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↓ Lecture 16 [20.06.25]

v | Conclusion for the Majorana chain:

The Z2-index classifies the phase for 2jwj < j�j as trivial and 2jwj > j�j as topological:

!

Phase A: 2jwj > j�j ! topological

Phase B: 2jwj < j�j ! trivial

(5.29)

In his original paper [139], Kitaev classified the two phases differently (using the Pfaffian to distin-
guish two classes of quadratic fermion Hamiltonians). The classification presented here, based
on the BdG Hamiltonian, is conceptually very different. However, it can be shown that the two
approaches lead to the same notion of trivial and topological phases [144].

We could be satisfied at this point, but there is actually more to be learned if we combine both PHS
and TRS…

10 | ^ PHS & TRS:

i | As argued above, PHS is intrinsic to the form of the BdG Hamiltonian (it cannot be broken).
Furthermore, for an open chain we can always find a TRS representation by gauging away
complex phases. Hence it is reasonable to consider the situation where both symmetries are
preserved.

^ TRS with QT 2 D C1 and PHS with QC 2 D C1

! ⁂ Symmetry class BDI [→ ??]

ii | Eqs. (5.26) and (5.28) ! Constraints on the BdG vector:

dx.�k/ D 0 (5.30a)

dy.�k/ D �dy.k/ (5.30b)

d´.�k/ D d´.k/ (5.30c)

! Still Ed.k/ on EBZ Œ0; �� determinesHBdG.k/ completely

iii | Image Od.EBZ/ on S2 …

• … is constrained to the great circle with dx D 0

• … and must start & end either on “north” or “south pole”:
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! Infinitely many topologically distinct classes of paths
(distinguished by their winding number)

! Infinitely many topological phases possible ! Z-index

iv | Boldly generalizing these findings, we could hypothesize:

In 1D, systems of class BDI allow for many TPs labeled by a Z-index.

Again, this is true in general; → ?? on the classification of topological insulators & supercon-
ductors.

v | Conclusion for the Majorana chain:

Although TRS is not useful on its own, in combination with PHS it boosts the Z2-index of
D to a Z-index of BDI. For a single Majorana chain, this has the only benefit that we can
user either the topological index of D or the winding number of BDI to characterize the
topological phase; in this situation, they are equivalent. This is different if one considers
stacks of multiple parallel Majorana chains, where one can create infinitely many different
SPT phases when TRS is present (BDI) but only one if it is broken (D).

On → Problemset 8 you study stacks of time-reversal symmetric Majorana chains in class
BDI. There you show that interactions modify the Z-index constructed here to a Z8-index
(see also → ??).

vi | Final note: For the SP Hamiltonian having PHS and TRS means:

PHS: UCH
�U

�
C

5.1b
D �H (5.31a)

TRS: UTH
�U

�
T

2.31b
D CH (5.31b)

which implies

USHU
�
S D �H with US D UTU

�
C (5.32)

! Sublattice symmetry [Eq. (4.4)]

This is true in general and will be important → later (??).

5.4. Majorana fermions

Why do we call the Majorana chain “Majorana chain” in the first place?

To answer this, we need a bit of algebra. As a bonus, we will find an unexpected relation between the
Majorana chain and the SSH chain discussed in Chapter 4:
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11 | ^ Set of fermion L operators fc1; c2; : : : ; cLg and define 2L⁂ Majorana operators


2i�1 D ci C c
�
i and 
2i D i.c

�
i � ci / (5.33)

! There are two Majorana operators per fermion mode.

12 |
ı
�! Properties:


�
n D 
n and f
n; 
mg D 2ınm for n;m 2 f1; : : : ; 2Lg (5.34)

• Up to a normalization, Majorana fermions behave like self-adjoint or real fermions. The
name originates from a similar concept in high-energy physics due to Ettore Majorana
(namely, real-valued solutions of the Dirac equation in Majorana representation). In con-
densed matter physics, however, the properties Eq. (5.34) should be seen as the defining
relations of Majorana operators.

• While the 
n describe “real” (Majorana) fermions, the ci describe “complex” (Dirac)
fermions. Eq. (5.33) demonstrates that the two Majoranas 
2i�1 and 
2i can be thought of
as the “real” and“imaginary part” of the complex fermion ci .

• We stress that Majorana fermions are not → anyons, they are fermionic quasiparticles (as
the name clearly states); only → Majorana zero modes can make their hosts (like vortices
in 2D px C ipy-superconductors) behave like anyons under adiabatic deformations of the
Hamiltonian.

13 | Pairs of Majoranas can be recombined to form a complex fermion:

ci
5.33
D

1
2
.
2i�1 C i
2i / and c

�
i

5.33
D

1
2
.
2i�1 � i
2i / (5.35)

Observation: We do not have to combine the original pairs of Majoranas! Actually, it is possible to
combine any pair of Majoranas to form a new fermion mode (→ below). This follows from Eq. (5.34)
which shows that all 2LMajorana modes “are made equal.”

14 | We can now rewrite the Majorana chain Hamiltonian in terms of Majorana operators:

Eqs. (5.6) and (5.35) !

OHMC $
i

2

L0X
iD1

Œ .�C w/ 
2i
2iC1 C .� � w/ 
2i�1
2iC2 � �
i

2

LX
iD1

�
2i�1
2i

(5.36)

¡! Note that the factors of i are needed for Hermiticity.

15 | ^ Special case � D w (this simplifies expressions but still allows us to access both phases)

! OHMC D �
�

2

LX
iD1

.i
2i�1
2i /C w

L0X
iD1

.i
2i
2iC1/ (5.37)

Remember that the choice� D w also simplified the Bogoliubov transformation [e.g. Eq. (5.18)].

! SSH-like dimerization:
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16 | Comparison to the SSH chain:

The connection to the SSH chain is more than superficial. If one identifies ��=2 $ t andw $ w

[where t and w are the alternating hopping amplitudes of the SSH chain, Eq. (4.10)], then the
gapless points coincide: j�j D 2jwj for the Majorana chain [Eq. (5.21)] and jt j D jwj for the SSH
chain [Section 4.3].

One can consider a hybrid model of Majorana and SSH chain and study their competing phases
on the same footing [145]. This approach is also didactically valuable as it contrasts the different
symmetries of the two models quite nicely.

5.5. Edge modes

Due to the SSH-like dimerization, we should again expect topologically protected zero-energy modes on the
boundary of an open Majorana chain (in the topological phase). As usual, it is most instructive to focus on
the fixpoints of the two phases with zero correlation length:

17 | ^ Trivial phase (Phase B):

Let w D � D 0 and � > 0
5.37
��!

OHMC D �
�

2

LX
iD1

.i
2i�1
2i /
5.33
D ��

LX
iD1

�
c

�
i ci �

1

2

�
(5.38)

! Pairing of Majorana modes on each site

! Unique ground state (with all physical fermion modes ci filled)

18 | Topological phase (Phase A):

Let w D � > 0 and � D 0
5.37
��!

OHMC D w

L0X
iD1

.i
2i
2iC1/
OBC
D w

L�1X
iD1

.i
2i
2iC1/ (5.39)

! Pairing of Majorana modes between adjacent sites

! Unique ground state for PBC but 2-fold degenerate ground state space for OBC

Let us try to understand the (claimed) degeneracy for OBC in more detail:

i | Define new fermion modes (i D 1; : : : ; L � 1):

ai WD
1
2
.
2i C i
2iC1/ and a

�
i D

1
2
.
2i � i
2iC1/ (5.40)

¡! Compare this pairing of Majorana modes with Eq. (5.35).

Check that these are indeed fermions: fai ; a
�
j g D ıij .

Eq. (5.39)
ı
�!

OHMC D 2w

L�1X
iD1

�
a

�
i ai �

1

2

�
(5.41)
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ii | Observation: There is One fermion mode missing!

Note that 
1 and 
2L do not show up in Eq. (5.39), so we can use them to construct another
fermion mode:

e WD
1
2
.
2L C i
1/ and e�

D
1
2
.
2L � i
1/ (5.42)

Note that the L � 1modes ai together with e obey the algebra of L fermionic modes, e.g.,
fe; e�g D 1 and fe; ai g D 0.

! One fermionic edge mode

Indeed, e describes a single fermion delocalized between the two endpoints of the chain:

e
5.33
D

i

2

�
c

�
L � cL„ ƒ‚ …

Right edge

C c
�
1 C c1„ ƒ‚ …
Left edge

�
(5.43)

iii | Ground states for OBC:

j�ni GS of OHMC , ai j�ni
Š

D 0 8 i D 1 : : : L � 1 (5.44)

Œ OHMC; e� D 0 ! Two ground states:

e�e j�0i D 0 j�0i„ ƒ‚ …
Edge mode empty

and e�e j�1i D 1 j�1i„ ƒ‚ …
Edge mode occupied

(5.45)

with j�1i D e�j�0i

e�e measures the occupancy of the edge mode.

19 | Comments:

• Comparison to the SSH chain:

Remember that the SSH chain also has edge modes (Section 4.6). However, these are
fermionic, i.e., the SSH chain (in the topological phase) has one independent (complex)
fermion on each edge. Consequently, the ground state degeneracy for an open chain is four-
fold. By contrast, theMajorana chain as aMajorana fermion per edge (and aMajorana fermion
can be thought of as “half” a fermion because it is the real/imaginary part of a complex
fermion). Both edges combined form a single (complex) fermion, so that the ground state
degeneracy is only two-fold.

• Many-body ground states (in detail):

As for the SSH chain, the two-fold degeneracy survives beyond the fixpoint for � D 0 as
long as j�j < 2jwj (up to finite-size effects). However, at the fixpoint, the two states j�0i

and j�1i have a particularly simple description that makes their condensate nature clear and
also explains the robustness of their degeneracy (↑ [126] for details):

j�0i /

X
nW jnj odd

jni and j�1i /

X
nW jnj even

jni (5.46)

with
jni � .c

�
1/

n1.c
�
2/

n2 : : : .c
�
L/

nL j0i (5.47)

and jnj the number of fermions in configuration n.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



FREE FERMIONS → THE MAJORANA CHAIN

143
PAGE

– The ground states are the equal-weight superposition of all fermion configurations with
a fixed parity, in particular, of fermion configurations with different particle number.
This is the man-body manifestation of the superconducting condensate (note that
hciciC1i ¤ 0 for j�ni).

– Locally, the states j�0i and j�1i“look” the same. They can only be distinguished by
a global measurement of the total fermion parity. To lift their degeneracy, one has to
add the term e�e to the Hamiltonian OHMC. But for an open chain, this operator is highly
non local [as can be seen from Eq. (5.43)].

This scenario, namely multiple orthogonal ground states that are indistinguishable by
local operators, is actually the hallmark of ← topological order (→ Part III).

– There is actually another way to lift the degeneracy. Note that 
1e D �e�
1 so that
j�1i D 
1j�0i, i.e., h�1j
1j�0i ¤ 0 so that the Hamiltonian OHMC C 
1 lifts the
degeneracy (recall that 
�

1 D 
1). In contrast to e�e, 
1 is localized on the left endpoint
of the chain. However, 
1 violates fermion parity and it is believed that in nature only
Hamiltonians that commute with the parity operator are realizable (this is known as
↑ parity superselection), so this modification is mathematically sound but physically
impossible (→ comment below).

• Classification and the role of symmetries:

The above arguments have shown that the degeneracy of j�0i and j�1i is actually very
robust and does not rely on any symmetry (note that this does not contradict the topological
classification of OHMC as part of symmetry classD because of the discussed tautological nature
of the PHS). Consequently, the topological phase of the Majorana chain is not an SPT phase
but a topologically ordered phase (of the invertible kind) [29,35,44]. This is in stark contrast
to the SSH chain which is an SPT phase protected by sublattice symmetry.

[Remember (Section 4.5) that we had no trouble connecting the two phases of the SSH
chain with a chemical potential that breaks SLS. You cannot do the same thing with a single
Majorana chain! (Try it!) However, you can connect the two phases with two parallel chains,
which demonstrates the invertibility of the topological order.]

• A note on fermion parity:

The statement that the Majorana chain does not require any symmetry is subtle. To see this,
one can check that the Majorana edge modes 
l D 
1 and 
r D 
2L act on the ground states
as follows:


l j�0i D j�1i and 
r j�0i D �i j�1i : (5.48)

Since these operators are Hermitian and can be constructed from local fermion modes,
we could add them to the Hamiltonian as a perturbation, e.g., QHMC D OHMC C 
l . This
perturbation lifts the degeneracy such that the ground state of QHMC is unique, namely j�1i �

j�0i. This is not surprising as 
l violates the fermion parity symmetry Z
f
2 D f1;P g.

So the Majorana chain is protected by a symmetry after all: fermion parity. However, this
“symmetry” should not be counted as a real symmetry but as an implicit feature of fermionic
Hamiltonians (for instance, quadratic Hamiltonians automatically commute with P ) due to
the following reason:

Assume that the Hermitian (and unitary) operators 
l and 
r were admissible observables
of the theory. Make the length L of the chain large and assume that Alice can measure

l D c1 C c

�
1 on the left endpoint while Bob can apply the unitary gate 
r D i.c

�
L � cL/

on the right endpoint. Define the basis jxi � j�1i C .�1/x j�0i and let the system be
initialized in the symmetric state jx D 0i so that Alice measures C1 with certainty. Now
Bob can send Alice a classical bit x 2 Z2 of information by flipping or not flipping this state
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with 
r :

.
r /
x

j0i /

(
j0i for x D 0

j1i for x D 1 :
(5.49)

This clearly violates causality since the bit x can be transmitted instantaneously over arbitrary
distances L; this really is a “spooky action at a distance” and should not be possible with
local measurements and operations. Therefore 
l and 
r are actually non-local operators,
despite their local appearance in terms of fermion modes!

The reason is that fermions are intrinsically non-local objects due to their statistics, and this
non-locality becomes relevant for operators that violate fermion parity. The upshot is that
the parity symmetry required for the Majorana chain (or any other fermion Hamiltonian) is a
logical consequence of locality – and not an additional symmetry constraint.

5.6. ‡ Application as topological quantummemory

Here we focused on the“condensed-matter side” of the Majorana chain (since this is a course on topolog-
ical quantum phases). However, the topological robustness of the ground state degeneracy suggests the
use of this system for quantum information storage (and processing):

1 | ^ Topological phase@� D 0 and � D w D 1 & Open boundary conditions:

OHMC D

L�1X
j D1

.i
2j 
2j C1/ � �

L�1X
j D1

Sj (5.50)

with ⁂ stabilizer generators Sj that satisfy�
Si ; Sj

�
D 0 ; S

�
j D Sj ; S2

j D 1 (5.51)

! ⁂ stabilizer group S WD hfS1; : : : ; SL�1gi

• Here h�i denotes the (abelian) group generated by �.

• You study the stabilizer formalism on → Problemset ?.

• The stabilizer generators Sj D �i
2j 
2j C1 $ .�1/
a

�

j
aj measure the parity of the quasipar-

ticle modes ai defined in Eq. (5.40).

2 | Ground state space of Eq. (5.50):

C D f j‰i 2 H j 8S 2 S W S j‰i D j‰i g D span fj�0i; j�1ig (5.52)

Here j�0i and j�1i denote the two degenerate many-body ground states introduced in Eq. (5.44)
and explicitly written in Eq. (5.46).

! dimC D 2 ! Use ground state space to store a qubit:

j0i � j�0i and j1i � j�1i (5.53)

! Ground state space C = ⁂ Code space

In quantum information theory, a code space is a linear subspace of a larger Hilbert space that is
used to encode quantum information.
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3 | Qubit = Representation of U.2/

A qubit is a two-dimensional representation of U.2/ which is generated by three Pauli matri-
ces †x ; †y ; †´ (and the identity †0) which satisfy †a†b D ıab1 C i"abc†

c and therefore
Œ†a; †b� D 2i"abc†

c .
ı
�! Pauli matrices acting on C :

†´
� �i
2L
1 $ .�1/e

�e with

(
†´

j0i D Cj0i

†´
j1i D �j1i

(5.54a)

†x
� 
2L D e�

C e

D i.c
�
L � cL/

with

(
†x

j0i D j1i

†x
j1i D j0i

(5.54b)

†y
� 
1 D i.e�

� e/

D c
�
1 C c1

with

(
†y

j0i D Ci j1i

†y
j1i D �i j0i

(5.54c)

! Satisfy all properties of Pauli matrices 3

Indeed, it is easy to check that .†a/� D †a and†a†b D ıab1 C i"abc†
c using the properties

Eq. (5.34) of Majorana operators.

The operators†a are called ⁂ logical operators as they operate on the encoded (= logical) qubit.
To emphasize this, we denote them by†a and not �a.

4 | Observation: �
†a; Sj

�
D 0 8a;j (5.55)

! Measuring Sj does not destroy the qubit encoded in C ,

This feature is crucial to combat errors (→ below).

5 | Error model:

We assume that random errors on the Majorana chain can be described by unitary operators with
the following properties:

• Local
This is a basic assumption of most error models: the environment acts locally on the system
that encodes quantum information (here the Majorana chain). Note that essentially all
Hamiltonians we study in physics have a locality structure.

• Parity-symmetric
In superconductors, fermionic parity is considered a natural symmetry that can be enforced
to high precision because fermions are created by breaking Cooper pairs (which costs energy).

This is not a fundamental symmetry and it can be violated by ↑ quasiparticle poisioning [146,
147].

• Rare & Uncorrelated
We assume that local errors happen independently of each other with a low probabilityp � 1

per site j D 1; : : : ; L and timestep (iid = independent and identically distributed). This is
often (but not always) a good approximation.

! Elementary (= physical) errors: Ej D �i
2j �1
2j (j D 1; : : : ; L)
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¡! Note that pairs shifted by a single site (�i
2j 
2j C1) are stabilizer operators that act trivially on
the code space [Eq. (5.52)]. If such an error occurs on a state j‰i 2 C it doesn’t do anything and
we can ignore it.

With Eq. (5.38) we can write elementary errors as Ej D 1 � 2c
�
j cj D .�1/nj . Measuring this

Hermitian operator therefore means that one observes whether a physical fermion site (mode) ci is
occupied or not. Unitarily applying this operator imprints phases on the many-body wave function
depending on the occupancy of the fermion modes.

6 | Logical errors induced by combinations of physical errors?

Logical errors are errors that affect the state of the logical qubit encoded in the codes space C .

• ^ Bit-flip errors: †x D 
2L or †y D 
1

Not parity-symmetric ! Cannot occur ,

• ^ Phase errors: †´ D �i
2L
1

Parity-symmetric but Non-local ! Cannot occur ,…

…except elementary errors accumulate:

LY
j D1

Ej„ƒ‚…
All errors

5.50
D �i
1

"
L�1Y
iD1

Si

#
„ ƒ‚ …

D1 on C


2L D �†´ / (5.56)

To prevent a logical phase error†´ due to a single elementary (physical) error, it is crucial that
the two endpoints of the chain are far apart from each other (otherwise†´ is not non-local
and therefore a permissible error!). However, sometimes one might need to measure (or
apply) the logical operator†´ (after all, we want to do quantum computing with the encoded
qubit). This means that the endpoints of the Majorana chain must be moved close to operate
on the encoded qubit, but must remain far apart when storing the qubit for future use:

Modifying the geometry to apply controlled unitary operations while suppressing unwanted
perturbations is a characteristic feature of → topological quantum memories and → topological
quantum computing.

! How can we prevent elementary errors from accumulating?

! Solution:
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