8.29):

!D � 2Smax D 22 D 4

This is the bond dimension required for an exact MPS representation of this ground state.

Note that one bit of entanglement entropy (and therefore one factor of 2 for the bond di-
mension) is due to the “long range” Bell pair that connect the two spins on the “boundary”
(which is now an artifact of the MPS expansion that ignores the periodicity of the system).

!More natural picture (that respects the PBC):

If the bond dimension reflects the entanglement “crossing a bond,” this structure should be
more efficient and require onlyD D 2 (as compared toD D 4 above).

!We need a “Periodic” matrix product…

ii | ^ Trace of matrix product:

j‰i D
X

i

Tr
h
M

Œ1�
i1
�M

Œ2�
i2
� : : : �M

ŒL�1�
iL�1

�M
ŒL�
iL

i
ji1i2 : : : iL�1iLi (9.21)

“Taking the trace” is equivalent to contracting the two virtual indices of the matrix product!
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! Pictorial representation:

• The form (9.21) generalizes (9.10) in that the first reduces to the latter ifM Œ1�
i1

andM ŒL�
iL

are row and columns vectors, respectively.

• Due to the cyclicity of the trace, the expression in Eq. (9.21) no longer picks out two
sites as special (which has no physical significance for PBC). All matricesM Œp�

ip
are now

treated on the same footing for p D 1; : : : ; L and can have arbitrary bond dimensions
(matching their left and right neighbors).

• In general, periodic MPS of the form (9.21) do not have a canonical form (9.8) where the
virtual indices at each bond label orthonormal left- and right Schmidt vectors because
one cannot split the system into two parts by cutting a single bond.

iii | Example:

We consider again the two fixpoint wave functions of the two phases of the bosonic SSH
chain. As shown in Section 8.3, both satisfy Smax D const (independent of L), thus we
should expect efficient MPS representations:

• Phase A:

It is convenient to group the two spins on each unit cell to one degree of freedom:

jAi
8.29
D

LO
nD1

� Spins on
adjacent unit cells!‚ …„ ƒ
j0i2nj1i2nC1 Cj1i2nj0i2nC1

�
(9.22a)

Š
D

X
i

Tr
h
A

Œ1�
i1i2
A

Œ2�
i3i4

: : : A
ŒL�
i2L�1i2L

i
ji1i2; i3i4; : : : ; i2L�1i2Li (9.22b)

¡! Here we use n D 1; : : : ; L for the spin indices to distinguish them from the spin
states i 2 f0; 1g (which is the convention used throughout this section).

! d D 2 � 2 D 4
ı
�!We only need 4 matrices to specify the complete state:�

A
Œp�
i i 0

�
kk0
D ıik�

x
i 0k0 Check this! (9.23)

Explicitly:

A
Œp�
00 D

�
0 1

0 0

�
A

Œp�
01 D

�
1 0

0 0

�
A

Œp�
10 D

�
0 0

0 1

�
A

Œp�
11 D

�
0 0

1 0

�
(9.24)

with…

– d D 4 states i i 0 2 f00; 01; 10; 11g
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– virtual indices k; k0 2 f0; 1g with bond dimensionD D 2

The bond dimensionD D 2 is required due to the Bell pair (entanglement) shared
between adjacent sites.

– site index p D 1; : : : ; L

¡! The Lmatrices are the same for all sites p since the state is translation invariant.

• Phase B:

jBi
8.31
D

LO
nD1

� Spins on
same unit cell!‚ …„ ƒ
j0i2n�1j1i2nCj1i2n�1j0i2n

�
(9.25a)

Š
D

X
i

Tr
h
B

Œ1�
i1i2
B

Œ2�
i3i4

: : : B
ŒL�
i2L�1i2L

i
ji1i2; i3i4; : : : ; i2L�1i2Li (9.25b)

ı
�! Again, we need 4 matrices to specify the complete state:�

B
Œp�
i i 0

�
kk0
D �x

ii 0 Check this! (9.26)

Explicitly:

B
Œp�
00 D

�
0
�

B
Œp�
01 D

�
1
�

B
Œp�
10 D

�
1
�

B
Œp�
11 D

�
0
�

(9.27)

with…

– d D 4 states i i 0 2 f00; 01; 10; 11g

– virtual indices k; k0 2 f0g with bond dimensionD D 1

The bond dimensionD D 1 is sufficient because there is no entanglement shared
between adjacent sites. Consequently, k and k0 are dummy indices.

Hence the trace in Eq. (9.25b) is not necessary.

– site index p D 1; : : : ; L

Again, theLmatrices are the same for all sites p since the state is translation invariant.

¡! Note that both states represent the optimal situation for MPS encodings: First, they can be
exactly written in MPS form forD � dL , and second, the bond dimensionD is constant
and independent of the system size L. This situation is not typical and a special feature of
the fixpoint wave functions.

iv | These examples foster two insights:

• Boundary conditions:

Adapting the topology of the bond contractions to the physical situation allows for more
efficient MPS encodings (= smaller bond dimensions):

Open boundary conditions ! Eq. (9.10) (no trace) (9.28a)

Periodic boundary conditions ! Eq. (9.21) (trace) (9.28b)

– Remember that both forms are universal as they can encode arbitrary quantum
states. This distinction is only about optimizing (= lowering) the bond dimensions
(= sizes of matrices).
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– For technical reasons, one often uses open boundary MPS states in numerical
algorithms like → DMRG (Section 9.2) even for periodic systems. The reason is that
computing expectation values (Section 9.2) scales much worse (inD) for periodic
MPS, so that the additional bond dimension one pays by not adapting the MPS
topology to the physical situation is often worth the trade-off.

• Translation invariance:

If the system Hamiltonian is translation invariant and does not break this symmetry
spontaneously (which is the situation we are interested in), the ground state is also
translation invariant. In this case, the MPS description becomes significantly more
efficient since only a single set of d matrices is needed to encode the many-body state
for arbitrary L:

j‰i D
X

i

Tr ŒMi1
Mi2

: : :MiL � ji1i2 : : : iLi (9.29)

!⁂ Translation invariant MPS

7 | Area- vs. volume laws in condensed matter systems:

So far, we were only concerned with many-body states. Hamiltonians were not important. So how
can MPS representations help us to study quantum many-body phases described by a family of
Hamiltonians?

i | Plot SŒAl � as a function of subsystem size l D 0; : : : ; L

! Entanglement profile:

• It must be SŒA0� D 0 and SŒAL� D 0 since both Al and the complement NAl must be
non-empty sets for non-vanishing entanglement.

• Since SŒAl �
8.24
� log2Rl � log2 minfd l ; dL�lg D minfl; L � lg � log2 d , the entan-

glement profile of a state is always contained in the gray triangular region (shown for
d D 2).

ii | ^ Random states picked from the full Hilbert space H :

Page [217–220]
�
�!

hSŒAl � i � l„ ƒ‚ …
⁂ Volume law

) hSmax i � L (9.30)
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Here h�i denotes the average over all states in the Hilbert space.

In general, we say that SŒA� obeys a volume law if the entanglement of the subsystemA scales
with its volume (= number of elementary subsystems). In 1D, the volume of an interval Al is
simply its length l .

!

Random states are volume-law entangled. /

• This is bad new because Eq. (9.13) forbids efficient MPS representations for such states.

This is also true if one is satisfied withMPS approximations: One can show that a linearly
growing entanglement entropy necessitates exponentially growing bond dimensions to
achieve constant errors [215].

• Picking states “random” from the Hilbert space requires the definition of a probability
distribution on H (mathematically: a ↑ probability measure). To this end, one chooses
the ↑ Haar measure since it is the most natural one (it is the unique measure invariant
under unitary transformations). This choice makes the average h�i well defined.

• Fun fact: The exact result for hSŒAl � i is known as the↑ Page curve (for small subsystems
it is slightly less than the maximal allowed entropy). It plays a crucial role for solving
the ↑ black hole information paradox [221, 222] put forward by Stephen Hawking [223].
(Don Page was a PhD student of Stephen Hawking.)

iii | Luckily we are not interested in random states…

^ Ground states of gapped Hamiltonians in 1D

Remember the ground states of the ← bosonic SSH chain:

Phase A: Eq. (8.29) ) SŒAl � D 2 D const (9.31a)

Phase B: Eq. (8.31) ) SŒAl � D 0 D const (9.31b)

! This suggests that in both gapped phases the entanglement is bounded by a constant:

SŒAl � � const„ ƒ‚ …
⁂ Area law (in 1D)

) Smax � const (9.32)

¡! In general, we say that SŒA� obeys an area law if the entanglement of the subsystem A

scales with its surface area. In 1D, the surface area of an intervalAl is composed of two points
and therefore constant in size.

It turns out that this scaling is no peculiarity of the bosonic SSH chain:

Hastings [28]
�
�!

Ground states of gapped Hamiltonians in 1D are area-law entangled. ,

! Such ground states can be efficiently approximated by MPS!

This statement is made rigorous → below.

• The combinations of the results by Page and Hastings demonstrates that the
ground states of gapped Hamiltonians are not typical states in the many-body Hilbert
space: these states are rare and have special structure! This provides leverage for their
description and classification…
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• That (and how) ground states of gapped 1D systems can be approximated by MPS is a
consequence of the following arguments:

First, to quantify entanglement, we must replace the von Neumann entropy S D
�TrŒ� log2 �� of the reduced density matrix � in Eq. (8.18) by ⁂ Rényi entropies

S˛.�/ WD
log2 TrŒ�˛�

1 � ˛
(9.33)

where ˛ � 0 and one recovers the von Neumann entropy in the limit ˛ ! 1.

Next,Hastings not only showed that gapped 1D systems satisfy area laws in the von
Neumann entropy, but also in Rényi entropies for 0 < ˛ < 1 large enough [28]:

S˛ŒAp�
�

� Smax ; (9.34)

independent of p D 1; : : : ; L � 1 and L.

One can then prove an upper bound on the errors in Eq. (9.17) using the Rényi en-
tropy [216]:

log2 �p.D/
�

�
1 � ˛

˛

�
S˛.Ap/ � log2

�
D

1 � ˛

��
: (9.35)

With this and the area law, one finds the error on the MPS approximation

kj‰i � j‰Dik
2

9.16
� const � L �

2const�Smax

Dconst
(9.36)

where the constants depend on ˛.

• Formore details on the efficient approximation of gapped ground states of one-dimensional
quantum systems by matrix product states see ↑ Refs. [215, 216, 224,225].

• Hastings’ bound on the entanglement entropy was later improved byArad et al. [226].

• It is believed that the ground states of gapped Hamiltonians in two dimensions also obey
an area law (at least all known examples have this property). To my knowledge, this has
not yet been proven rigorously. Note that it has been proven (in any dimension) that
(connected) two-point correlations decay exponentially in gapped systems [27]. Unfor-
tunately, exponentially decaying correlations do not imply an area law without further
qualifications [225] (although in many practical situations these two features go hand in
hand). In any case, matrix product states must be generalized to → tensor network states
(Section 9.3) to adapt the contraction geometry to higher spatial dimensions.

• The fact that ground states of gapped 1D systems can be efficiently approximated
by matrix product states allows for a well-behaved numerical algorithm to find and
characterize ground states of such systems. For historical reasons, this technique is
known as→ density matrix renormalization group (DMRG) (we briefly sketch this approach
in Section 9.2). By now there are multiple mature software packages that can be used to
apply this method off-the-shelf (→ Problemset 11 and Refs. [227, 228]). This algorithm
(and its various modifications) has expanded our understanding of strongly correlated
quantum systems in one dimension significantly over recent years.
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Summary:

Herewe also added the special case of critical systems (orange), i.e., the ground states ofHamiltonians
tuned to a second order phase transition. These typically satisfy SŒAl � � log2 l and therefore
Smax � log2L which still allows for efficient MPS approximations.

8 | Conclusion:

Ground states of gapped phases in 1D can be approximated (with bounded error) by

matrix product states with (at most) polynomially growing bond dimension.

We will use this fact to classify arbitrary (interacting!) topological phases in 1D.
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9.2. ‡ Density matrix renormalization group (DMRG)

At this point, matrix product states are simply an alternative way to encode generic quantum states. Since
they allow for efficient compression of states with low entanglement, and controlled approximations by
dropping small Schmidt coefficients, they are are a versatile tool to study interacting quantum systems
numerically:

9 | Expectation values of local observables:

In order to extract physically relevant quantities, one needs an efficient method to compute expec-
tation values of observables from a given MPS:

i | ^ Local observable

O D 11 ˝ : : :˝ 1p�1 ˝O ˝ 1pC2 : : :1L (9.37)

acting on two adjacent sites p and p C 1:

h‰jOj‰i D
X
i ;i 0

N‰i‰i 0 ıi1i 0
1
: : : hip; ipC1jOji

0
p; i

0
pC1i„ ƒ‚ …

�O
i0
p;i0

pC1

ip;ipC1

: : : ıiLi 0
L

(9.38)

ii | MPS picture: ‰i D A
Œ1�
i1
� : : : � A

ŒL�
iL

(open boundaries!)
ı
�!

h‰jOj‰i D (9.39a)

D

D2-vector‚…„ƒ
AŒ1�

�

D2 � D2-matrices‚ …„ ƒ
AŒ2�
� : : : �AŒp�1�

�O �AŒpC2�
� : : : �

D2-vector‚…„ƒ
AŒL�„ ƒ‚ …

Iterative product of D2-vectors with D2 � D2-matrices

(9.39b)

!O.D4/ operations per matrix-vector product

! O.LD4/ operations to evaluate expectation value

IfD D const (e.g., for gapped ground states), this scales linearly with the system size L!

iii | ^ Local HamiltonianH D
P

p Op

! Energy expectation value:

(It is often convenient to compute with MPS that are not normalized.)

E‰ WD
h‰jH j‰i

h‰j‰i
D

LX
pD1

O.LD4/ ops.‚ …„ ƒ
h‰jOpj‰i„ ƒ‚ …

O.L2D4/ ops.

� h‰j1j‰i�1„ ƒ‚ …
O.LD4/ ops.

(9.40)

! E‰ can be evaluated with O.L2D4/ operations

Again, forD D const this is polynomial in the system size L!
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• Using clever summation techniques, this scaling can be improved toO.LD3/ [214,228].

• Using similar tricks, one can evaluate correlation functions of the form h‰jOpOqj‰i

also with O.LD3/ operations [214,228]. You apply this on → Problemset 10.

• For periodic boundary conditions, the scaling of evaluating inner products and expecta-
tion values scales worse in the bond dimension due to the trace, namely asO.LD5/ [214,
228].

10 | Variational ground states:

To study the phase diagram of a given parametric family of Hamiltonians, we need to compute their
ground states. The greatest strength of the MPS representation is that it allows for an efficient (=
polynomial) algorithm to find (approximate) ground states even of strongly interacting systems:

i | ^ 1D HamiltonianH D
P

p Op !

8j‰i 2 H W
h‰jH j‰i

h‰j‰i
D E‰ � E0 D hGround state energyi (9.41)

ii | Idea:

• Parametrize j‰i as MPS: j‰i D jfM Œp�
i gi

• Vary matrices fM Œp�
i g to minimizeE‰

If the ground state can be approximated by an MPS with small bond dimension (which it can
for 1D gapped systems, ← above), this should automatically produce a good approximation of
the ground state once we reach the minimumE0 of E‰.

We can check how close we are to an eigenstate (e.g., the ground state) by computing the
variance of theHamiltonian�2

H .‰/ D h‰jH
2j‰i�h‰jH j‰i2 (which can be done efficiently

because h‰jH 2j‰i can be evaluated efficiently by the method sketched ← above). For an
eigenstate j‰i ofH it is �2

H .‰/ D 0. If we minimize E‰, wait until it saturates, and then
check that �2

H .‰/ � 0, we can be quite confident that we are close to the ground state. (We
cannot be sure because we cannot exclude the possibility that we got “stuck” and converged
to an excited state instead. However, in practice, this methods often works very well.)

iii | The minimization procedure works as follows:

a | Initialize MPS j‰i D jfM Œp�
i gi e.g. with random matrices

Choosing a good initial state can influence the convergence of the algorithm.

b | Fix matrices on all sites except for one (p): j‰i � jM Œp�i

HereM Œp� stands for all entries of the matricesM Œp�
i for i D 1; : : : ; d .

!We want to minimize the function

EŒM Œp�� WD
hM Œp�jH jM Œp�i

hM Œp�jM Œp�i
�

M�HpM

M�NpM
DW EŒM � (9.42)

Here we used that jM Œp�i is a linear function ofM Œp�.

with

• M : vectorized dD2 entries ofM Œp� D fM
Œp�
1 ; : : : ;M

Œp�

d
g
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• Hp : effective Hamiltonian (can be efficiently evaluated)

Hp is the tensor contraction of h‰jH j‰i without matricesM Œp�.

• Np : normalization matrix (can be efficiently evaluated)

Np is the tensor contraction of h‰j‰i without matricesM Œp�.

c | Minimize Eq. (9.42): ıEŒM �
Š
D 0

ı
()

2Re
�
.ıM�/HpM

�
M�NpM

�
M�HpM�
M�NpM

�2 2Re h.ıM�/NpM
i

Š
D 0 (9.43)

Herewe used the standard rules of ↓ variational calculus. The real parts showup because
.ıM �/HpM D ŒM �Hp.ıM /�� since Hp (and also Np) are Hermitian (because their
expectation values for all vectors M are real).

This must be true For all variations ıM�!

HpM

M�NpM
�

M�HpM�
M�NpM

�2 NpM
Š
D 0 (9.44)

Here we used that all terms in Eq. (9.43) outside of ReŒ�� are real valued and can be
pulled into the real part.

d | Multiply by M �NpM !

HpM
Š
D EŒM � �NpM (9.45)

Here we used the definition Eq. (9.42) of EŒM �.

e | Thus we must solve the ↑ generalized eigenvalue problem

HpM D E �NpM (9.46)

and search for the eigenvector M0 with lowest eigenvalueE0 D EŒM �.

This can be done efficiently with standard linear algebra methods!

! ReplaceM Œp� by M0 ¶ QM Œp�

f | Iterate steps b | to e | over all sites p D 1; : : : ; L

j‰i D jfM
Œp�
i gi 7! jf QM

Œp�
i gi D j

Q‰i (9.47)

This is update of all matrices is called a ⁂ Sweep

g | Perform multiple sweeps until E Q‰
saturates and �2

H .
Q‰/ � 0

This algorithm is known as

⁂ (MPS based) Density Matrix Renormalization Group (DMRG)

• Formost systems this algorithm converges remarkablywell within a few (5–10) sweeps to
the ground state! These simulations are often performed with uniform bond dimension
D for all matrices. One typically starts with small bond dimensions D � 10 and
increasesD successively to a few hundreds. It is then important to verify that increasing
the bond dimension further does not change the outcomes (= expectation values) of
the simulation. (Otherwise you known that the simulation drops important Schmidt
coefficients!)
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• You (implicitly) use this algorithm for numerical simulations on → Problemset 10 to
study the → AKLT model and the → Haldane chain.

11 | Literature:

• The name“densitymatrix renormalization group”originates from a numerical algorithm that
was developed before the invention of matrix product states byWhite in 1992 [229,230].
(At the time, it was somehow mysterious why it worked so well.) Only later it was realized
that the algorithm could be rephrased in the language of matrix product states and then
corresponds to the procedure sketched above [231].

• For a compact, pedagogic introduction to matrix product states, tensor network states, and
their applications, seeOrús [214].

• Amoremathematical treatment ofmatrix product states and their use as variationalwave func-
tions to study ground states of many-body Hamiltonians can be found in Perez-Garcia et
al. [232].

• An extensive (and technical) introduction to matrix product states and their application for
DMRG simulations is provided by Schollwöck [228]. This is where to start if you want
to write your own implementation of DMRG.

• Fortunately, you don’t have to do this since there are freely available (and highly optimized)
implementations that are easy to use with many programming languages. For Julia and
C++, the library ITensor is a good choice [233]. For Python, the package TeNPy is quite
useful [227].

9.3. ‡ Higher dimensions: Tensor network states

It is obvious that the matrix products used to compute MPS wave functions are only a special case of more
general index contractions. This immediately suggests a generalization that reflects higher-dimensional
geometries…

12 | Generalize MPS topology to higher dimensions (here: 2D):

T Œp� �

�
T

Œp�
i

�
˛ˇı

: Tensor of rank (4+1) with…

• physical index i D 1; : : : ; d

• virtual indices ˛; ˇ; ; ı D 1; : : : ;D

This defines a ⁂ Projected entangled pair state (PEPS) jT i in analogy to Eq. (9.10)

• This generalization was first introduced in Ref. [234].

• Just as for matrix product states in 1D, there are open and periodic boundary PEPS.
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• The name“projected entangled pair states” comes from an equivalent interpretation of the
local tensors T Œp� as linear maps that project from a higher-dimensional auxiliary space into
the physical, local Hilbert space (here for 2D),

T Œp�
W CD

p ˝CD
p ˝CD

p ˝CD
p„ ƒ‚ …

Auxiliary Hilbert space on p

! Cd
p„ƒ‚…

Physical Hilbert
space on p

; (9.48)

via

T Œp�
D

dX
iD1

DX
˛;ˇ;;ıD1

�
T

Œp�
i

�
˛ˇı
jiiph˛; ˇ; ; ıjp : (9.49)

It is then easy to see that the PEPS can be constructed by putting a pair of auxiliary systems
CD

p ˝CD
p0 on each edge e D .p; p0/ of the lattice, putting them into the fully entangled state

j!Die D
PD

nD1 jnip ˝ jnip0 (here p and p0 are the two adjacent sites connected by the
edge e), and then applying the linear map (9.49) onto the product state j�Di D

N
e j!Die

of entangled pairs on all edges:

jT i D

 Y
p

T Œp�

!
j�Di : (9.50)

I.e., jT i is a state of “projected entangled pairs.” Note that this construction also works for
MPS, which are therefore 1D versions of PEPS.

13 | While the general formalism of MPS carries over (or generalizes) to PEPS, there is a fundamental
difference that prevents an analog of the DMRG algorithm with polynomial scaling in the system
size:

• MPS (1D):

To compute the overlap of two MPS (or expectation value of a local operator for a given
MPS) one can contract the tensor network“along the network” such that the total number
of operations scales polynomially with the size of the system L (= length of the network).

! Efficient contractions possible ,
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This efficiency is responsible for the polynomial scaling of the DMRG algorithm sketched in
Section 9.2.

• PEPS (2D, 3D,…):

No matter in which order the contractions of the tensor network are evaluated, one always
has to cross a “peak” of O.L/ summations (each over the bond dimensionD), so that the
number of operations scales like O.DL/ and therefore exponentially in the (linear) system
size L.

! No efficient contractions possible /

One can show rigorously that exact contractions of PEPS are #P-complete [235]. (The
complexity class #P is “worse” than the famous complexity class NP!)

! There is no analog of DMRG for higher dimensions (with similar favorable scaling)

This does not mean that one cannot use tricks (like approximate contractions) to simulate quantum
systems in two or higher dimensions. However, the“care-free” situation in 1D – where one can
often throw DMRG at the problem without thinking too much – does not carry over to higher
dimensions!

14 | Both MPS and PEPS are special families of general ⁂ Tensor network states (TNS):

Note that in a generic tensor network state, not every tensor must have physical indices: there can
also be“hidden layers” of tensors that connect only trough virtual bonds (colored nodes). This
can be useful to mediate long-range entanglement more efficiently. There is of course also no need
for a lattice structure.

• General tensor network states (with a focus onMPS and PEPS) are discussed byOrús [214].
A broader (and more recent) overview of different TNS constructions and related numeri-
cal algorithms for finding ground states and time-evolution can be found in the review by
Orús [236]. A compact, pedagogic overview of TNS constructions and methods can be
found in Bañuls [237].

• Tensor network states in 2D (PEPS) are useful tools to (often exactly) describe and character-
ize quantum stateswith← intrinsic topological order (like the→ toric code) [238]. However, there
are unexpected subtleties to take into account: local variations of the PEPS tensors do not
necessarily correspond to local variations of the Hamiltonian [239] (the PEPS representation
of topological order is unstable).

• Today, tensor network parametrizations of quantum states are in use in many domains
beyond the study of strongly correlated quantum phases. For example, modern TNS-based
simulators of quantum circuits can often keep up with the available small-scale quantum
computers and NISQ devices (NISQ = Noisy intermediate-scale quantum). This is useful to
benchmark and validate such devices [240].
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10. Symmetry-protected topological phases of
interacting spin systems in one-dimension

With the preliminaries in Chapter 8, and the representation of ground states of gapped Hamiltonians
by matrix product states discussed in Chapter 9, we are finally equipped to characterize and classify
symmetry-protected topological phases of interacting spin systems in 1D. We will again use the bosonic
SSH chain to motivate and illustrate general concepts (without rigorously deriving the latter).

The classification of 1D interacting spin systems presented in this chapter was worked out 2011 indepden-
dently by Schuch et al. [7] andChen et al. [6, 29]. Additional insight was by provided by Pollmann
et al. for specific classes of systems and symmetries [184,213, 241].

← Remember: (Section 0.5)

No ← topological order in one-dimensional bosonic systems!

! Symmetries required…(= only SPT phases)

This non-trivial statement can actually be proven by the same MPS-based methods we use in this chapter
to classify SPT phases [6, 7].

Rationale:

1. Describe ground states of gapped 1D Hamiltonians by matrix product states.

2. Identify constraints on MPS matrices for symmetric ground states.

3. Use these constraints to characterize/classify SPT phases.

10.1. A working assumption

Before we can execute the procedure sketched above, we should comment on a rather technical problem:

1 | To classify quantum phases, we must come up with a concept that is well-defined in the

Thermodynamic limit?

^ Gapped Hamiltonian with PBC on system of length L with unique ground state (GS) j‰i

! Problem:

� D k j‰i„ƒ‚…
GS of H

� j‰Di„ƒ‚…
MPS

k
2

9.36
� const � 2const�Smax„ ƒ‚ …

H gapped !

D const (Hastings)

�
L

Dconst

�
Š

Dconst
HHHH) D

L!1
����!1

(10.1)
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In Section 9.1 we learned that the ground state of gapped, one-dimensional systems can be approxi-
mated by matrix product states. While the estimate (10.1) is good news for numerical techniques
(like DMRG, Section 9.2), it is not enough for a mathematically rigorous classification scheme.
First, the error � of approximating an arbitrary gapped ground state by an MPS of low bond dimen-
sion is inconvenient as it is unclear how to take it properly into account. A more severe problem
is that even when we could take a constant error somehow into account, Eq. (10.1) tells us that
this can only be achieved with bond dimensionsD that diverge with the system size L. But this
means that the MPS matrices become“infinitely large” in the thermodynamic limit. This makes it
challenging to make rigorous statements in the limit L!1.

! Is there a way out?

2 | Observation:

^ Ground states of the bosonic SSH chain at fixpoints:

Phase A: jAi„ƒ‚…
GS

9.22
D j‰2i„ƒ‚…

MPS

with D D 2 D const (10.2a)

Phase B: jBi„ƒ‚…
GS

9.25
D j‰0i„ƒ‚…

MPS

with D D 0 D const (10.2b)

¡! This is not true for other parameters (= at other points in the same phase).

Experience & Numerical evidence! This is generic…

3 | Working assumption:

In the following, we assume that our findings for the bosonic SSH chain are generally true: Within
the equivalence class of one-dimensional, gapped, local, and symmetric Hamiltonians that make
up an SPT phase, there are always representatives with exakt MPS ground states with finite bond
dimension in the thermodynamic limit:

I am not aware of a rigorous proof of this assumption – nor am I aware of any counterexample.
Chen et al. write “We assume that matrix product states capture all possible gapped phases in 1D
systems.” [6] Similarly, Schuch et al. note in their introduction“[..] ground states of such systems
are well approximated by MPS [..], which justifies why we study those phases by considering systems whose
ground-state subspace is spanned by MPS [..].” [7]

!

Instead of classifying generic ground states, we classify

symmetric matrix product states with constant bond dimension.
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10.2. Symmetries of matrix product states

With these preparations, we can now study how (unitary) symmetries – realized as tensor products of
local operators – act on the matrices that make up a symmetric matrix product state. This motivates the
study of the → second cohomology group in Section 10.3 and the concept of → symmetry fractionalization and
edge modes discussed in Section 10.4. We illustrate these concepts with the fixpoint ground states of the
bosonic SSH chain.

4 | ^ 1D gapped HamiltonianH with…

• unique ground state j�i 2 H

• symmetry group G and linear (unitary) representation � W G ! U.H /:

8g 2 G W ŒH; �.g/� D 0 (10.3)

!No symmetry breaking:

�.g/j�i D ˛.g/j�i with j˛.g/j D 1 : (10.4)

˛ W G ! U.1/: 1D linear representation of G

Question: j�i is MPS!

How does �.g/ affect the MPS matrices?

5 | Example & Motivation:

^ Bososnic SSH chain at fixpoint in (topological) phase A:

i | ^ x 2 D2

Let us first check that Eq. (10.4) is satisfied.

! Action of �.x/ on jAi

�.x/jAi
8.17
D X jAi

8.29
D

LY
kD1

�x
2k�

x
2kC1 .j0i2kj1i2kC1 C j1i2kj0i2kC1/ (10.5a)

10.4
� ˛.x/jAi 3 (10.5b)

! ˛.x/ D 1

ii | Write jAi as MPS and �.x/ D X D
QL

kD1 �
x
2k�1

�x
2k
�
QL

kD1 �k

^ Effect of on-site representation (this is not a symmetry of the Hamiltonian and state!):

�k.x/jAi
9.21
D

X
:::

X
i2k�1;i2k

Tr
�
� � �Ai2k�1i2k � � �

�
�x

2k�1�
x
2kj: : : i2k�1i2k : : :i (10.6a)

D

X
:::

X
i;j

Tr
�
� � �Aij

� � �
�
�x

2k�1�
x
2kj: : : ij : : :i (10.6b)

$
X
:::

X
i;j

Tr
�
� � �Aij

� � �
� X

i 0;j 0

.�x
2k�1/i 0;i .�

x
2k/j 0;j j: : : i

0j 0 : : :i : (10.6c)

In the second line, we replaced i2k�1 7! i and i2k 7! j to clean up the notation. In the third
line, we expanded the vector �xjii into the basis ji 0i for i 0 2 f0; 1g using �x D �x

ij jiihj j.

¡! Here we change our notation from Aij to Aij for the physical indices i; j because this
allows for a more compact notation → later.
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iii | Write .�x
2k�1

/i 0;i � �
x
i 0i and .�

x
2k
/j 0;j � �

x
j 0j and exchange sums over i; j and i 0; j 0

!

�k.x/jAi D
X
:::

X
i 0;j 0

Tr
h
� � �

X
i ;j
�x

i 0i�
x
j 0jA

ij
� � �

i
j: : : i 0j 0 : : :i (10.7a)

�

X
:::

X
i 0;j 0

Tr
h
� � � QAi 0j 0

� � �

i
j: : : i 0j 0 : : :i„ ƒ‚ …

NewMPS

(10.7b)

with Transformed matrix

QAi 0j 0„ƒ‚…
2 � 2-matrices
(for every i 0j 0)

D

X
i;j

�x
i 0i�

x
j 0jA

ij (10.8)

That is, �k.x/jAi is a newMPS (with the same bond dimension) where the matrix A on site
k is replaced by the new matrix QA.

¡! So far, this result does not depend on the specific form of the matrices A. In particular, it
does not depend on the invariance Eq. (10.5) of the MPS under the symmetry.

iv | We can evaluate Eq. (10.8) explicitly for our case:

QA
i 0j 0

˛ˇ

10.8
D

X
i;j

�x
i 0i�

x
j 0jA

ij

˛ˇ
(10.9a)

9.23
D

X
i

�x
i 0iıi˛

X
j

�x
j 0j�

x
jˇ (10.9b)

$
X
˛0

�x
˛0˛ ıi 0˛0

X
ˇ 0

�x
j 0ˇ 0 �

x
ˇ 0ˇ (10.9c)

D

X
˛0;ˇ 0

�x
˛0˛

�
ıi 0˛0 �x

j 0ˇ 0

�
�x

ˇ 0ˇ (10.9d)

9.23
D ˛k.x/

h
O�x�
� Ai 0j 0

� O�x
i

˛ˇ
(10.9e)

Here we reorganized the sums in the third and fourth line and introduced ˛k.x/ D 1 in the
last line.

• ¡! In the last line, we write the Pauli matrices with a hat O� to emphasize that they act on
the virtual indices ˛ and ˇ, whereas the original Pauli matrices of the representation
�.x/ act on the physical indices i and j .

• ¡! That this translation of the symmetry acting on physical indices to virtual indices
works is not generic but a feature of the matrices A (more generally: the symmetry of
the MPS, see → below).

v | We can now re-express the invariance Eq. (10.5) of jAi in the language of MPS:
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^ Global symmetry �.x/ D
QL

kD1 �k :

�.x/jAi
10.7
D

X
i

Tr
h
QAi1i2 QAi3i4 � � � QAi2L�1i2L

i
ji1i2; : : : ; i2L�1i2Li (10.10a)

10.9
D ˛.x/

X
i

Tr
h
O�x�Ai1i2 O�x

O�x�Ai3i4 O�x
� � � O�x�Ai2L�1i2L O�x

i
� ji1i2; : : : ; i2L�1i2Li

(10.10b)

D ˛.x/
X

i

Tr
h
Ai1i2Ai3i4 � � �Ai2L�1i2L

i
ji1i2; : : : ; i2L�1i2Li (10.10c)

D ˛.x/jAi ; (10.10d)

Here we used the cyclicity of the trace and defined ˛.x/ �
Q

k ˛k.x/.

vi | ^ ´ 2 D2:

Along the same lines one can show for the transformation under �k.´/ the following:

QAi 0j 0

$ ˛k.´/ O�
´�Ai 0j 0

O�´ with ˛k.´/ D �1 (10.11)

such that

�.´/jAi D ˛.´/jAi with ˛.´/ D .�1/L (10.12)

This is again consistent with Eq. (10.4).

6 | These results (shown here for a specific example) are valid in general:

^ Linear unitary representation of G of the form

�.g/ D �.g/˝ �.g/ � � � ˝ �.g/ (10.13)

� W G ! Cd�d : Linear unitary on-site representation

In our example above, it was �.g/ D �k.g/ with d D 4 D 2 � 2 (since we combined two spin-1
2

into one physical site), recall Eq. (8.13).

^ MPS jM i invariant under �.g/ (up to a phase):

�.g/jM i D ˛.g/jM i (10.14)

Here we restrict ourselves to translation invariant MPS of the form (9.29) to make our lives easier.
Conceptually this is not necessary for what follows!
�
�! (↑ Refs. [29, 242])

X
j

Œ�.g/�ijM
j
D .g/ V �.g/ �M i

� V.g/ (10.15)

Here“�” denoteD �D-matrix products.

.g/ 2 U.1/: 1D linear unitary representation of G

V.g/ 2 CD�D : Invertible (unitary)D �D-matrices
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• Eq. (10.15) is valid under certain technical assumptions; see Ref. [243, Chapters III and
IV] for more details. For the MPS we are interested in (= unique ground states of gapped
Hamiltonians), these conditions are met and we can assume Eq. (10.15) to hold for all states
of interest.

• For MPS that are not translation invariant, the left- and right unitary matrices V �.g/ and
V.g/ can be different (i.e., not adjoint) as they must cancel with the corresponding matrices
from their neighboring sites (which can be different).
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