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↓ Lecture 21 [10.07.25]

8.3. Reminder: Entanglement entropy

The entanglement entropy is (one of many)measures that quantify the“amount”of entanglement between
two or more subsystems of a quantum mechanical system. It is crucial to understand certain ground state
properties of quantum-many-body systems.

Entanglement in many-body systems is a complex phenomenon that cannot be fully captured by a single
quantity (like entanglement entropy) [211].

1 | ^ Bipartite quantum system with Hilbert space H D HA ˝HB

^ Pure state � D j‰ih‰j

“Bipartite” simply means that we can split the system into two subsystems, e.g., two halves of a
spin chain with each L=2 spin-1

2
.

! ↓ Reduced density matrix �A WD TrB Œ��

The reduced density matrix �A is computed by“tracing out” the“environment”B via the ↓ partial
trace TrB Œ�� and encodes the expectation values of all observables localized on A.

SŒA� WD �Tr
�
�A log2.�A/

�
� 0 ⁂ Entanglement entropy of A (8.18)

The entanglement entropy of subsystemA quantifies its entanglement with the environment (here:
subsystem B) and is given by the ↓ Von Neumann entropy of the reduced density matrix �A.

• It is always SŒA� D SŒ NA� D SŒB� where NA D B denotes the complement of A (→ below).

• ¡! A non-vanishing value of Eq. (8.18) only indicates entanglement if �A is the reduced
density matrix of a pure state. If � is already mixed, SŒA� ¤ 0 does not necessarily indicate
entanglement between the subsystems.

• We use the base-2 logarithm log2 for convenience (in the literature, the natural logarithm
is often used). With this choice, SŒA� measures the information in bits shared between
subsystems A and B via entanglement:

H D C2
A ˝C2

B 3 j‰i D
1p
2
.j00i C j11i/

ı

H) SŒA� D 1 (8.19)

Without the base-2 logarithm, it would be SŒA� D log.2/. The result SŒA� D 1 for the
Bell pair j‰imeans that you gain one bit of information about the subsystem (qubit) B by
measuring the subsystem (qubit) A.

• If j‰i D j‰Ai ˝ j‰Bi is a product state (= not entangled), the reduced density matrix
�A D j‰Aih‰Aj is again pure (TrŒ�2

A� D 1) and consequently SŒA� D 0, indicating that
there is no entanglement shared between subsystems A and B .

2 | ↑ Schmidt decomposition:

^ Arbitrary state j‰i D
P

i;j ‰ij jiiA ˝ jj iB 2 HA ˝HB

jiiX : orthonormal basis (ONB) of HX

(Note that the dimensions of HA and HB are not necessarily equal.)
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ı
�! 9 ONB fj‰kiXg of HX (X D A;B) such that

j‰i D

RX
kD1

�kj‰kiA ˝ j‰kiB ⁂ Schmidt decomposition (8.20)

• 0 < �R � : : : � �1: ⁂ Schmidt coefficients (unique up to re-ordering)

• j‰kiA (j‰kiB): left (right) ⁂ Schmidt vectors

• 1 � R � minfdimHA; dimHBg: ⁂ Schmidt rank

To show the existence of Eq. (8.20), use a ↓ singular value decomposition of the complexNA �NB

matrixM‰ D .‰ij / whereNA D dimHA andNB D dimHB ,

M‰
SVD
D UƒV � ; (8.21)

withNA�NA unitaryU ,NB�NB unitaryV , andNA�NB positive semidefinite diagonal matrixƒ.
The diagonal entries ofƒ are the ↓ singular values ofM‰ and the non-zero ones correspond to the
Schmidt coefficients �k . The unitaries U and V determine the basis change from jiiA to j‰kiA

and from jj iB to j‰kiB , respectively.

Normalization h‰j‰i D 1!
PR

kD1 �
2
k
D 1

This means that one can think of f�2
k
g as a probability distribution over f1; : : : ; Rg!

3 | We can use a Schmidt decomposition to compute the reduced density matrix:

�A D TrB Œj‰ih‰j�
def
D

RX
kD1

�2
k j‰kiAh‰kjA (8.22)

Here we used the right Schmidt basis j‰kiB to evaluate the partial trace over B .

! Entanglement entropy:

SŒA� $ �
RX

kD1

�2
k log2 �

2
k (8.23)

Evaluate the logarithm and the trace in the Schmidt basis j‰niA.

Eq. (8.23) is the ↓ Shannon entropy of the probability distribution f�2
k
g.

ı
�! Upper bound:

SŒA� � log2R (8.24)

To show this:

SŒA� D �

RX
kD1

�2
k log2 �

2
k D

RX
kD1

�2
k log2

1

�2
k

�

� log2

RX
kD1

�2
k

1

�2
k

D log2R (8.25)

The inequality follows from ↓ Jensen’s inequality and that log2.x/ is a concave function.
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• The upper bound (8.24) is sharp. To see this, consider again the Bell pair

j‰i D 1p
2
.j00i C j11i/ D 1p

2
j0iA ˝ j0iB C

1p
2
j1iA ˝ j1iB (8.26)

with Schmidt coefficients �2
1 D

1
2
and �2

2 D
1
2
and Schmidt rankR D 2 so that

SŒA� D �1
2
log2

1
2
�

1
2
log2

1
2
D 1 D log2 2 : (8.27)

Such states are called ⁂ maximally entangled.

• From the Schmidt coefficients one can compute the ⁂ entanglement spectrum f�kg

�2
k � e

��k , �k D �2 ln�k (8.28)

with 0 � �k <1. The idea is that the entanglement structure is encoded in the reduced
density matrix �A which – as a non-negative Hermitian matrix – can be interpreted as Gibbs
state �A � e

�HE of an artificial “entanglement Hamiltonian”HE D � ln �A [212]. With
Eq. (8.22) it follows that the spectrum of HE is exactly the entanglement spectrum f�kg

defined above. The entanglement spectrum contains much more information about the
entanglement structure than the entanglement entropy and can be used to identify topological
phases [213].

4 | Example:

^ Bosonic SSH chain (8.6) and split chain in two contiguous Segments Al and BL�l

We consider a chain with periodic boundaries, the segments comprise l and L � l unit cells.

^ Fixpoints of the two gapped phases:

• Phase A (t D 0 and w < 0):

(The sign of t andw is not important for this example.)

! Ground state: (we omit the normalization)

jAi D

LO
iD1

.j0i2i j1i2iC1 C j1i2i j0i2iC1/ (8.29)

The ground state is a product of spin-triplets between adjacent sites of the chain.

! Entanglement entropy:

SŒAl � D h# of Bell pairs connecting Al and BL�li D 2 (8.30)

¡! The entanglement entropy of Al is independent of the size of the segment Al .
This is a crucial observation and becomes important → below.

• Phase B (t < 0 and w D 0):
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! Ground state:

jBi D

LO
iD1

.j0i2i�1j1i2i C j1i2i�1j0i2i / (8.31)

Now the ground state forms triplets of spins within sites.

! Entanglement entropy:

SŒAl � D h#of Bell pairs connecting Al and BL�li D 0 (8.32)

Again, the entanglement entropy of Al is size-independent (here: zero).

¡! The point of this example is not to suggest that the fact that SŒAl � ¤ 0 in phase A and SŒAl � D 0

in phase B can be used to distinguish the two phases. The vanishing entanglement entropy in phase
B is a fine-tuned feature of the fixpoint wave function jBi. For 0 < jwj � jt j there will be (weak)
couplings of spins between adjacent sites so that one should expect SŒAl � > 0 even in phase B.
The crucial observation is that in both phases the entanglement does not grow with the size of the
segment Al .
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9. Primer on matrix product states

Matrix product states (and their generalization as→ tensor network states, Section 9.3) are a generic framework
to encode and describe many-body quantum states. This framework is not specific to the description of
topological phases, but a versatile tool applied in most fields of modern condensed matter physics (and
quantum information), for example, as the theoretical underpinning of the powerful → density matrix
renormalization group (DMRG) algorithm (→ Section 9.2).

Relevant literature (including reviews/introductions) is provided throughout the following sections.

9.1. Matrix product states

Here we introduce the matrix product representation of quantum states on general grounds, without
specialization to symmetry-protected topological phases. As an application, we will use the methods
developed in this section later in Chapter 10 to classify SPT phases in 1D interacting spin systems:

1 | ^ System of L d -dimensional quantum systems: H D
NL

iD1 Cd
i

^ Arbitrary quantum state: j‰i D
P

i ‰i ji i [here i D .i1; : : : ; iL/ is a multi-index]

In total there are dL complex number‰i needed to describe the state.

2 | Matrix Product Expansion:

The following discussion is based on Ref. [214].

Our goal is to construct a novel encoding of ‰i that becomes efficient for states with “low”
entanglement:

i | ^ Subsystems A D Œ1� and B D Œ2; : : : ; L�

! Schmidt decomposition:

j‰i D

R1X
k1D1

�
Œ1�

k1
j‰

Œ1�

k1
i ˝ j‰

Œ2:::L�

k1
i (9.1)

ii | Expand left Schmidt state into local basis: j‰Œ1�

k1
i D

Pd
i1D1 �

Œ1�i1

k1
ji1i

Here, � Œ1� denotes the matrix that encodes the basis change from the standard basis into the
Schmidt basis on site 1.

! j‰i D

dX
i1D1

R1X
k1D1

�
Œ1�i1

k1
�

Œ1�

k1
ji1i ˝ j‰

Œ2:::L�

k1
i (9.2)

iii | Expand the right Schmidt state as follows:

j‰
Œ2:::L�

k1
i D

dX
i2D1

ji2i ˝ j Q‰
Œ3:::L�

k1i2
i (9.3)
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Note that the states j Q‰Œ3:::L�

k1i2
i are not Schmidt vectors and not normalized!

! j‰i D

dX
i1;i2D1

R1X
k1D1

�
Œ1�i1

k1
�

Œ1�

k1
ji1i ˝ ji2i ˝ j Q‰

Œ3:::L�

k1i2
i (9.4)

iv | ^ Subsystems A D Œ1; 2� and B D Œ3; : : : ; L�

! Schmidt decomposition:

j‰i D

R2X
nD1

�Œ2�
n j‰

Œ1;2�
n i ˝ j‰Œ3:::L�

n i (9.5)

! j Q‰
Œ3:::L�

k1i2
i can be expanded in j‰Œ3:::L�

n i

! Choose coefficients � Œ2�i2
k1k2

such that

j Q‰
Œ3:::L�

k1i2
i �

R2X
k2D1

�
Œ2�i2

k1k2
�

Œ2�

k2
j‰

Œ3:::L�

k2
i (9.6)

This is an implicit definition of the three-index symbol (“tensor”) � Œ2�i2
k1k2

; that we extracted

the Schmidt coefficients �Œ2�

k2
is our choice!

Eq. (9.4) !

j‰i D

dX
i1;i2D1

R1;R2X
k1;k2D1

�
�

Œ1�i1

k1
�

Œ1�

k1
�

Œ2�i2

k1k2
�

Œ2�

k2

�
ji1i ˝ ji2i ˝ j‰

Œ3:::L�

k2
i (9.7)

v | Iterate steps iii | and iv | for every site
ı
�! (9.8)

j‰i D

dX
i1:::iLD1

‰i‚ …„ ƒ
R1:::RL�1X

k1:::kL�1D1

�
�

Œ1�i1
k1

�
Œ1�
k1
�

Œ2�i2
k1k2

�
Œ2�
k2
: : : �

ŒL�1�iL�1

kL�2kL�1
�

ŒL�1�
kL�1

�
ŒL�iL
kL�1

�
� ji1i ˝ ji2i ˝ : : :˝ jiL�1i ˝ jiLi

This form is called ⁂ Canonical form of a matrix product state (MPS)

• i1; : : : ; iL: ⁂ Physical indices/bonds

• d : ⁂ Physical dimension

• k1; : : : ; kL�1: ⁂ Virtual indices/bonds

• R1; : : : ; RL�1: ⁂ Bond dimensions

Strictly speaking, the bond dimensions are lower bounded by the Schmidt rank. Nothing
prevents us to use larger bond dimensions than the Schmidt rank to find an exact
description of a given state.

! ReplaceR1; : : : ; RL�1 byUniform bond dimensionD WD maxfR1; : : : ; RL�1g

! Pictorial representation:
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3 | Why“matrix product state”?

! Define matrices: (p D 2; : : : ; L � 1)

M
Œ1�
i WD

�
�

Œ1�i

k

q
�

Œ1�

k

�
k

d� .1 �R1/-matrices (9.9a)

M
Œp�
i WD

�q
�

Œp�1�

k
�

Œp�i

kl

q
�

Œp�

l

�
kl

d� .Rp�1 �Rp/-matrices (9.9b)

M
ŒL�
i WD

�q
�

ŒL�1�

k
�

ŒL�i

k

�
k

d� .RL�1 � 1/-matrices (9.9c)

Eq. (9.8)!

j‰i D
X

i

‰i‚ …„ ƒ
M

Œ1�
i1
�M

Œ2�
i2
� : : : �M

ŒL�1�
iL�1

�M
ŒL�
iL„ ƒ‚ …

Matrix product

ji1i2 : : : iL�1iLi (9.10)

! Sums over virtual indices become matrix products

!⁂ Matrix product state (MPS)

! Pictorial representation:

The matrices on the first and last site are actually row and column vectors, respectively.

• Our choice in Eq. (9.9c) to distribute the Schmidt coefficients evenly on the matrices is
arbitrary. The matrix expansion of the wave function‰i in Eq. (9.10) is therefore not unique.

• This “gauge freedom” is actually much larger: You can apply any invertible transformation
T via T T �1 D 1 between any of the matrix products in Eq. (9.10) without changing the
state‰i . Such transformations can be used to tailor the properties of the matricesM Œp�

ip
to

specific tasks.

4 | Preliminary summary:

• We have shown that any quantum state on L d -level quantum systems can be written exactly
as a matrix product state of the form Eq. (9.10).

This means that matrix product states are not a particular type of quantum state; they are a
particular way of encoding a quantum state. This encoding is beneficial for states with low
entanglement (→ below).
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• To encode‰i , one needs L � d matricesM Œp�
ip

; these matrices have dimensionsRp�1 �Rp

whereRp denotes the Schmidt rank between site p and p C 1.

• Any given MPS of the form Eq. (9.10) can be brought into its canonical form Eq. (9.8).
This form is convenient because it explicitly contains the Schmidt decomposition (and
Schmidt coefficients) for every cut of the system into two subsystems. It also shows how the
bond dimension at every bond is determined by the entanglement between the subsystems
connected by this bond.

5 | Comments on Complexity:

i | If one chooses a uniform bond dimensionD D maxfR1; : : : ; RL�1g, the number of complex
matrix entries needed to encode‰i scales like

Complexity.‰/ � h#Complex numbers to encode ‰i i

� L � d„ƒ‚…
#Matrices

� D2„ƒ‚…
Size of matrices

(9.11)

ii | On first glance, Eq. (9.11) might suggest that the complexity scales linearly with the system
sizeL (which would be remarkable). Of course, this cannot be true; the hitch is that the bond
dimensionD depends on the entanglement which, in turn, can depend on the system size as
well:

Complexity.‰/
9.11
� D D maxfR1; : : : ; RL�1g D Rmax

8.24
� 2Smax (9.12)

Smax: maximal entanglement entropy of j‰i over all partitions Al of the 1D system

iii | Note that the entanglement entropy is always upper bounded by the system size (times some
constant): Smax � const � L.

This follows from Eq. (8.24) and the fact that the Schmidt rank is upper bounded by the total
dimension dL of the Hilbert space: SŒA� � L log2 d .

For a generic state, this upper bound is tight (→ below) and we find the worst-case scaling:

Complexity.‰/ & 2const�L (9.13)

! Exponentially many matrix entries /

This should not surprise us. It is well-known that encoding generic quantum states requires
exponential amounts of resources in the system size (that’s why we try to build quantum
computers after all). And this complexity does not go away by rewriting the wave function in
a different form…

iv | So under which conditions can the MPS encoding be beneficial?

Smax � const
‹

������������!
Eqs. (9.11) and (9.12)

Complexity.‰/ � L � const , (9.14a)

Smax � logLconst ‹
������������!
Eqs. (9.11) and (9.12)

Complexity.‰/ � L � Lconst , (9.14b)

• ¡! The“?” indicates that these are possibilities allowed by the lower bound Eq. (9.12).
These are not implications; for such we would need an upper bound on the bond dimen-
sion from the entanglement entropy (which we don’t have).
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It turns out that in practice, the arrows in Eq. (9.14) often are implications. The linear
lower bound Eq. (9.14a) is not always achievable because approximations with a constant
error often require a scaling D � Lconst of the bond dimension (→ below), but even
then a polynomial scaling Complexity.‰/ � Lconst is possible (which is the foundation
for numerical methods like → DMRG, Section 9.2). Note that for some states with
translational invariance [like the fixpoint ground states jAi and jBi of the bosonic SSH
chain, Eqs. (8.29) and (8.31)], even Complexity.‰/ � const (independent of L!) is
possible.

• Unfortunately, this favorable scaling of the complexity of MPS encodings cannot be
proven for generic weakly entangled states because there are (rather artificial) coun-
terexamples that, despite low entanglement entropy, do not allow for efficient MPS
encodings (or even approximations) [215]. See also the → next point.

• Assume our system satisfies Smax � const independent of the system sizeL. [It satisfies
a strict → area law like the two ground states in Eqs. (8.29) and (8.31) of the bosonic SSH
chain.] Why does this not automatically imply an exact MPS encoding with constant
bond dimensionD? That is, why

D D const ) Smax � const (9.15a)

but Smax � const » D D const (9.15b)

for L ! 1. [The first implication follows from the canonical form Eq. (9.8) in
combination with Eq. (8.24).]

The crucial point is that SŒA� � const can be true even if Eq. (8.23) contains an
exponential number of non-vanishing summands, i.e., R � dL is consistent with a
bounded entanglement entropy! For example, the Schmidt coefficients can (and often
do) decay exponentially in their index: �k � �k for some 0 < � < 1. In this case,
one cannot find an exact MPS representation with fixed bond dimension, although an
approximate one with error that is exponentially suppressed inD is possible.

To see this, one can show [216] that for every state j‰i 2
NL

pD1 Cd
p there exists an

MPS j‰Di with uniform bond dimensionD such that

kj‰i � j‰Dik
2

�

� 2

L�1X
pD1

�p.D/ (9.16)

where

�p.D/ D

RpX
kDDC1

�
�

Œp�

k

�2

(9.17)

is the error contribution from“cutting off” the Schmidt vectors of the partition between
sites p and pC1 starting at k D DC1 (remember that Schmidt coefficients are sorted
in decreasing order, i.e., we keep theD coefficients with highest weight in j‰Di).

This demonstrates that states that can be efficiently approximated by an MPS must
have quickly decaying Schmidt coefficients. Unfortunately, this quick decay does not
automatically follow from a bounded entanglement entropy Smax � const (although it
does follow from a similar statement about certain ↑ Rényi entropies, → below).

Let us assume that the Schmidt coefficients decay exponentially: �Œp�

k
� �k for some

0 < � < 1 (this is a situation one encounters quite often). Then

�p.D/ D

RpX
kDDC1

�2k
� �2D

1X
kD1

�2k
D const � �2D ; (9.18)
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where we used the convergence of the geometric series for 0 < � < 1. In this case, one
can approximate the state by an MPS with the error

kj‰i � j‰Dik
2 . const � L � �2D (9.19)

So while j‰i cannot be expressed exactly by an MPS with fixed bond dimension, it can
be approximated by an MPS with constant error for L!1 with onlyD � logL in
the worst case. Plugging this into Eq. (9.11), one finds

Complexity.‰D/ � const � L � .logL/2 (9.20)

for a constant-error approximation of j‰i (much better than the generic scaling dL).

v | Comment:

Here we always assume that our many-body Hilbert space has a natural tensor product
structure augmented by a natural ordering of tensor factors (subsystems). When we talk
about“maximum entanglement entropy,”we refer to the maximum of SŒAl � for a contiguous
subset starting at the first factor (with respect to the given ordering) and ending at the lth
factor. Such orderings are naturally given for one-dimensional many-body systems with local
Hamiltonians (which is the situation we are interested in).

However, without a Hamiltonian that“imprints” a one-dimensional spatial“meta-structure”
on the Hilbert space, the ordering of subsystems becomes ambiguous. Note that if you
maximize SŒA� not only over contiguous intervals but over every subset of subsystems, one
generically obtains Smax 2 O.L/, so that no efficient MPS encoding is possible. This means
that the ordering of subsystems matters for an efficient MPS encoding!

A natural question is then: Given an arbitrary state in a Hilbert space with a given tensor
product structure but without a prescribed ordering of these factors, how to identify the
ordering that allows for the MPS representation with the lowest maximal bond dimension?
Unfortunately, one can show (somewhere in my notes) that this problem (more precisely: its
decision version) is NP-hard and therefore does not have an efficient solution (unless P D NP).

We conclude:

→ Every state can be written exactly as a matrix product state (withD � dL).

→ States with bounded entanglement in 1D can* be represented (or at least approximated)

by matrix product states with slowly increasing (or even constant) bond dimension.

The * reads “in practice” or “except for artificial counterexamples.” (See discussion on MPS
approximations ← above and → below.)

This insight will be crucial for the classification of SPT phases of interacting spin systems in 1D.
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