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↓ Lecture 19 [03.07.25]

6 | ^ Simplification: T d 7! Sd (we did this before when discussing Skyrmions in Sec-
tion 2.1.1)

¡! This simplification is done for pedagogic reasons; it is undone → below and not part of the
full classification.

!

fTopological phases g
Physics
D

(
Equivalence classes of continuous maps
H W Sd ! C0 that can be continuously
deformed into each other

)
(6.22a)

Math
D hd th ↑ Homotopy group of C0i � �d .C0/ (6.22b)

The homotopy group �d .X/ is the group of equivalence classes (= homotopy classes) of
(base-point-preserving) homeomorphisms (= continuous maps) from the d -dimensional
sphere Sd to the topological space X . The special group �1.X/ is called ↑ fundamental
group and describe the topologically different ways closed loops can be drawn on the space
X , where two loops are equivalent if they can be continuously deformed into each other (this
is the homotopy).

Example for d D 2: �2.C0/
�
D Z ! Chern number ,

Remember that the IQHE (and relatives) belong to classA (classified byC0) and we identified
the Z-valued Chern number as label for possible topological phases.

7 | Undo simplification (Sd 7! T d ) & Include symmetry constraints

(Here we focus on the eight real classes, i.e., X¤A,AIII.)

Kitaev & K-Theory [57]
�
�!

fTopological phases of .X; d / g D

�
�
NT d ; Rq

�
„ ƒ‚ …

K
�q
R . NT d /

K-theory
D �0.Rq�d /„ ƒ‚ …

⁂ Strong topological index
! Periodic table

˚

d�1M
sD0

 
d

s

!
�0.Rq�s/„ ƒ‚ …

⁂ Weak topological indices
(not part of the periodic table)

(6.23)

– �0.X/ is the 0th homotopy group of X ; its elements label the connected components of
X . Since the connectivity of the symmetric spacesRq is known, the right-hand side of
Eq. (6.23) can be looked up in the literature.

In general, �0.X/ is not a group but the set of path-connected components of X (only
�d .X/ has a natural group structure for d � 1). However, in the present case, the
structure of the classifying spacesX D Rq in the “stable limit” of many bands endows
�0.Rq/ with a group structure.

– �
�
NT d ; Rq

�
describes the equivalence classes of all maps H.k/ from the BZ T d into an

appropriately restricted matrix space (which depends on the symmetry class X, ↑ Table
1 in Ref. [92]; for d D 0 the target space is the classifying spaceRq that belongs to X, for
d > 0 this is only true at the TRIMs) that, in addition, satisfy the symmetry constraints
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onmomenta demanded by the symmetry class X (the latter constraint is indicated by the
bar of NT d ); this object is known inK-theory as the“realK-groupK�q

R . NT d / of NT d .”
Remember, for example, that TRS relates the Bloch Hamiltonian at momentum k to
the Bloch Hamiltonian at momentum �k, Eq. (2.31d). These constraints are hidden in
the precise definition of �

�
NT d ; Rq

�
.

! Computing �0.Rq�d / (= strong topological indices)…

– for q D 0; : : : ; 7 (real symmetry classes = rows)

– and d D 0; 1; : : : (dimensions of space = columns)

…yields the periodic table (more precisely: the eight rows of the real symmetry classes)

Comments:

– There is an analog expression for the two complex classes A and AIII (first two rows of
the periodic table).

– The contributions labeled“weak topological indices” are not part of the periodic table.

These additional indices have physical consequences, e.g., for ↑ weak topological insula-
tors [57, 96, 97].

– The indices of the classifying spaces Rq�d and Rq�s are defined modulo 8; for the
complex classes, the periodicity is 2 (this is known in K-theory as ↑ Bott periodicity).
This leads to the periodicity of the periodic table in the dimension d and finally explains
its name.

In contrast to the more famous periodic table in chemistry, this one is really periodic,.

8 | Example for q D 4 (AII) and d D 2 (e.g. ← Kane-Mele model):

�
�
NT 2; R4

�
D �0.R2/˚ 1 � �0.R4/˚ 2 � �0.R3/ (6.24)

D Z2„ƒ‚…
Pfaffian index

˚ Z„ƒ‚…
#Valence bands

˚ 2 � 0„ƒ‚…
No weak indices

(6.25)

The values for �0.Rq/ are provided in Table 2 of Ref. [57] but can also be read off from the
d D 0 column of the periodic table (replacing 2Z by Z).

6.4. Consequences of interactions

In this part, we focused on non-interacting fermions. The crucial feature of such theories is that their MB
Hamiltonian OH can be encoded by a SP HamiltonianH so that their MB spectrum can be built from
the SP spectrum; this makes them exactly (or efficiently) solvable. The periodic table is built on the SP
Hamiltonians and is therefore only valid for systems that can be reasonably described by such theories.

The natural question is then of course:

What happens to the periodic table if interactions are included?

It is clear that interactions allow formore“paths”to connect gappedHamiltonians, so that the classification
must become“coarser” (i.e., phases that are separatedwithout interactionsmay no longer be if interactions
are allowed).

Quick answer:
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• A full classification is known for quartic interactions (↑ Ref. [182]).

• In d D 1 dimensions, (interacting) fermions can be mapped to (interacting) bosons and fully
classified via techniques that we discuss in Part II (↑ Refs. [29, 183, 184]).

• There is no complete classification known for arbitrary interactions and dimensions (as far as I
know).

• This is a topic of ongoing research… (e.g. ↑ Refs. [185, 186])

However, there is an example that demonstrates that (and how) the periodic table is modified by interactions
for a specific .X; d /:

This was worked out by Fidkowski and Kitaev in 2010 [187]. You study this example on → Problemset 8.

1 | ^ Majorana chain for w D � > 0 and � D 0: [Remember Eq. (5.39) in Section 5.5]

TRS & PHS! Symmetry class BDI in d D 1! Z-index

Remember the Z-valued winding number defined in Section 5.3 which is quantized if TRS is
present.

¡! Here we do not consider the Majorana chain as representative of class D without TRS; it turns
out that the corresponding Z2-index is stable under interactions [29].

2 | Time-reversal symmetry:

T iT �1
D �i and T 2i�1T �1

D C 2i�1 ; T 2iT
�1
D � 2i (6.26)

This follows from the“standard” TRS for spinless fermions: T ci T
�1 D ci and Eq. (5.33).

! Only quadratic couplings between even (red) and odd (blue) Majorana modes allowed!

3 | ^ Stack of Majorana chains in the topological phase:

Note that one could gap out the edge modes with i˛
1 

˛C1
1 but these terms break TRS (the coupled

modes are both either even or odd)!

! Z-index = # dangling Majorana modes ˛
1 (on one end of the stack)

The chains are oriented in that they start with an odd and end with an even mode (which transform
differently under TRS). Reversing the orientation of a chain therefore gives a negative index and
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indeed, a pair of chains with opposite orientation can be gapped out without breaking TRS because
the two Majorana modes on one end are even and odd.

^ 8 topological chains! BDI-index � D 8

Note that if there is an odd number of dangling Majorana modes on one end, you cannot gap them
out completely even when breaking TRS because after gapping out all pairs a single mode will be
left. This distinguishes the situations with an even and an odd number of Majorana zero modes
and corresponds to the Z2-index of class D that does not require TRS.

4 | Idea: Connect topological to trivial phase via quartic interaction:

OH.�;w; �/ D OHMC.�;w/C �

2LX
nD1

Wn (6.27)

with quartic interaction between the 8 chains

Wn D 
1
n

2
n

3
n

4
n ˙ : : :many more quartic terms (6.28)

See ↑ Ref. [187, Eq. (8)] for the full term and its derivation.

¡! The interaction termsWn commute with the TRS in Eq. (6.26).

^ Protocol:

On this continuous path…

• the bulk gap remains open…
This can be shown by exact diagonalization on a unit cell (which contains 8 fermion modes
that span a 28 D 256 dimensional Fock space).

You show this numerically on → Problemset 8.

• and TRS is not broken.
This is easily checked by inspection.

5 | Conclusion:

With interactions � D 0 and � D 8 are the same phase in BDI! (6.29)

! Z-index of BDI in d D 1 reduces to Z8-index

!With interactions there are not infinitely many top. 1D superconductors in BDI but only 8!

For an overview how quartic interactions modify the periodic table in other dimensions and for
other symmetry classes see Ref. [182].
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7. ‡ Topological edge states in classical systems

At the beginning, in Section 0.1, Imotivated the exploration of topological phaseswith a classicalmechanics
example (coupled classical pendulums) that features remarkably robust“edge modes.” Later, in Chapter 4,
we identified the underlying matrix structure as that of the quantum mechanical ← SSH chain which
is a SPT phase protected by ← sublattice symmetry. However, we still miss an explicit example of how
topological features of quantum systems can carry over to classical systems. Here we discuss an example
in two-dimensions that has been experimentally realized and features robust edge modes.

More specifically, we discuss a classical mechanics realization of topological bands derived from the
← quantum spin Hall effect that has been described and implemented by Süsstrunk & Huber in 2015 [188].
There is also a review by Sebastian Huber on the broader field of “topological mechanics” [189]. For more
references on classical systemswith topological bands, see Section 7.3 below ormy PhD thesis [126, Section
1.3.2].

7.1. Review: Effects of topological bands

In this course, we have studied various models that realize topological quantum phases at T D 0. The role
of topology was to describe “twists” in the band structure that cannot be undone without closing the
gap (or breaking a protecting symmetry). These topologially non-trivial band structures had observable,
physical consequences:

• Quantized Hall response:

Remember: [Eq. (1.98) in Section 1.4.2]

�xy D
e2

2�„
�„ ƒ‚ …

Computed from
Many-Body Hamiltonian

(„! QMinside)

with � D
X

nW"n<EF

C Œn�
2 Z„ ƒ‚ …

Computed from
Single-Particle Hamiltonian

(no„! no QMinside)

(7.1)

! The quantization of �xy requires filled bands

!Many-body phenomenon (Fermi statistics!)

! Genuine quantum effect!

Note that „ appears in the expression for the quantized Hall conductance, so quantum mechanics
must play a role. (You can trace the „ back to theKubo formula and therefore to the propagator/path
integral; it is not related to the Chern number, that is, “topology.”)

• Robust edge modes:

Remember:

Topological system in 2D & OBC
Sections 1.6 and 3.4
�����������! Gapless edge modes

Topological system in 1D & OBC
Sections 4.6 and 5.5
�����������! Zero-energy boundary modes
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! Bulk-boundary correspondence
Formally, the ↑ bulk-boundary correspondence ensures the existence of robust, gapless edge modes
on the boundaries of systems with topological bands (recall Problem 6.2 on → Problemset 6)

! Single-particle phenomenon (studying the band structure is sufficient)
We need neither the Fock space / Slater determinants (= Fermi statistics) nor time-evolution
operators / path integrals to understand the appearance of edge modes.

! Not a quantum effect!

We conclude:

Topological features of the band structure (= single-particle features)

are not quantum effects!

! Question: Can we translate edge modes to classical systems?

¡! Since we will focus on single-particle features in the following, it does make no sense to talk about
“topological phases (of matter)” – neither quantum nor classical. What we will study are topological features
of classical systems that affect the behaviour of their finite-energy excitations.

7.2. Example: Topological mechanics and helical edge modes

This subsection is based on the paper by Süsstrunk and Huber [188].

1 | Goal:

Realization of the helical edge modes of the QSHE (← Kane-Mele model) in a classical mechanics
setup governed by Newton’s equation

Rationale: A“phononic topological insulator” would transmit energy (= vibrations/phonons) only
along its surface but not through the bulk. The robustness of its topological edge modes would
allow for wave guides of arbitrary shape (in contrast to ↑ wispering gallery modes that delicately
depend on geometry).

2 | Quantum system (QS):

^ SP Schrödinger equation for a particle with internal states hopping on a lattice:

i„ P‰˛
i„ƒ‚…

QMinside

D H
˛ˇ
ij ‰

ˇ
j (7.2)

• i; j : sites

• ˛; ˇ: spin (or other local degrees of freedom)

• H : SP Hamiltonian = Hermitian matrix

Note that states in the SP Hilbert space have the form j‰i D
P

i;˛ ‰
˛
i ji; ˛i where ji; ˛i describes

a particle (fermion) on site i with spin ˛.

3 | Classical system (CS):

^ Newton’s equation for N coupled 1D oscillators (e.g., pendulums coupled by springs)

Rxi„ƒ‚…
Classical
dynamics

D �Dijxj i D 1; : : : ; N (7.3)
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The masses of the oscillators are set to one or, equivalently, absorbed intoD.

• xi : position of oscillator i (in 3D it would be i D 1; : : : ; 3N )

• D: Dynamical coupling matrix = real, symmetric, positive semi-definite matrix

First,D only contains spring constants (andmasses), thus it is real. Next,Newton’s third law (action-
reaction law) demands the symmetry ofD becauseDij (Dj i ) encodes the force by pendulum j (i)
on pendulum i (j ). And last, physically, the eigenvalues of D are the frequencies squared of the
eigenmodes of the system and therefore must be nonnegative.

Remember that for a single 1D pendulum,m Rx D �Dx leads to an eigenfrequency !2 D D=m; to
obtain periodic (bounded) solutions,D=m better be non-negative.

4 | Observation:

• QS characterized by eigenvectors of H (= Hermitian matrix)

• CS characterized by eigenvectors of D (= real, symmetric, positive semi-definite matrix)

In particular: Edge modes are simply special eigenvectors ofH

! Idea: UseH with edge modes (e.g., from QSHE) to constructD with edge modes!

Note that the dynamics of QS [Eq. (7.2)] and CS [Eq. (7.3)] are different (1st vs. 2nd order) but this
has no effect on the existence of edge states/modes which is a property of the matricesH andD,
respectively.

5 | Model construction:

We now construct a particular topological coupling matrixD that was implemented in Ref. [188].

i | ^ Two independent copies of the ← Hofstadter model (→ Problemset 4)
with spin-dependent flux ˛ Ô D ˙p=q D ˙1=3:

H D

�
H" 0

0 H#

�
(7.4a)

with H˛ D

X
x;y

"
jx; y C 1; ˛ihx; y; ˛j

Ce�2�i˛ Ô y
jx C 1; y; ˛ihx; y; ˛j

#
C h.c. (7.4b)

˛ 2 f";#g � fC1;�1g: pseudo-spin index

• H˛ is given in Landau gauge.

• This construction is reminiscent to the construction of the ← Kane-Mele model in Chap-
ter 3 where we combined two time-inverted copies of the ← Chern insulator. Here two
copies of the ← Hofstadter model are combined to obtain a time-reversal invariant system.
We must start from a time-reversal invariant system, since the goal is to realize its clas-
sical analogue with springs and pendulums alone (which only allows for time-reversal
symmetric physics).

• The choice of the Hofstadter model on the square lattice is motivated by technical
considerations (for example, constructing a square lattice of pendulums is easier than
constructing a Honeycomb lattice). The flux p=q D ˙1=3 is the one with (1) smallest
magnetic unit cell (q D 3 sites) that has (2) fully gapped bands (p=q D ˙1=2 is not
gapped, recall Problem 4.2 on → Problemset 4).
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ii | q D 3! Three gapped, spin-degenerate bands: [← Problem 4.2 on → Problemset 4]

Chern numbers: [← Problem 5.1 on → Problemset 5]

Red band: 1 D 3s1 C t1 ) s1 D 0; t1 D 1 ) C1 D t1 � t0 D C1

Green band: 2 D 3s2 C t2 ) s2 D 1; t2 D �1) C2 D t2 � t1 D �2

Blue band: 3 D 3s3 C t3 ) s3 D 1; t3 D 0 ) C3 D t3 � t2 D C1

! TKNN invariant Eq. (1.98):

• � D C1 D C1 in red/green gap

• � D C1 C C2 D �1 in green/blue gap

^ Finite sample with open boundaries (like a square):

! Two helical edge modes (opposite spin/group velocity) in each gap

Note that the situation in each of the two gaps is comparable to the Kane-Mele model with
upper/lower bands of Chern number˙1. In each spin sector, a TKNN invariant of j�j D 1
demands for a single conducting edge channel. Because the signs of � are different for the
two gaps, the edge modes (for a fixed spin) have opposite chiralities (→ experimental results
below).

iii | Symmetries:

• Time-reversal symmetry:

T 1
2
D i�yK � UT K with T 2

1
2

D �1 and

T 1
2
HT �1

1
2

D H (7.5)

sinceH" D H
�
#

Section 6.2! Class AII with Z2 Pfaffian index [← Section 3.3]

– Here �y acts on the “spin space” in Eq. (7.4a), i.e., it is actually T 1
2
D i�y ˝

1Lattice K where 1Lattice acts on the orbital space ofH˛ .

– You might wonder: Would the TRS representation T 0 D �xK with T 02 D C1

not also commute with the Hamiltonian (7.4a)? The answer is of course “yes”
since �´ is also a (unitary) symmetry (→ next point) and i�´�y D �x . However, a
representation with T 02 D C1 belongs to classAIwhich, according to the periodic
table in Section 6.2, cannot protect a topological phase inD D 2 dimensions. So
while the Hamiltonian is consistent with both representations, only T 1

2
D i�yK

is restrictive enough to separate a topological phase from the trivial phase (and
thereby protect edge modes). [Note that the choice of the representation dictates
which perturbations one can add to the Hamiltonian to try to connect it to the
trivial phase!]
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• Spin conservation:

�´H �´
D H (7.6)

This is the same unitary symmetry that we encountered for the Kane-Mele model in
the absence of a Rashba term. It allows for the expression of the Pfaffian invariant in
terms of the Chern numbers of the spin-polarized bands [← Eq. (3.21)] so that one can
avoid the more complicated expression Eq. (3.35) we derived in Section 3.3.
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