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↓ Lecture 20 [04.07.25]

iv | Problem:H is complex / (= we cannot interpret it as a classical coupling matrix)

Solution:

^ Unitary rotation in Kramers-degenerate subspace:

D WD U �HU $
�

ReH ImH
ImHT ReH

�
„ ƒ‚ …

2 R2N �2N

with U D
1
p
2

�
1 �i

1 i

�
„ ƒ‚ …

u

˝1Lattice (7.7)

with ReH" D ReH# � ReH and ImH# D ImH�
"
D ImHT

"
� ImHT

Use that ReH D 1
2
.H CH�/ and ImH D � i

2
.H �H�/.

¡! Note that U is a local unitary in pseudo-spin-space so that edge modes ofH remain edge
modes ofD.

!D real and symmetric ,
Positive semi-definiteness can always be achieved through shifting by a constant offset: D 7!
D C const � 1; clearly this does not affect the existence of edge modes.

v | ! Transformed basis:�
Xxy

Yxy

�
� u�

�
 xy"

 xy#

�
with amplitudes  xyf";#g 2 C (7.8)

.Xxy ; Yxy/ 2 C2: Position (and phase) of 2D harmonic oscillator on site .x; y/

¡! To accommodate the two “spin” degrees of freedom per lattice site, we will need a 2D
harmonic oscillator or, equivalently, two 1D pendulums on every site .x; y/, → below.

^ Spin-up mode on site .x; y/:

‰xy".t/ �

Eigenstate “Spin UP”‚ …„ ƒ
‰0 e

�i!t

�
1

0

�
xy

2 C2 (7.9a)

QS-CS
(HHHHH)
Translation

u�‰xy".t/ D ‰0e
�i!t

↓ Jones vector‚ …„ ƒ
1
p
2

�
1

i

�
xy„ ƒ‚ …

Eigenmode “LEFT circular”

(7.9b)

As usual, the real-valued oscillation amplitude is given by the real part of the complex vector:

) Re
h
u�‰xy".t/

i
/

�
cos.!t/
sin.!t/

�
xy

(7.10)

!

Spin UP $ LEFT circular polarization

Spin DOWN $ RIGHT circular polarization

(7.11a)

(7.11b)

vi | Requirements on the…

Setup:
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• Hofstadter model with q D 3! 3 sites per magnetic unit cell

• Two-fold spin/polarization degeneracy per site
! 2 harmonic oscillators (= 1D pendulums) per site: Xxy and Yxy

! 6 � 1D pendulums per unit cell coupled by springs according toD:

• ReH ! XX - and Y Y -couplings

• ImH ! XY -couplings

This follows from the coupling matrix in Eq. (7.7).

6 | Experiment & Results:

The following figures are taken from Ref. [188].

i | Construction:

Array of 9 � 15 D 135 sites with 270 pendula, each of 500mm length and 500 g heavy,
coupled by springs and lever arms; the whole setup is suspended from the ceiling:

Coupling in x=r-direction via lever arms:

• One lever arm!Negative coupling

• Two lever arms! Positive coupling

Note that due to the Landau gauge [Eqs. (7.4b) and (7.7)], there are only real, positive cou-
plings in y=s-direction which can be implemented by directXX - and Y Y -spring couplings
without lever arms (panel D). In x=r-direction there are two classes of couplings (each with
three subtypes depending on the y=s-position): Cross-couplings between pendulums of type
X and Y given by the entries in ImH (panel B), and couplings between pendulums of the
same type given by the entries in ReH (panel C).

Here is a video taken from the supplementary material of Ref. [190] where the lever arms
coupling adjacent pendulums can be seen in action:
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→Topological Mechanics: Couplings

ii | Edge modes:

The spectral/dynamical properties of the system can be probed by actively driving a pair of
pendulums on the boundary and measuring the response of the other pendulums (by tracking
their motion with a camera):

a | Drive system with circular polarization on one site on the edge

b | Track .Xxy.t/; Yxy.t// for every site after steady state is reached (panel A)

! Average amplitude Axy (size of circle), polarization (color of circle)

c | Strong response Axy on edges for excitation frequency in band gap (panel F and C)

! Edge modes,

d | Measure orientation/phase inX -Y -plane at fixed time on boundary
(black lines in circles)

!Dispersion of edge modes

! Two helical edge modes in each band gap (panel G)

Here are two videos taken from the supplementary material of Ref. [190]. They show the
complete system from below with an overlay that indicates the oscillation amplitude of each
pendulum:

→Topological Mechanics: Edge modes

Here, one pair of pendulums on the boundary (center right) is actively driven with left
circular polarization and a frequency within the band gap. This excites helical edge modes
that propagate oscillation energy only in one direction along the boundary.

Here is another video where the active driving stops after a short time so that a wave packet
of edge excitations propagates along the boundary:

→Topological Mechanics: Wave packet
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iii | Application: Beam splitter

Classical systems tailored to feature topological bands (and edge modes) are referred to as
↑ topological metamaterials. They have various applications in engineering. For example,
the construction discussed here can be used as a “beam splitter” that routes oscillations
according to their (circular) polarization:

a | Drive single site on boundary with linear (or any other) polarization

! Superposition of left- and right circular polarization

b | Helical edge modes

! Right (left) circular polarized waves propagate to the left (right)

!“Beam splitter” for phonons

For more applications of this setup see Ref. [190].

iv | Robustness:

The robustness of the topological band structure against weak, symmetry-preserving pertur-
bations translates to the edge modes. Consequently, they should be robust (remain scattering-
free) under any perturbation that keeps the bulk gap open and does not violate the time-
reversal symmetry in Eq. (7.5). For example, removing some sites on the boundary should
have no detrimental effect except deforming the edge modes to follow the new boundary:

• In the plots above, the site in the lower-right corner is driven with linear polarization.
This triggers left- and right-polarized oscillations to propagate in different directions
along the edge. Note how the oscillations stick to the edges even if the boundary is
deformed by removing sites.

• Note that this behaviour is very different from ↑ whispering gallery modes which are
bound to concave surfaces and would scatter into the bulk when hitting a convex obstacle
on the boundary.
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Let us derive the constraints needed for the presence & robustness of the edge modes:

a | Remember that the edge modes in class AII are protected by time-reversal symmetry:

H
Š
D
7.5
T 1

2
HT �1

1
2

D UTH
�U

�
T D UT .UU

�HUU �/�U
�
T (7.12a)

, D
7.7
D U �HU

Š
D .U �UTU

�/D.U ��U
�
TU/ � S

�DS (7.12b)

Here we used thatD D U �HU is real-valued by construction.

with unitary symmetry

S WD U ��U
�
TU

7.5
7.7
D

�
0 1

�1 0

�
(7.13)

b | ! Constraints on the coupling matrix:

D D

�
DXX DXY

DYX DY Y

�
7.12b
HH)
7.13

8<: DXX
Š
D DY Y and

DXY
Š
D �DYX

(7.14)

Note thatDXX D DY Y D ReH , DXY D ImH andDYX D ImHT D ImH� D

� ImH satisfy these constraints. In addition, Newton’s third law always imposes the

constraintDT D D so thatDT
XY D DYX and the constraint becomesDT

XY

Š
D �DXY

for the spring strength coupling different types of pendulums.

c | ! In particular, Perturbations of the form

D0
D D C

�
ıD 0

0 ıD

�
(7.15)

do not destroy the edge modes!

Note that the spring strength on different sites can vary as there are no additional
constraints imposed by S on ıD. Thus, to protect the symmetry, a local tuning of
parameters on each site is sufficient.

! Local symmetry constraint

So while the symmetry S that protects the edge modes is not an intrinsic symmetry of
the system (governed by classical mechanics), it can be“fine-tuned” by locally adjusting
the spring constants; global uniformity (= translational invariance) is not necessary!

7 | Final comment:

• In Section 4.6 we studied the SSH chain and identified two degenerate edge modes at the
endpoints of the chain. These modes are protected by ← sublattice symmetry (symmetry class
AIII inD D 1 dimensions).

• In this section, we have seen how such topological edge modes can be realized in classical
mechanics systems. The bottom line is that topological band structures and edge modes
are properties of certain classes of matrices. These matrices can play different physical roles
[cf. Eq. (7.2) and Eq. (7.3)] – in quantum and classical systems.

!

This finally explains the construction in Section 0.1, where we used the topological edge modes
of the SSH chain to transfer oscillations from one end of a chain of pendulums to the other end.
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The two types of disorder we studied (imperfect springs vs. imperfect pendulums) correspond
to SLS-symmetric and SLS-breaking disorder, respectively. This explains why imperfect springs
could not remove the degeneracy of the edge modes (so that perfect transfer was still possible),
whereas imperfect pendulums split the degeneracy of the edge modes (so that no perfect transfer
could be achieved).

Note that the rather complicated construction needed in this section to translate the doubled
Hofstadter model into a classical mechanics scenario is not necessary for the SSH chain, since the
single particle Hamiltonian Eq. (4.10) of the SSH chain is already real and symmetric to begin with.

As a closing remark, let me stress again that…

Classical systems with topological band structures (“topological metamaterials”)

are not topological phases (neither classical nor quantum)!

So, strictly speaking, topological mechanics has no place in a course on topological quantum many-
body physics. However, to understand a domain in depth, it is mandatory to delineate its boundaries
and learn about adjacent fields as well…

7.3. More classical systems with topological features

What follows is a brief (and incomplete) list of classical setups where topological edge modes have been
proposed and/or experimentally realized. Many of these systems are studied with applications in mind
(like efficient transport of signals or energy):

• ↑ Topological mechanics (Review: Ref. [189]):

– The field was pioneered by Kane and Lubensky who studied mechanical constructs called
isostatic lattices [191]. These systems can exhibit robust zero-frequency modes of topological
origin at boundaries (“floppy modes”).

– While zero-frequency“floppymodes” can influence the low-energy response of a mechanical
system, topologically protected, chiral edge modes with non-zero frequency allow for robust
and scattering-free excitations.

– Classical analogues of the time-reversal breaking ← Chern insulator can be realized as “gyro-
scopic phononic crystals” [192, 193].

– Classical analogues of time-reversal protected quantum spin Hall insulators were studied in
Refs. [188, 190] (as discussed in this section).

– One can also realize↑ higher-order topological insulators (which feature protected corner modes)
in classical settings [194].

• ↑ Topological acoustics:

– The rationale of topological acoustics is to transmit sound waves through topological (and
therefore robust and scattering-free) edge modes [195].

– An experimental demonstration of an“acoustic Chern insulator” was reported in Ref. [196].

• ↑ Topological photonics (Review: Ref. [197]):

– The field of topological photonics was kick-started by Haldane and Raghu who proposed a
classical analog of the Chern insulator for photonic crystals [198, 199].
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– Time-reversal breaking, chiral edge modes for microwaves can be realized in magneto-optical
photonic crystals [200].

– Chiral edge modes without magnetic fields can be realized in a Floquet setting in the optical
regime [201].

– Symmetry-protected analogs of topological insulators have been realized in lattices of pho-
tonic resonators [202].

– A potential application of topological photonics is the construction of “topological insulator
lasers” [203–205].

• ↑ Topoelectrical circuits (Review: Ref. [206]):

– Electrical circuits (composed of “lumped elements” like inductors, capacitors, etc.) can
exhibit symmetry-protected edge modes [207].

– For example, ↑ higher-order topological insulators have been realized both in the microwave
regime [208] and with“topoelectrical circuits” [209].

• ↑ Topological fluid dynamics:

– Fluid dynamics on the surface of rotating spheres (time-reversal symmetry breaking!) exhibits
robust, chiral modes that are trapped at the equator and protected by non-zero Chern num-
bers [210]. Remarkably, such modes have long been known to influence Earth’s atmospheric
and oceanic flow systems!
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8. Preliminaries

Up to now we studied topological phases of non-interacting fermions.

What about bosons?

Remember: The many-body ground state of a systemwith non-interacting bosons is given by the symmetric
product state where all bosons occupy the same (lowest energy) single-particle mode, i.e., a ↓ Bose-Einstein
condensate (BEC) – which is not a gapped phase and in particular not a topological one.

A (physically realistic, i.e., weakly interacting) Bose-Einstein condensate is a (uncharged) superfluid that
breaks the global U.1/ symmetry (number conservation) spontaneously. Since U.1/ is a continuous sym-
metry, there are necessarily gapless ↑ Nambu-Goldstone modes (↑ Goldstone’s theorem), namely Bogoliubov
quasi-particles with a linear dispersion (for low momenta). Thus, for us, a BEC is not a phase of interest
for two reasons: it is described by ← Landau symmetry breaking and it is not a gapped phase to begin with.

! Topological phases of bosons require interactions!

(In particular, there is no analog of Part I for bosons.)

Hence the machinery we developed in Part I to label topological phases of non-interacting fermions (based
on topological indices computed from band structures) goes right out the window… //

This leads to the question:

How to classify/characterize gapped phases of interacting bosons?

Answering this question in full generality is way too ambitious (this is a matter of ongoing research). To
make things easier (“easier” does not mean“easy”), we focus on a particularly interesting subclass of
interacting bosonic systems, namely:

^ Interacting spins in one spatial dimension:

How to classify/characterize gapped phases of interacting spin systems in 1D?

Remember (→ Problemset 1) that spin systems can be mapped to bosonic systems with strong repulsive
on-site interactions, e.g., ni .1 � ni / for s D 1

2
(← hard-core bosons).

To answer even this simplified question, we need quite a bit of new machinery. As a preparation, we first
introduce a toy model to exemplify the rather abstract constructions in this part, and then review some
fundamental concepts that are useful later.
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8.1. A toy model: Filling the SSH chain with hard-core bosons

The following simple model will be used throughout Chapters 8 to 10 to illustrate the rather abstract
concepts that we will introduce:

1 | ^ 1D chain of length L with two ← hard-core bosons per unit cell:

ai ; bi : Hard-core bosons (i D 1; : : : ; L)

Fermions satisfy the algebra n
ai ; a

�
i

o
D 1 and

n
bi ; b

�
i

o
D 1 (8.1)

and all other anticommutators vanish. By contrast, hard-core bosons behave like fermions on-site,n
xi ; x

�
i

o
D 1 and fxi ; xig D 0 (8.2)

for x 2 fa; bg, but as bosons otherwise:h
xi ; y

�
j

i
D 0 and

�
xi ; yj

�
D 0 (8.3)

for x 2 fa; bg and i ¤ j and/or x ¤ y.

!⁂ Bosonic SSH chain Hamiltonian:

OHbSSH D t

LX
iD1

.a
�
i bi C b

�
i ai /„ ƒ‚ …

Intra-site hopping

Cw

L0X
iD1

.b
�
i aiC1 C a

�
iC1bi /„ ƒ‚ …

Inter-site hopping

(8.4)

• t; w 2 R: alternating hopping amplitudes

• L0 D L � 1 for OBC and L0 D L for PBC

• Eq. (8.4) is a strongly interacting bosonic system as there can be only one boson occupying
each mode, i.e., there is an infinite repulsive on-site interaction between the bosons.

• ¡! Note that Eq. (8.4) looks like the fermionic SSH chain Hamiltonian (4.10). In general, two
Hamiltonians that look the same are not necessarily the same (= unitarily equivalent) because
the algebra of the operators determines the representation and therefore the spectrum. In this
particular case, Eq. (8.4) indeed is unitarily equivalent to the fermionic SSH chain Eq. (4.10)
(for open boundary conditions) via a ← Jordan-Wigner transformation (which is why one can
diagonalize it exactly). However, keep in mind that interacting bosonic systems that map to
non-interacting fermionic systems are the exception and not the norm.

2 | Rewrite in spin-1
2
language:

Remember (→ Problemset 1) that hard-core bosons can be interpeted as spin-1
2
degrees of freedom

via the mapping

ai � �
C

2i�1; a
�
i � �

�
2i�1 and bi � �

C

2i ; b
�
i � �

�
2i : (8.5)
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(That we count the spins with indices j D 1; : : : ; 2L instead of introducing a- and b-spins is not
important and only used to save indices.) Remember that �˙

j D
1
2
.�x

j ˙ �
y
j / with Pauli matrices

�˛
j (˛ D x; y; ´). Convince yourself that the algebra of the Pauli matrices makes �C

j and ��
j satisfy

the algebra of hard-core bosons Eqs. (8.2) and (8.3).

! Spin-1
2
Hamiltonian on H D

N2L
j D1 C2

j :

OHbSSH D t

LX
iD1

�
��

2i�1�
C
2i C �

�
2i�

C
2i�1

�
C w

L0X
iD1

�
��

2i�
C
2iC1 C �

�
2iC1�

C
2i

�
D
t

2

LX
iD1

�
�x

2i�1�
x
2i C �

y
2i�1�

y
2i

�
C
w

2

L0X
iD1

�
�x

2i�
x
2iC1 C �

y
2i�

y
2iC1

�
(8.6a)

(8.6b)

! Spin-exchange interactions with alternating strength t andw

We will use the model (8.6) to illustrate various concepts throughout Chapters 8 to 10.

8.2. Reminder: Linear representations of groups

Linear representations of groups are ubiquitous in physics, in particular in quantum mechanics. In the
present context, they are important to describe the action of symmetries of Hamiltonians on the Hilbert
space. Let us briefly review a few important facts:

1 | ^ Group G (this can be a finite group or a Lie group)

Remember that a group .G; �/ is a setG of elements together with a binary map � W G �G ! G

that together satisfy the following axioms:

• Associativity: .a � b/ � c D a � .b � c/ for all a; b; c 2 G

• Neutral element: There is a element e 2 G such that a � e D e � a D a for all a 2 G.

• Inverse elements: For all a 2 G there exists a�1 2 G such that a � a�1 D a�1 � a D e.

Note that the axioms imply that both the identity and the inverse elements are unique.

In physics, groups are used (inter alia) to describe symmetries of systems. Symmetries are operations
that leave something (a Hamiltonian or a state) unchanged. Consequently, one can concatenate
such operations to obtain new symmetries. The“do nothing” operation is trivially a symmetry,
and for every operation that does not change a system there is naturally another operation that
“undoes” it. Together, this makes the set of symmetries a group: a symmetry group.

2 | ¡! Note, however, that the abstract groupG only encodes how the different symmetries relate to
each other (for example: applying a 180ı rotation twice does nothing). It does not specify how
these operations act on states of the system…

^ Hilbert space H with ↓ general linear group GL.H /

The general linear group of a vector space is the group of invertible linear maps (“matrices”)
from the space into itself, i.e., GL.H / is the set of invertible matrices with matrix multiplication �
(concatenation of maps) as group multiplication.
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^ Map � W G ! GL.H / with the property

�. a � b„ƒ‚…
Multiplication

in G

/ D �.a/ � �.b/„ ƒ‚ …
Multiplication
in GL.H/

(8.7)

! � is a ⁂ (Linear) representation of G in H

In the following, we often omit the multiplication symbols � and � as the intended product usually
follows from the context.

• Eq. (8.7) implies in particular for every representation:

�.a/ D �.a � e/ D �.a/ � �.e/ ) �.e/ D 1 (8.8)

1 is the identity matrix and plays the role of the identity element in GL.H /.

1 D �.e/ D �.a � a�1/ D �.a/ � �.a�1/ ) �.a�1/ D �.a/�1 (8.9)

Here, a�1 denotes the inverse inG and �.a/�1 the inverse of the matrix �.a/ in GL.H /.

• A representation“translates” abstract group elements to operators that act on states in a Hilbert
space such that these operators satisfy the multiplicative structure of the group. Hence a
representation represents the group on state vectors:

H 3 j‰i
Act with symmetry
�����������!

g2G
j‰0
i D �.g/j‰i 2 H (8.10)

• In quantummechanics, we additionallywant symmetry operators tomapnormalized quantum
states j‰i onto normalized quantum states j‰0i. Hence we restrict GL.H / (matrices with
non-zero determinant) usually to the subgroup U.H / of unitary maps (matrices with unit-
modulus determinants). I.e., we are interested in ⁂ unitary representations on the Hilbert
space:

�.a�1/ D �.a/�1 Unitary
D �.a/� (8.11)

The most general form of quantum mechanical symmetries can also apply an additional
complex conjugation K , see the proof of ← Wigner’s theorem on → Problemset 1. Then one
deals with ⁂ antiunitary representations.

• The map �.g/ WD 1 for all g 2 G is a representation of every groupG, called the ⁂ trivial
representation. Representations that are injective [a ¤ b ) �.a/ ¤ �.b/] are called
⁂ faithful. Such representations carry the complete group structure over to GL.H /. The
trivial representation is never faithful (except for the trivial groupG D feg).

3 | Example:

^ G D D2 D Z2 � Z2 D fe; x; ´; x´g with multiplication table

� e x ´ x´

e e x ´ x´

x x e x´ ´

´ ´ x´ e x

x´ x´ ´ x e

(8.12)
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The defining properties of this group are x2 D e, ´2 D e, and x´ D ´x. Since all elements
commute, it is an ↓ abelian group.

D2 is known as ↑ Klein four-group or ↑ dihedral group of order 4. Geometrically, it is the symmetry
group of a (non-square) rectangle: x and y correspond to the two mirror symmetries and xy is the
180ı rotation.

^ H D C2
1 ˝C2

2 (two spin-1
2
) and define

�.x/ WD �x
1 �

x
2 and �.´/ WD �´

1 �
´
2 (8.13)

ı
�! � is a 4-dimensional, faithful, linear representation of D2

• To verify this, check that the defining relations of the group are satisfied on the operator
level:

1 D �.e/
G
D �.x2/ D �.x/�.x/ D �x

1 �
x
2 �

x
1 �

x
2 D 1 3 (8.14a)

1 D �.e/
G
D �.´2/ D �.´/�.´/ D �´

1 �
´
2 �

´
1 �

´
2 D 1 3 (8.14b)

�x
1 �

x
2 �

´
1 �

´
2 D �.x/�.´/ D �.x´/

G
D �.´x/ D �.´/�.x/ D �´

1 �
´
2 �

x
1 �

x
2 3 (8.14c)

Here we used that Pauli matrices square to one and different Pauli matrices of the same spin
anticommute with each other.

• Note that our choice to use two spin-1
2
is not arbitrary. On a single spin-1

2
(H D C2) one

could try
�‹.x/ WD �x and �‹.´/ WD �´ (8.15)

but then one finds

1 D �‹.e/
G
D �‹.x2/ D �‹.x/�‹.x/ D �x�x

D 1 3 (8.16a)

1 D �‹.e/
G
D �.´2/ D �‹.´/�‹.´/ D �´�´

D 1 3 (8.16b)

�x�´
D �‹.x/�‹.´/ D �‹.x´/

 
¤ �‹.´x/ D �‹.´/�‹.x/ D �´�x

D ��x�´ 7 (8.16c)

The sign in the last equation violates Eq. (8.7) and will become important → later.

• The 4-dimensional representation (8.13) is not the “smallest” one. SinceD2 is an abelian
group, all its ↑ irreducible representations are one-dimensional (a fact from group theory).
These, however, are not faithful, and the smallest faithful representation is two-dimensional
(can you find it?). We use the representation in (8.13) as example because it is relevant for the
bosonic SSH chain → below.

4 | We say that a HamiltonianH on the Hilbert space H has symmetry group G

W, 9 Faithful representation � of G in H such that ŒH; �.g/� D 0 for all g 2 G

Note that the concept “symmetry of a Hamiltonian” only makes sense when a representation is
given since only operators on H can commute with H (and not abstract group elements). Fur-
thermore, the qualifier “faithful” is needed because otherwise we could always choose the trivial
representation and every Hamiltonian would have every group as symmetry group (which is a
useless concept).

5 | Example:

^ Bosonic SSH chain (8.4) on H D
NL

iD1

�
C2

2i�1 ˝C2
2i

�
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^ Faithful linear representation of D2 on H :

�.x/ WD

LY
iD1

�x
2i�1�

x
2i � X and �.´/ WD

LY
iD1

�´
2i�1�

´
2i � Z (8.17)

This is the ↑ product representation obtained from Eq. (8.13) acting on every unit cell i D 1; : : : ; L
of the chain. Hence the checks in Eq. (8.14) are sufficient to establish the validity of Eq. (8.7).

ŒHbSSH; X� D 0 and ŒHbSSH; Z� D 0 ! HbSSH has symmetry groupD2

¡! The bosonic SSH chain has many more symmetry groups (→ later), butD2 is the important one
for what follows.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART


