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↓ Lecture 2 [11.04.25]

3 | Paradigmatic example:

i | ^ Periodic 1D chain of L spin-1
2
with Hamiltonian:

⁂ Transverse-field Ising model (TIM):

HTIM D �J

LX
iD1

�´
i �´

iC1 � h

LX
iD1

�x
i (0.9)

where…

• J � 0: ferromagnetic coupling strength

• h � 0: transverse magnetic field

“Transverse” since h points in x-direction, which is transverse to the ´-direction of the
ferromagnetic Ising interactions.

ii | Observation: �
�´

i �´
iC1; �x

i

�
¤ 0 (0.10)

!The Ising interactions and themagnetic field terms cannot be diagonalized simultaneously!

! Quantum fluctuations

! Ground state(s) = (entangled) superpositions of product states j"# : : :i for h ¤ 0

Product states of the form j"# : : :i are eigenstates of the classical Ising interaction �´
i �´

iC1.

iii | Two qualitatively different parameter regimes:

a | J � h:

J � 0 ! Gapped phase with unique ground state:

j�Ci � jC C � � � Ci (0.11)

^ Spin-spin correlations:

h�Cj�´
i �´

j j�Ci
ji�j j!1
�������! 0 (0.12)

! ⁂ Paramagnetic phase (=disordered phase)

• Note that h�Cj�´
i j�Ci D 0, i.e., measuring any spin yields˙1with equal probabil-

ity. The vanishing of spin-spin correlations (0.12)means that there is no correlation
between these random outcomes for distant spins. That is, there is no order in the
ground state.

• For J D 0 and h > 0 the system has a stable bulk gap of �E D 2h, independent
of L (the energy cost of flipping a single spin from jCi to j�i).

b | J � h:
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h � 0 ! Gapped phase with two-fold degenerate ground state manifold:

j�i � ˛ j"" : : : "i„ ƒ‚ …
j�"i

Cˇ j## : : : #i„ ƒ‚ …
j�#i

(0.13)

^ Spin-spin correlations:

h�j�´
i �´

j j�i
ji�j j!1
�������! 1 (0.14)

This is true for arbitrary amplitudes ˛ and ˇ!

! ⁂ Ferromagnetic phase (ordered phase)

• Note that now h�j�´
i j�i R 0 depends on the particular values of ˛ and ˇ; for the

“classical” product states it is h�"#j�´
i j�"#i D ˙1. However, the non-vanishing

correlations (0.14) imply in any case that ´-measurements of distant spins are
correlated. That is, there is order in the ground state.

• For J > 0 and h D 0 and periodic boundaries, the system has a stable bulk gap of
�E D 4J , independent of L (the energy cost of flipping a contiguous domain of
spins, e.g., j""""i 7! j"##"i).

iv | ! The ´-magnetization �´
i is a ⁂ local order parameter for the ferromagnetic phase:

lim
ji�j j!1

h�´
i �´

j i D 0 in the paramagnetic (disordered) phase (0.15a)

lim
ji�j j!1

h�´
i �´

j i ¤ 0 in the ferromagnetic (ordered) phase (0.15b)

• The very fact that there is a local order parameter that characterizes the ferromagnetic
phase makes this particular kind of order locally testable, i.e., by looking at a finite patch
of the system, you can decide whether you are in the ferromagnetic or the paramagnetic
phase. This makes the ferromagnetic phase a counterexample of a topological phase
(→ later).

• Note that ŒH; �´
i � ¤ 0, i.e. correlations of this observable at two distant points are a

non-trivial phenomenon.

v | Comments:

• So far we only made heuristic arguments regarding the ground states of the TIMHamil-
tonian (0.9). Fortunately, this model can be solved exactly! Despite the simplicity
of the Hamiltonian, this calculation is not straightforward and requires quite a bit of
machinery; you solve the model on → Problemset 7 → later.

• While the TIM Hamiltonian clearly has a stable bulk gap in the two extreme cases
(J D 0 and h > 0 vs. J > 0 and h D 0), it is not clear what happens when one
adds small perturbations. For example, whether the gap stays open for J > 0 and
0 < h � J is not obvious. The problem is that the gap �E is of order unity, but the
total operator norm of the magnetic field perturbation goes like h�L, which diverges in
the thermodynamic limit L ! 1 for arbitrarily small perturbations h > 0. In general,
bulk gaps can therefore vanish under infinitesimally small perturbations! [For the TIM
this does not happen, and the gap remains open for up to some critical value hc of the
magnetic field, but this must be proven (→ Problemset 7).]
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0.4. Spontaneous symmetry breaking

vi | What happends between the two gapped phases for J � h and J � h?

Since the ground state degeneracy of the two gapped phases is different, the gap must close
at some critical ratio gc D h=J .

As noted above, we cannot exclude gc D 0 or gc D 1 with our current knowledge. Here
we assume that 0 < gc < 1 (which turns out to be correct).

! Schematic spectrum:

You compute this spectrum exactly later on → Problemset 7.

vii | Tentative Phase diagram:

! Order parameter continuous at phase transition

Again, this is not obvious; but solving the model exactly shows that it is true.

viii | ! ⁂ Continuous (second-order) phase transition:

This is the most typical situation (at least for the models studied in this course), with the
following features at the phase transition:

• Bulk gap closes

• Long-range fluctuations and self-similarity
(= quantum fluctuations on all length scales)

• Effective conformal field theory (CFT) description

• Algebraic decay of correlations
(As compared to exponential decay in gapped phases.)
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ix | What characterizes the phase transition?

Lev Landau: Spontaneous symmetry breaking!

Landauwas awarded the Nobel Prize in Physics 1962 for his pioneering work on describing
quantum phases of matter, especially the superfluid phase of liquid Helium.

(1) ^ Symmetry group GS of the TIM Hamiltonian (0.9):

GS D f1; Xg ' Z2 with X WD

LY
iD1

�x
i (0.16)

X realizes a global flip of all spins: j"i $ j#i.

Check that ŒH TIM; X� D 0. Note that X2 D 1 so that GS ' Z2.

(2) ^ Symmetry groups GE of the TIM ground states Eqs. (0.11) and (0.13):

• Paramagnetic phase:

G
.para/
E D f1; Xg D GS since X j�Ci D j�Ci (0.17)

! ⁂ Symmetric phase

• Ferromagnetic phase:

G
.ferro/
E D f1g ¨ GS since X j�"i D j�#i ¤ j�"i (0.18)

! ⁂ Symmetry-broken phase

¡! Important

In the ferromagnetic phase, the ground states j�"=#i spontaneously break the symmetry
group GS of the Hamiltonian HTIM.

! ⁂ Spontaneous symmetry breaking (SSB)

Landau’s paradigm (Spontaneous symmetry breaking)

4 | This concept extends to many quantum phases and their phase transitions (e.g. superconductors/-
superfluids where the particle number symmetry GS D U.1/ is spontaneously broken) and is also
applicable to classical phases and phase transitions (e.g. the transition from liquid to solid where
rotation and translation symmetry are broken down to crystallographic subgroups).

! Phases are characterized by the symmetries they break & preserve:

Labels of phases = Subgroups G
.i/
E of symmetry group GS

• This concept covers many (quantum and classical) phases and phase transitions, but in the
realm of quantum mechanics there is more than just symmetry breaking—there is entangle-
ment! This will become important → below…
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• For the TIM the symmetry group GS has only itself and the trivial group as subgroups. In
general, GS can be much larger so that many non-trivial subgroups exists (and therefore
many different phases are possible). For example, if GS D E.3/ is the Euclidean group
of three-dimensional space (continuous rotations and translations), then GS contains all
possible space groups (symmetry groups of crystals) as subgroups.

5 | Comments:

• Note that the spontaneous symmetry breaking of the TIM in 1D is not forbidden by the
↑ Mermin-Wagner theorem because the broken symmetry is discrete (Z2).

• In one dimension, the spontaneous symmetry breaking (and the ferromagnetic phase) does
not survive at finite temperatures T > 0. (Recall that the classical Ising model does not
have a thermodynamic phase transition in one dimension, i.e., there is no ferromagnetic
phase in a classical 1D Ising chain since domain walls can move without energy penalty.)
The quantum phase transition of the 1D TIM is therefore a genuine quantum phenomenon,
without classical counterpart.

• By contrast, in two dimensions (and above) the spontaneous symmetry breaking (and the
ferromagnetic phase) does survive at finite temperatures T > 0. (Recall that the classical 2D
Ising model has a thermodynamic phase transition at a critical temperature Tc below which
it enters a ferromagnetic phase that breaks ergodicity.)

• A note on“symmetry breaking” in the quantum case:

The ground state (for h D 0 and J > 0)

j�si WD
1p
2
j�"i C

1p
2
j�#i D

1p
2
j"" : : : "i C

1p
2
j## : : : #i (0.19)

is clearly symmetric under global spin-flips: X j�si D j�si. So what about the symmetry
breaking? (Note that this is something without analog in a classical setting where you cannot
superimpose arbitrary ground states to form new ground states.)

Mathematically, the two symmetry breaking states j�"i and j�#i belong to different ↑ su-
perselection sectors in the thermodynamic limit (they don’t live in the same Hilbert space). As
a consequence, the “symmetric state” j�si is not a state in the Hilbert space of the infinite
system (strictly speaking, this is the mathematical manifestation of SSB); ↑ Refs. [24–26].

Physically, the symmetry-broken states j�"=#i behave very differently than the symmetry-
invariant states j�"i ˙ j�#i: Local measurements (of �´

i ) immediately collapse the latter
into a mixture of the former. I.e. the symmetric states are extremely fragile (in contrast
to the symmetry-broken states). Thus, in an experiment, one would always observe the
symmetry-broken states, so that the notion of “spontaneous symmetry breaking” effectively
carries over to the quantum realm.

0.5. Extending Landau’s paradigm: Topological phases

6 | To understand the deficits of Landau’s paradigm, and the conceptual possibility of topological
phases, we first need a mathematically more rigorous definition of quantum phases (without
spontaneous symmetry breaking!):

⁂ Definition: Gapped quantum phases (formal version)

^ Gapped, local Hamiltonians Ha and Hb with unique ground states j�ai and j�bi.

These two many-body ground states belong to the same quantum phase if and only if there is
a family of gapped and local Hamiltonians OH.˛/ (which depends continuously on a parameter
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˛ 2 Œ0; 1�) such that

Ha D OH.0/ and Hb D OH.1/ : (0.20)

• The two constraints“gapped” and“local” ensure that the macroscopic properties of the
ground states only change gradually along the path. (This precludes the traversal of phase
boundaries where macroscopic properties change qualitatively.)

• ¡! Note that, strictly speaking, the two Hamiltonians Ha and Hb [and the family OH.˛/] are
meant to be sequences of Hamiltonians for increasing system sized L ! 1. The condition
that the gap remains open along the parameter path thus refers to the thermodynamic limit
L ! 1, and not to any finite system. (Note that every finite system has a trivial gap that
separates its ground state manifold from the first excited states!)

• The above definition can be extended in a straightforward way to systems with finite (but
non-extensive) ground state degeneracies. This allows for an extension of the following
concepts to symmetry-broken phases as well (→ below).

7 | ^ Parameter-space of local Hamiltonians (without SSB, GE D GS ):

�
�! In D � 2 dimensions the parameter space decomposes into “islands” of gapped Hamiltoni-
ans that cannot be connected without closing the gap:

• Trivial phase: Ground state = disentangled product state
(e.g. j�Ci D jCi ˝ jCi ˝ � � � or j�"i D j"i ˝ j"i ˝ � � � )

• Topological phase: Ground state = long-range entangled state
(different patterns of long-range entanglement = different topological phases)

Comments:

• The fact that one-dimensional systems cannot have intrinsic topological order is not obvious.

It follows because the ground states of gapped 1D Hamiltonians (without SSB) are short-
range correlated and feature an area law (the entanglement entropy between different parts
of the sytem is constant) [27, 28]. One can therefore encode these states as (short-range
correlated) → matrix-product states (MPS) with finite → bond dimension. It then follows that
states of this form can always be mapped to a product state by a quantum circuit of finite
depth (→ below) [6].

• ¡! In this course, we often dinstinguish between fermionic systems and bosonic systems. Since
in our context bosonic systems make only sense with interactions (→ below), we also count
spin systems to this class and often use the terms interchangeably. What makes (interacting)
systems bosonic is therefore not so much the existence of an infinite-dimensional bosonic
Fock space, but rather that the operator algebras of local degrees of freedom commute. Note
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that spin-1
2
(or ↓ qubits) are equivalent to ↓ hard-core bosons (→ Problemset 1), i.e., bosons

with an infinite, repulsive on-site interaction.

• This splitting can also occur for Hamiltonians with SSB and a fixed subgroup GE . We will
not discuss this case in this course (→ below).

• Strictly speaking, the statement that there is no topological order in 1D is only true for
bosonic systems (or spin systems). For 1D systems of fermions, there is a single non-trivial
topological phase realized by the → Majorana chain (??) [29]. The subtle distinction between
1D bosonic and fermionic systems can be traced back to the non-locality of the → Jordan-
Wigner transformation that translates between them, and the fact that parity is a locality
constraint for fermionic systems.

8 | There is an alternative (but mathematically equivalent) definition of quantum phases in terms of
local unitary circuits with constant depth:

^ ⁂ Local unitary (LU) circuit of depth DL:

�
�! j�ai and j�bi belong to the same quantum phase, if and only if

j�ai D UQCj�bi (0.21)

where UQC is a local quantum circuit of constant depth DL D const for L ! 1.

• This characterization clarifies that two states belong to the same quantum phase if they share
the same“pattern of long-range entanglement” since this pattern can only be modified by
long-range unitary gates (and not a LU-circuit of constant depth).

• With this characterization, it follows that a ground state j�ai is long-range entangled (=
topologically ordered) iff it cannot be transformed into a trivial product state j""" : : :i by a
constant-depth quantum circuit that is local wrt. the geometry of the system.

• This definition can be shown to be equivalent to the one given in the definition above [30].
The unitary can be explicitly expressed as

UQC D P exp
�
�i

Z 1

0

d˛ QH.˛/

�
(0.22)

where P denotes the path-ordered exponential and QH.˛/ is a sum of local Hermitian opera-
tors that is related (but generally not identical) to the gapped path OH.˛/.

• This makes the preparation of topologically ordered states experimentally challenging for
quantum computers and quantum simulators with locality constraints: Quantum computers
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must apply quantum circuits with a depth (= run time) that scales with the systems size. Simi-
larly, quantum simulators that rely on adiabatic preparation schemes must cross a topological
phase transition – which requires the duration of the preparation protocol to scale with the
system size as well.

First extension of Landau’s paradigm: (Intrinsic) Topological order

9 | The concept of long-range entanglement and equivalence via LU-circuits suggests the following
extension of the classification of (gapped) quantum phase of matter:

This motivates the definition:

⁂ Definition: Topological order (TO)

⁂ (Intrinsic) Topological order WD Patterns of long-range entanglement

• We discuss this concept at the end of this course: → Part III

• ¡! Sometimes the term“topological order” is used sloppily in the literature to refer to any
phase of matter with some topological characteristics (e.g., → symmetry-protected topological
phases). Then the modifier “intrinsic” is used to refer to states with non-trivial long-range
entanglement. In this course “topological order” always refers to long-range entangled
states; however, we still might add“intrinsic” to emphasize this point. By contrast, the term
“topological phase” is used much broader and refers to any quantum phase with topological
features.
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