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↓ Lecture 18 [27.06.25]

6. Classification of Non-Interacting Fermionic
Topological Phases

A good introduction to the classification of topological insulators and superconductors is given by Lud-
wig [92] (this section is partly based on his paper). A more technical description of the scheme with
examples is given by Ryu et al. [122] (their detailed introduction is quite useful). A completely different
angle on the classification is provided byKitaev [57] (be warned: this paper looks“simple”as it is extremely
high-level but the underlying mathematical framework is very deep).

Goal: By now we have seen various models of non-interacting fermions in one and two dimensions that
are classified by different topological indices and protected by different symmetries (or none at all). Since
all of these models are described by band structures, the question arises whether one can find a unifying
scheme to classify the topological phases of non-interacting fermions.

The description of such an approach is the goal of this section.

6.1. Generic symmetries and the tenfold way

Our final goal is to fit all discussed topological models into a single classification scheme.

As a preliminary step, we must first decide on the symmetries to use for this classification:

1 | Goal: Classify TPs of non-interacting fermions

Approach: Use SP HamiltonianH to describe & classify MB Hamiltonian OH

Here,H can either be a“standard” SP Hamiltonian or a Bogoliubov-de Gennes Hamiltonian if
superconductivity is present.

!We are interested in constraints on the matrixH that arise from the symmetries of OH .

2 | Which symmetries of OH to use?

Remember: X symmetry of OH W, ŒX; OH� D 0

← Wigner’s theorem! X unitary or antiunitary (remember → Problemset 1)

! Four possibilities on Fock space:

In Chapters 2, 4 and 5, we encountered four distinct classes of symmetries that can act on Fock
space:
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Unitary: UiU�1
D C i ; UciU

�1
D Uij cj (6.1a)

(unitary MB sym.)
h
U; OH

i
D 0 , ŒU;H� D 0 (unitary SP sym.)

Time-reversal: T iT �1
D � i ; T ciT

�1
D Uij cj (6.1b)

(antiunitary MB sym.)
h
T ; OH

i
D 0 , ŒUK;H � D 0 (antiunitary SP sym.)

Particle-hole: C iC�1
D C i ; CciC

�1
D Uij c

�
j (6.1c)

(unitary MB sym.)
h
C ; OH

i
D 0 , fUK;H g D 0 (antiunitary SP pseudosym.)

Sublattice: S iS�1
D � i ; SciS

�1
D Uij c

�
j (6.1d)

(antiunitary MB sym.)
h
S ; OH

i
D 0 , fU;H g D 0 (unitary SP pseudosym.)

Note that the unitary mixing of particles (c�
i ) and holes (ci ) is not necessarily canonical, i.e.,

does not preserve the fermionic anticommutation relations in general (remember the ← Bogoliubov
transformation inChapter 5). By contrast, herewe onlymix annihilation operators among themselves
or map them to creation operators only.

Using unitary symmetries of OH (H ) is possible but not universal!

In the sense that the classification would be“infinite” because there are infinitely many unitarily
realized symmetries and the classification depends on the specific symmetry (representation);
→ extended note below.

! ^ TRS, PHS and SLS…

This is a conceptually important but subtle point: The decision to “factor out” all unitary symmetries
is not so much physically motivated but more a decision based on systematics. One can classify
fermionic SPTs with unitary symmetries, but this is a question that cannot really be conclusively
answered because there are infinitely many possible symmetry groups. Thus the most systematic
approach asks whether there is anything below that sprawling complexity that is simpler and more
systematic. After all, one should first understand these basics before plunging into the never
ending story that lies beyond. To put this into context: There are classifications for certain unitary
symmetry groups for free fermions [176–179] (but only “certain” not “all”). Also for bosonic SPTs
one considers unitary symmetries [47]. So there is nothing inherently “bad” about them. The
difference becomes clear when one compares the classification table below (the“periodic table”)
with similar tables for bosonic SPTs [47]: The latter always have an exemplary character in that one
must hope that the unitary symmetry one is interested in is listed; these lists are not exhaustive (they
cannot be). However, once one throws all unitary symmetries away (= allows them to be explicitly
broken), what is left is, quite unexpectedly, (1) non-trivial and (2) finite so that the classification
introduced in the following is exhaustive (although in a more restricted sense).

…and only SP Hamiltonians without unitary symmetries:

H ⁂ irreducible W,

�
ŒU;H� D 0 ) U D ei�1

�
(6.2)

These irreducible Hamiltonians without unitary symmetries can be understood as the “atomic
building blocks” of all Hamiltonians. To see this, consider an arbitrary Hamiltonian H with
symmetry group G0 that is unitarily realized on the SP Hilbert space H . As always, we can
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decompose the Hilbert space into irreducible representations � of G0 (with possible multiplicities):

H D
M

�

H� : (6.3)

Each subspace H� is composed of equivalent copies of the same irrep � (“equivalent” in the sense
of “isomorphic”):

H� D

m�M
˛D1

H
.˛/

�
' QH� ˝ V� (6.4)

where H
.˛/

�
' V� for all ˛ with the irrep V� and QH� D Cm� . It is d� D dimV� the dimension of

the irrep � andm� the multiplicity of the irrep � in H . The H� are known asG0-isotypic components
of H [180].

Since ŒH;Ug � D 0 for all g 2 G0 (with unitary representation Ug ) and V� is irreducible, it is

H D
M

�

H� ˝ 1d�
and Ug D

M
�

1m�
˝ U .�/

g : (6.5)

The Hamiltonian blocksH� act on QH� and have no longer any unitary symmetry left, they are
the “irreducible building blocks” of all Hamiltonians, just as the U .�/

g are the irreducible building
blocks of all representations of the symmetry group G0. It is these irreducible Hamiltonians
that we will focus on below (just like mathematicians study groups in terms of their irreducible
representations U .�/

g ).

3 | For a given irreducible SP HamiltonianH check (henceforth we forget about OH )…

9UT ‹ W ŒUT K;H � D 0 and if so: UTU
�
T

‹
D ˙1 (6.6a)

9UC ‹ W fUC K;H g D 0 and if so: UCU
�
C

‹
D ˙1 (6.6b)

9US ‹ W fUS ;H g D 0 (6.6c)

To understand where the two possibilities for PHS come from, we can generalize the argument
used for TRS in Section 2.1.2, but now exploit that we only consider irreducible Hamiltonians: Let
X D UK and either ŒX;H� D 0 (TRS) or fX;H g D 0 (PHS). In both cases, it is ŒX2;H � D 0,
which implies X2 D �1 because H is irreducible and X2 D UU � D U.U T /�1 is a unitary.
Combined, we have U D �U T and U T D �U so that U D �2U . This implies � D ˙1 and
thereforeX2 D ˙1. Note that this is true for bothTRS andPHS, andwe do not have to assume that
these represent a Z2 symmetry! Note also that this sign cannot be transformed away byU 7! ei'U

due to the complex conjugation. This is different for SLS (which lacks the complex conjugation)
where U 2

S D C1 can always be chosen with an appropriate transformation US 7! ei'US .

! Define:

TRS: T � UT K (antiunitary symmetry) (6.7a)

PHS: C � UC K (antiunitary pseudosymmetry) (6.7b)

SLS: S � US (unitary pseudosymmetry) (6.7c)

¡! Here we switch from our previous notation TU D UK to T � TUT
D UT K (similarly for

C D CU andS D SU ) becausewewill mixT ,C andS below and then it is important to distinguish
the unitaries UT , UC and US .
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! Labeling scheme:

ŒT;H� ¤ 0 ,W T D 0

ŒT;H� D 0 with T 2
D C1 ,W T D C1

ŒT;H� D 0 with T 2
D �1 ,W T D �1

fC;H g ¤ 0 ,W C D 0

fC;H g D 0 with C 2
D C1 ,W C D C1

fC;H g D 0 with C 2
D �1 ,W C D �1

fS;H g ¤ 0 ,W S D 0

fS;H g D 0 ,W S D 1

(6.8a)

(6.8b)

(6.8c)

(6.8d)

(6.8e)

(6.8f )

(6.8g)

(6.8h)

Note that this is an abuse of notation: In the left column, T=C=S denote the operators of Eq. (6.7),
whereas in the right column they are simply variables used to label the situation on the left. From
the context it is always clear which use is intended.

! Triple .T; C; S/ encodes answers to classification in Eq. (6.6)

Note:

These constraints on the SP level can also be constructed quite systematically without deriving
them fromMB symmetries:

Imagine you are given a gapped SP Hamiltonian (= Hermitian matrix)H and a unitary U , and your
job is to formulate a linear/antilinear constraint onH using only U and complex conjugation. The
constraint can be written in the form

f .H;U /
Š
D H : (6.9)

We want f to be linear/antilinear inH and its result must be Hermitian becauseH is; hence it
should be f .H;U / D ˛UH .�/U � with ˛ 2 R. Now note that det.H/ D det.˛UH .�/U �/ D

˛N det.H/; sinceH is gapped we can w.l.o.g. shift the Fermi energy (= zero energy) into the gap
so that det.H/ ¤ 0 and we have ˛N D 1.

In general, this leaves only four possibilities:

f .H;U / D

8̂̂̂<̂
ˆ̂:
C1 � UHU � (unitary symmetry)
�1 � UHU � (unitary pseudosymmetry! SLS)
C1 � UH�U � (antiunitary symmetry! TRS)
�1 � UH�U � (antiunitary pseudosymmetry! PHS)

(6.10)

Since for an irreducible Hamiltonian (by construction) there is no unitary symmetry (except the
trivial one), we are left with the latter three constraints that are nothing but the three symmetries
(on the MB level) we have discussed before.

4 | Important:

For a given irreducible Hamiltonian, TRS TU , PHS CU and SLS SU are unique (if present)

To see this, assume TU1
and TU2

were two different time-reversal symmetries:�
TU1

;H
�
D 0 and

�
TU2

;H
�
D 0 (6.11)
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Then QU WD TU1
TU2
D U1U

�
2 is a unitary symmetry ofH :�
QU ;H

�
D 0

H irreducible
HHHHHHH) QU D ei�1 ; (6.12)

and therefore TU1
D U1K D ei�U

��
2 K / T �1

U2
. So we can replace TU1

by TU2
or vice versa.

The same argument applies to PHS and similarly to SLS.

5 | Sublattice symmetry:

As already mentioned previously in Sections 4.1 and 5.3:

S D T ı C D UTU
�
C unitary operator with (w.l.o.g.) S2

D C1 (6.13)

One the many-body level: S D T ı C .

In particular:

TRS: ŒT;H� D 0

PHS: fC;H g D 0

)
)

º
fS;H g D 0 (6.14)

! C cannot be eliminated in favor of T since S is not a unitary symmetry
(but a pseudosymmetry)

¡! This means that despite “factoring out” all unitary symmetries of the SP HamiltonianH , there
can still be a unitary PHS symmetry C of the MB Hamiltonian OH left because (1) C is antiunitary
on the SP level and (2) S D T ı C is a pseudosymmetry on the SP level.

! Keep T , C , and S

6 | The “Tenfold way”:

Eq. (6.14)! (here T;C; S are used in their function as labels)

.T ¤ 0 _ C ¤ 0/ ) S D jTC j (6.15a)

but: T D 0 D C )

(
either S D 0

or S D 1
(6.15b)

This is easy to understand: If T and/or C are present, the relation S D T ı C determines the
absence/presence of S automatically. Only if both T and C are absent, the absence/presence of
S is not determined. (Note that T ı C can be a symmetry even if T and C are not symmetries
separately!)
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! 3 � 3C 1 D 10 symmetry classes:

Remember: We encountered the classes AI, D and BDI before; the Kane-Mele model belonged to
AII and the Chern insulator to A.

As mentioned before, the names of the classes go back to the mathematician Élie Cartan who
assigned them to so called (large) symmetric spaces (of compact type); in the present context, the labels
are typically taken“as is” without assigning any deeper meaning to them. The order in the above
table seems arbitrary but is actually not – this will become clear later.

6.2. The periodic table of topological insulators and
superconductors

We are finally prepared to fit all our discussed topological models into a single classification scheme:

7 | ^ Gapped HamiltoniansH of class X in dimension d

Question: How to label the topological phases that can be realized by these systems?

Note that a specific systemH in Xmay have additional symmetries (both unitary and antiunitary).
However, the classification below does not rely on these symmetries, so that they can be broken by
perturbations without leaving the phase.

8 | Answer:
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Periodic table of topological insulators & superconductors:

The entries denote the classification of topological phases. 0means“no TPs possible.” Z means
that there is an infinite number of different TPs labeled by an integer etc.

! In every dimension, 5 out of 10 symmetry classes support TPs!

• The classification is referred to as “periodic table” because of its periodic structure for
d D 0; 1; : : : where the period for the “complex” classes is 2 and for the “real” classes 8.

• There are several equivalent ways to derive this table (and its periodicity), none of which is
trivial. We will sketch one of the approaches below.

These methods were developed around 2008–2009 by different researchers [56, 57, 122].

• In case you wonder about the column for d D 0: One should think of these systems as “blobs”
without spatial structure. Mathematically, this column follows naturally and is not really
special (actually, it is simpler because the constraints on the Hamiltonians are easier to
implement). The Brillouin zone is simply T 0 (which is a point). The origin of the Z index
for symmetry class A is easy to understand: Let the gap of the system be at zero energy.
Then Z corresponds to the number of negative energy states of the SP Hamiltonian (i.e., the
ones filled in the many-body ground state). Note that one cannot change this number by
continuously deforming the Hamiltonian (matrix) without crossing the gap with an eigenergy
(which violates the gap constraint).

9 | Recipe:

If one studies a particular model (specified by a SP HamiltonianH ) and wants to find out whether
any of its phases are topological, the standard procedure goes as follows:

i | Check whether the SP HamiltonianH features TRS, PHS, and/or SLS and (if so)
whether TRS/PHS square to˙1.

! .T; C; S/! Class X

ii | Use the periodic table above to check whether X supports topological phases in the
spatial dimension d of the given system.
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iii | Look up the associated topological invariant I for .X; d / in Ref. [122].

iv | Compute I D I ŒH� as a function of the control parameters of the system and
check whether it non-zero in (some of ) the phases.

Without knowing about the periodic table and the systematic approach of Ref. [122] to construct
topological invariants, we nevertheless succeeded for the Chern insulator (Class A) with the Chern
number, the Kane-Mele model (Class AII) with the Pfaffian index, the SSH chain (Class AIII) with
the winding number, and the Majorana chain (Class D) with the Z2-index constructed from the
BdG-Hamiltonian,.

Note: The symmetry classes are not exclusive. E.g., every system in classBDI can also be considered
a member of the classesAI,D, orAIII. We encountered this ambiguity for theMajorana chain which
generically is considered a representative of D even if the “clean”Majorana chain Hamiltonian
does not break TRS. In this situation, TRS is considered an“accidental” symmetry that one does
not want to rely on. If, however, one considers the Majorana chain a representative of BDI, TRS
becomes a crucial symmetry that must not be broken. This may seem arbitrary but is perfectly
valid as the choice of a protecting symmetry essentially specifies which perturbations we consider
allowed and which forbidden. This situation is typical for all SPT phases as they do not have
intrinsic topological order (recall our discussion of SPTs in ← Section 0.5). In → Section 6.4 we
discuss stacks of Majorana chains where this concept should become clear.

6.3. Frameworks for classification

There are different frameworks that can be used to derive the periodic table above. Unfortunately, none of
them is straightforward and all of them make heavy use of highly non-trivial physical and/or mathematical
facts. A deep study of any of these approaches would easily fill its own course, so we keep it simple and
sketch only one of the approaches exemplarily:

• Anderson localization on the boundary (Details: ↑ Refs. [56, 122])

Rationale: Study field theories (↑ non-linear sigma models) that describe the boundary of the system
and determine when they retain delocalized states in the presence of disorder (i.e., whether they
avoid ↑ Anderson localization). Mathematically, this happens if certain topological terms can be
added to the action; the existence (and properties) of these terms depends on X and d and provides
the periodic table.

• Quantum anomalies on the boundary (Details: ↑ Ref. [181])

Rationale: Study↑ anomalous field theories that can emerge as effective descriptions on the boundaries
of the system (this approach relates to the one based on Anderson localization above). To cite
Ludwig [92]:

“[The approach] relies on the notion that the boundary of a topological insulator (superconductor) cannot
exist as an isolated system in its own dimensionality. Rather it must always be attached to a higher
dimensional bulk.”

We encountered such an anomaly before when we discussed the IQHE and realized that its chiral
edge modes are in conflict with the ← Nielsen-Ninomiya theorem. These edge modes can only be
consistently formulated on the boundary of a two-dimensional bulk.

• K-Theory: (Details: ↑ Ref. [57])

In contrast to the other two frameworks which (1) do not require translational invariance, and
(2) focus on the boundary of the system, the K-theory approach pioneered by Kitaev assumes
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translational invariance and describes the bulk of the system. Let us briefly sketch the rationale of
this (very mathematical) approach to get a feeling how the classification problem can be tackled on
a very high level:

↑ (Topological)K-theory is a very generalmathematical framework that is used to study vector bundles
over topological spaces. It goes back to the influential 20th-century mathematicianAlexander
Grothendieck. In its application to classify topological phases, the topological base space is
essentially the Brillouin torus and the system/Hamiltonian is described by a (potentially non-trivial)
vector bundle over this space. Before its application to topological phases, K-theory had already
found applications in string theory.

1 | ^ Gapped (translation invariant) system with n filled (m empty) bands

described by Bloch HamiltonianH.k/

2 | Spectral flattening:

In this first step, we simplify the Hamiltonian without leaving the quantum phase to classify:

H.k/
Continuous deformation
��������������! H.k/ (6.16a)

with �.H.k// D .�1; : : : ;�1„ ƒ‚ …
n filled bands

;C1; : : : ;C1„ ƒ‚ …
m empty bands

/ (6.16b)

�.A/ denotes the spectrum (eigenvalues) of the operator A.

3 | ^ Simplest case: Class A!

(Hence we do not have to implement any symmetry constraint in the following.)

H.k/ D U.k/

�
1m 0

0 �1n

�
„ ƒ‚ …

X

U�.k/ with U.k/ 2 U.mC n/ (6.17)

U.mC n/ is the matrix group of unitary .mC n/ � .mC n/-matrices.

4 | “Gauge symmetry”:

The decomposition in Eq. (6.17) is not unique:

U � U0
W, U D U0

�

�
U1 0

0 U2

�
for U1 2 U.m/; U2 2 U.n/ (6.18)

since then

H.k/ D U.k/X U�.k/ D U0.k/X U0�.k/ (6.19)

That is, the H-encoding unitary U is only defined up to unitaries from U.m/ � U.n/.

!

H W T d
3 k 7! H.k/ ¶ ŒU.k/�� 2

U.mC n/

U.m/ � U.n/
D Gm;nCm.C/ (6.20)

Gm;nCm.C/: ↑ complex Grassmannian

In mathematics, Grassmannians are differentiable manifolds that parametrize the set of
m-dimensional linear subspaces of an nCm-dimensional vector space. The concept was
introduced by mathematicianHermann Grassmann in the 19th century.
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! Gm;nCm.C/ is the ⁂ classifying space C0 for symmetry class A
(and one of Cartan’s symmetric spaces, which is where the label “A” comes from)

This statement is not completely correct, actually it is

C0 D

[
k2Z

lim
s!1

U.2s/

U.s C k/ � U.s � k/
' lim

n;m!1

U.mC n/

U.m/ � U.n/
� Z : (6.21)

The idea behind this is that SP Hamiltonians of different sizes should be comparable (and the
classification should not depend on system-specific parameters likem and n). In particular,
for systems with d > 0 it should not matter whether one adds additional trivial bands to the
system (like those from closed atomic shells). This leads to the concept of ↑ stable equivalence
which has its counterpart in K-theory where one considers vector bundles modulo trivial
bundles.

5 | Classifying spaces:

Similar arguments [taking the constraints (6.1) imposed by symmetries on the SPHamiltonian
into account] lead to the following table of classifying spaces:

– Sp.n/ denotes the compact symplectic group which is the analog of the unitary groupU.n/
if one replaces the field C by quaternions H.

– The distinction between the two complex classes A and AIII and the remaining eight real
classes follows from the reality constraints (that is, the constraint on the SPHamiltonian
includes a complex conjugate) on the Hamiltonians for real classes, and the missing
of such for complex classes. On the mathematical level, this leads to the distinction
between complex and real vector bundles and henceforth complex and realK-theory
with classifying spaces Cq (q mod 2) andRq (q mod 8), respectively.
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