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↓ Lecture 17 [26.06.25]

7 | Quantum error correction (QEC) protocol:

QEC protocols are classically controlled algorithms (no Hamiltonian dynamics!) with the goal to
systematically remove errors from quantum systems to protect quantum information. Their job is
to “pump entropy” out of the system.

^ Encoded qubit:

j‰0i D ˛j0i C ˇj1i 2 C (5.57)

˛; ˇ 2 C: Logical amplitudes (this is the information we want to protect!)

i | Assume that since initialization in j‰0i, a few elementary errors occurred on randompositions
of the chain:

j‰0i
Unknown errors

������������!
on sites with xj D 1

j Q‰0i D

Y
j

.Ej /
xj

„ ƒ‚ …
�E.x/

j‰0i … C (5.58)

x D .x1; : : : ; xL/ 2 f0; 1gL: unknown error pattern

Our goal is to figure out if and where errors occurred so that we can remove them before they
have the chance to accumulate and destroy the encoded qubit [like in Eq. (5.56)].

Due to the errors, the state above is no longer in the code space: j Q‰0i … C . [In condensed
matter parlance, it is no longer a ground state of Eq. (5.50) but an excited state.] Note,
however, that the amplitudes ˛ and ˇ are still hidden in j Q‰0i! The problem is that they were
“shuffled around” in an unknown way because of the error operations…

ii | Observation: SkEj D �EjSk if k D j � 1 or k D j

This follows from Eq. (5.34) and the fact that adjacent errors and syndromes share a single
Majorana fermion.

! Measuring Sk yields information (negative eigenvalues) about the locations of errors!

! Measure all stabilizers Sj :

! ⁂ Error syndrome s D .s1; : : : ; sL�1/ 2 f˙1gL�1

¡! Since S2
j D 1 this yields one bit sj D ˙1 of information per stabilizer generator. It is

crucial that [due to Eq. (5.55)] these measurements cannot destroy the encoded qubit [i.e.,
they cannot reveal the amplitudes ˛ and ˇ in Eq. (5.57)].

Question: Can we use s to compute x?

If we knew the error pattern x, we could simply undo the (unitary) error operatorsEj and
recover the state j‰0i. The hitch is that we don’t know x (that’s what errors are, after all!).
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iii | Decoding algorithm:

A decoding algorithm is a classical algorithm that tries to guess the actual error pattern based
on the syndrome information:

Syndrome s
Decoding
�����! Predicted error pattern x‹

D D.s/ (5.59)

D : (Classical) decoding algorithm (to be constructed)

• ¡! Note that D W f˙1gL�1 ! f0; 1gL cannot be surjective because there are onlyL� 1

bits of syndrome data butL bits in an error pattern. This immediately tells us that there
must be error patterns that the decoder cannot predict because they give rise to the same
syndrome data. Hence there must be situations (= error patterns) where the decoder
fails and the encoded quantum information is lost. This is not bad luck but intrinsic to
any quantum error correction protocol. (Because physical errors can always conspire to
act as a logical operation that one cannot detect without destroying the encoded qubit.)

• This can be seen from Eq. (5.56) were we showed that the error pattern x D .1; : : : ; 1/

leads to a logical †´ operation. But Œ†´; Sj � D 0 for all j D 1; : : : ; L � 1 so that
syndrome measurements cannot detect this type of error: s.†´/ D .C1; : : : ;C1/.
[Had no error occurred, the syndrome would be the same: s.1/ D .C1; : : : ;C1/.]
A decoder has to make a decision whether to decode s D .C1; : : : ;C1/ to x‹ D

.0; : : : ; 0/ or x‹ D .1; : : : ; 1/ (if errors are rare, the first choice is the better one!). In
any case, there will be situations where the decoder chooses wrong and fails to predict
the actual error string: x‹ ¤ x.

So which decoding algorithm should be pick for our “Majorana chain quantum code”?

For a given quantum code, there are many possible decoding algorithms. Which one to pick
depends on many factors: the probability distribution of errors, how efficient the algorithm
runs (on classical hardware), and, most importantly, its ↑ threshold (the microscopic error
rate that must be reached for the QEC scheme to become useful).

Suggestion: “Majority voting” Dmaj:

Step 1: Construct the (only) two error patterns x‹
1 and x‹

2 consistent with the given syndrome s:

¡! Note that syndromes adjacent to two errors yield C1 when measured as they anticom-
mute twice and the minus cancels. This means that syndrome measurements detect
boundaries of error chains.

Step 2: Return the pattern with fewer errors:
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• The rationale of this coice is that for low error probabilities (actually: p < 0:5) the error
pattern with the smaller number of errors is the more likely one.

• Dmaj is provably optimal for the Majorana chain quantum code if syndrome measure-
ments are perfect (it is the so called ↑ maximum-likelihood decoder).

iv | Apply corrective operations:

As a last step, we apply the inverse error operations on the locations predicted by x‹ (since
here errors are Hermitian, it isE�1

j D E
�
j D Ej ):

j Q‰0i
Apply corrections
����������!

= Undo errors
E�1.x‹/j Q‰0i (5.60a)

D E�1.x‹/E.x/j‰0i (5.60b)

D E.x‹
˚ x/j‰0i (5.60c)8<:

x‹Dx
D j‰0i ! Success 3 ,

x‹D Nx
D
5.56

�†´j‰0i ! Failure 7 /
(5.60d)

Here Nx denotes the comlementary pattern obtained from x by exchanging 0 $ 1, and ˚

denotes bit-wise modulo-2 addition, i.e., Nx ˚ x D .1; 1; : : : ; 1/.

• ¡! Note that the quantum memory controller does not know whether the correction was
successful or not. Otherwise, it could have applied the “correct correction” in the first
place. A failed QEC cycle therefore leads to a “silent” logical operation on the encoded
qubit which (most likely) screws up the quantum algorithm that follows.

• If the decoding is successful, the QEC protocol gains at no point knowledge about the
encoded amplitudes ˛ and ˇ. That this is possible in principle was the seminal insight
by Peter Shor in 1995 [148]. It is one of the foundations upon which the promise of
scalable quantum computing rests (and, by know, several billions of market cap).

• In reality, it is often more convenient to compute and accumulate all correction strings
and adapt only the final read-out stage of the quantum circuit (or apply the corrections in
classical post-processing). If possible, this is advantageous because applying corrective
unitaries takes time and can introduce new errors.

Together, these four steps make up a ⁂ quantum error correction cycle and are repeated
periodically (in the range of microseconds to milliseconds) to ensure that the number of
errors accumulated between consecutive correction cycles remains small (which is necessary
for the decoder to function properly).

This means in particular that the decoding algorithm must be computationally efficient. This
becomes a formidable task for larger and more complicated quantum error correction codes
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(like the → toric code), and explains why quite a lot of effort is put into making decoders both
better at guessing x and doing so quickly and without much classical overhead [149].

8 | This procedure hints at a much more general recipe to construct quantum error correction codes:

^ Topologically ordered phase of matter:

Robustly degenerate ground state space ! Code space

Excitations of Hamiltonian ! Errors

Local Hermitian terms in Hamiltonian ! Syndrome observables

! ⁂ Topological Quantum Error Correction (TQEC)

We will study a two-dimensional topological quantum code that does not rely on fermion parity as
a symmetry in ?? (→ toric code).

The concept of TQECbelongs to the fascinating intersection of condensedmatter physics, topology,
and quantum information theory teased in the Venn diagram of Section 0.2.

9 | Comments:

• Pairs of chains:

Recall that we assumed the logical operators†x and†y to be forbidded as physical errors
due to fermionic parity symmetry (which might or might not be a good assumption in a
particular setting). But if parity-violating unitaries cannot be physically realized, then we as
operators should also not be capable of these operations! We can’t have our cake and eat it
too!

So in an“honest” setting with fermion parity symmetry, we should implement all logical
operators as parity-symmetric operators as well. The trick is to encode a single logical qubit
not in one but in a pair of chains, e.g., by associating the negative parity of both to j0i and
postive parity of both to j1i:

Importantly, the total fermion parity of the system is now fixed (even, in this case) and does
not have to be changed when flipping the qubit state. To make sure that no logical operators
are affected by errors, we must now completely rely on the locality argument. This means in
particular, that “storage mode” is achieved by moving the endpoints of all chains far apart
from each other to prevent local (parity-preserving) operators from coupling them (as shown
above).

Logical operators can then be applied by moving two enpoints close together and applying
(or measuring) a parity-symmetric (!) product of two Majorana modes:
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Crucially, the application of †x / a
1 

b
1 (which essentially tunnels fermions from one chain

to the other) does not violate fermion parity but switches the “subsystem parities” of the
two chains (thereby flipping the logical qubit). (Note that applying a local pair of Majoranas
between the two chains away from the endpoints creates quasiparticle excitations in both
chains – which can be detected by syndrome measurements.) Encoding qubits in the sub-
parities of multiple chains is the basic principle of Majorana-based quantum computing
architectures [147, 150, 151].

• Imperfect stabilizer measurements:

In a realistic setup, there is noise everywhere, in particular, the syndrome measurements
themselves are not always correct: Sometimes ameasurement might return sj D �1, although
no error occurred on the chain. Conversely, a measurement might miss an actual error and
return sj D C1. Projective measurements in a quantum experiment always come with a rate
that quantifies how noisy they are (and this rate is non-zero)!

As we will see now, this is not just a minor inconvenience that can be“abstracted away.” That
one must take these additional errors into account can be seen from the following process
that is triggered by only two errors (one on the chain and one affecting the syndrome). Most
importantly, the process (and therefore its probability) is independent of the length of the
chain:

The crucial point is that a single faulty syndrome measurement can trick our decoder into
applying an extensive number of artificial errors (“corrections”). A single true error is then
enough to tip the scales and destroy the encoded information.

Every realistic quantum error correction protocol must be designed to withstand noise not
only on the quantum code itself but also on the syndrome measurement routine. To achieve
this, one can employ decoding algorithms that operate on“spacetime” by taking into account
not only the current pattern of syndromes but also their history:
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For theMajorana chain code, it is convenient to draw a square lattice in spacetime where syn-
drome measurements are associated to vertical edges and sj D �1 outcomes are highlighted.
Next, one identifies the endpoints of these highlighted paths (orange above). To reconstruct
the (unknown) error pattern (now including both errors on the quantum code and faulty
stabilizer measurements), the decoder performs a procedure called ↑ minimum-weight perfect
matching (MWPM) [152, 153]. The idea is to connect all endpoints pairwise (via paths that
can include horizontal and vertical edges and can terminate on the boundaries) such that
no endpoints remain unpaired (this is the “perfect matching”). Every path is assigned a
“weight” computed from the probabilities of errors and faulty stabilizer measurements, such
that smaller weights correspond to more likely paths (for low error probabilities, these are
typically the shortest paths). The perfectmatchingwith the smallest total weight (“minimum-
weight”) is then selected and used to guess the errors that occurred: every horizontal line
traversed by the paths that connect the endpoints corresponds to an error that occurred, and
every vertical line to a faulty stabilizer measurement.

A similar approach can be used to decode two-dimensional topological codes like the → toric
code [154–156] (the spacetime pattern is then three-dimensional). Note that the MWPM
decoder sketched above is no longer the maximum-likelihood decoder [157, 158], i.e., it does
not necessarily construct the corrective operations that are most likely correct (this is not
obvious).

• The Majorana chain can be mapped via a → Jordan-Wigner transformation from fermions
to spins (→ Problemset 8). This elucidates its relation to the ← transverse-field Ising model
discussed in Section 0.3. On the level of quantum codes [and in the language of stabilizers,
Eq. (5.51)] this mapping yields a degenerate version of the → toric code (on a lattice of size
L � 1) [149], which is not a quantum- but a classical memory (a ↑ repetition code). The
Majorana chain code is therefore a “topological quantum memory with caveats:” One type
of error (phase errors) are kept in check due to the locality structure of the code – this is the
hallmark of topological quantum codes. By contrast, the other type of errors (bit-flip errors)
cannot be corrected. In the“spin-world” of the toric code, this cannot be argued away and
one is left with a classical error correction code. In the “fermion world” of the Majorana
chain, one can – on purely physical grounds – argue that such errors violate fermion parity
symmetry and are therefore suppressed. True topological quantum codes (like the toric
code) do not rely on such symmetry-protection arguments. The price to pay is that such
codes are at least two-dimensional (because there is no topological order in one-dimensional
spin systems [6]).

• Starting fromMajorana fermions, one can construct more general quantum error correction
codes called ↑ Majorana fermion codes [159].

• The concepts we explored suggest an intriguing possibility: TheMajorana chain Hamiltonian
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Eq. (5.50) is a quantum phase with a ground state manifold that has the properties of a
quantum error correction code! The local terms in the Hamiltonian correspond to syndrome
operators, and a non-trivial syndrome (indicating the presence of an error) corresponds to an
excitation of this Hamiltonian. This motivates the following question:

Can we suppress errors energetically (by lowering the temperature)
instead of applying active error corrections (by a classical decoding algorithm)?

AHamiltonian with these properties is called a ↑ self-correcting quantum memory. Unfortu-
nately, the Majorana chain is not self-correcting for the same reason the one-dimensional
classical Ising model has no phase transition at finite temperatures: While the initial creation
of an error indeed costs energy, its subsequent movement is not energetically penalized (in
the classical Ising model, the creation of a domain wall costs energy, but its proliferation
through the chain does not). This mechanism prevents a thermodynamically stable phase
at finite temperature in which the quantum information encoded in the thermal Gibbs state
� D e�ˇH=Z (density matrix!) would survive exponentially long in the system size.

The quest for finding a truly self-correcting system in three spatial dimensions or less is
an active area of research. For example, it is known that a wide class of systems based on
stabilizer codes (under some additional constraints) cannot be self-correcting [160, 161] (due
to the presence of point-like excitations). There are interesting proposals with partially
self-correcting properties [162, 163]; however, to the best of my knowledge, all of them have
some drawbacks and do not qualify as true self-correcting systems.

Fun fact: In four spatial dimensions, a self-correcting quantum memory is known to exist,
namely the 4D generalization of the toric code [164]. The problem is that our world is not
four dimensional/.

• Braiding in wire networks:

Majorana modes located at extrinsic defects can exhibit → non-abelian anyonic statistics (so
called ↑ (projective) Ising anyons [165, 166]). Note that these are not quasiparticle excitations
but high-energy deformations of the Hamiltonian! As we have seen in this chapter, Majorana
modes naturally occur on the endpoints of p-wave superconducting wires (they can also
appear in the vortices of two-dimensional px C ipy superconductors [167]).

Measuring the parity of a fermion mode given by two Majorana modes (recall†´ / 2L1)
can then be interpreted as the ↑ fusion of two“Ising anyons.” The non-abelian nature of these
anyons is reflected in the fact that there are two consistent outcomes of this measurement:
the fermion mode can be empty or occupied. Formally, one writes � � � D 1C‰ where �
denotes an Ising anyon (realized by a Majorana mode), 1 corresponds to an empty fermion
mode and‰ to an occupied fermion mode.

It turns out that moving Ising anyons adiabatically (= slowly) around each other effects
non-trivial unitary operations on the degenerate subspace that encodes the different fusion
outcomes. This process is called ↑ braiding and can be used to manipulate the encoded
qubits (like the ones in our Majorana chain quantum code) without decoding them. This is the
rationale of → topological quantum computation, an intrinsically robust quantum computing
architecture.

But how can one braid the Majorana modes at the endpoints of Majorana chains around each
other? The idea is to use wire networks with locally tunable chemical potentials (by applying
local gate voltages) [150]. By tuning the chemical potential, one can make segments of the
wire network topological, while other parts remain in the trivial phase [recall Eq. (5.22)].
The boundaries between topological and trivial segments then host Majorana modes that can
be shuffled around by changing the local gate voltages. If one adds T-junctions to connect
these wires, one can start braiding Majorana modes around each other:
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This is the basic idea behind a Majorana-based topological quantum computer. However,
there are two caveats to be aware of: First, the braiding rules of Ising anyons cannot realize a
universal gate set [168] so that one needs additional (non-topological) gates to construct a
full-fledged quantum computer. And second, from an engineering perspective, it is simpler
to replace the dynamical braiding by meticulously designed sequences of projective mea-
surements [147, 169]; this architecture is known as ↑ measurement-based topological quantum
computing and is actively pursued by Microsoft [151].

5.7. ‡ Experiments

• The first evidence for Majorana zero modes at the boundaries of quantum wires was reported in
2012 by Mourik et al. [141]. They fabricated a semiconducting nanowire with strong spin-orbit
coupling that opens a band gap when a magnetic field is applied (to enter a “spinless” regime).
This nanowire is then coupled to a normal s-wave superconductor which induces effective p-wave
pairing in the nanowire [170, 171]. The emergence of zero-energy Majorana modes can than be
probed by ↑ tunnel spectroscopy. These results were later substantiated by many follow-up studies
(e.g. [172, 173]), see also Ref. [174] for a review.

Characterizing the topological nature of Majorana zero modes is notoriosly difficult because their
signatures are ofthen hard to distinguish from non-topological phenomena. This has lead to several
controversial reports, including complete retractions of papers [142].

• As discussed in Section 5.6, Majorana chains can in principle be used as quantum memories.
Beyond that, “braiding”Majorana zero modes (either by adiabatically moving them around each
other or projectively measuring them) can be used to affect unitary gates on the encoded qubits
(these unitaries are not universal, though). This led to proposals forMajorana-chain based quantum
computing architectures [147, 150] which are actively pursued by Microsoft’s quantum computing
division. In 2025, first experimental results of parity measurements of Majorana qubits were
reported [151] – and immediately criticized as unreliable [175].

The future will tell whetherMajoranamodes are a feasible approach to build a quantum computer…
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