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↓ Lecture 15 [06.06.25]

5. Topological superconductors in 1D: The
Majorana Chain

5.1. Preliminaries: Particle-hole symmetry and mean-field
superconductors

Before we can discuss the Majorana chain – the paradigmatic model of a topological superconductor – we
first review a few important concepts needed for its description:

• Remember (← Section 4.1):

Particle-hole symmetry (PHS) CU :

The naming should be evident:
CU exchanges particles with holes (ci $ c

�
i ) up to a unitary transformation U .

CU iC
�1
U D Ci and CU ciC

�1
U D

X
j

U
��
ij c

�
j (5.1a)h

OH;CU

i
D 0 , UH�U �

D �H , fH; UK„ƒ‚…
CU

g D 0 (5.1b)

(The complex conjugate at the U is convention and not crucial.)

!

– Unitary symmetry on MB Hamiltonian

– Antiunitary pseudosymmetry on SP Hamiltonian

As a pseudosymmetry, CU D UK anticommutes with the SP Hamiltonian.

Of course, this symmetry will be crucial to define a new topological invariant.

• Remember (↓ your lecture on solid state physics):

BCS theory of superconductivity:

Until now, we only considered (topological) insulators, i.e., quadratic fermion theories with particle
number conservation. By contrast, the Majorana chain is a (topological) superconductor, where only
fermion parity survives as symmetry. Let us briefly review how these particle-number violating
terms emerge from a microscopic theory:

1 | ^ ⁂ BCS Hamiltonian: (BCS = Bardeen-Cooper-Schrieffer)

OHBCS D

X
k;�

."k � �/ c
�
k�
ck�„ ƒ‚ …

Free fermions

C

X
k;k0

Vkk0 c
�

k"
c

�

�k#
c�k0#ck0"„ ƒ‚ …

Pairing term (interaction)

(5.2)
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� 2 f";#g: fermion spin

�: chemical potential

"k: free fermion dispersion

Vkk0 : pairing potential

– Rationale: Superconductivity is a condensation mechanism that is triggered by attrac-
tive interactions Vkk0 (mediated by phonons) between fermions. The formation of
bosonic ↓ Cooper pairs then lowers the energy, the Cooper pairs condense and form the
superconducting condensate.

– Note that Eq. (5.2) is a theory of interacting fermions with particle-number conser-
vation. The symmetry group U.1/ is generated by the total particle number operator
N D

P
k;� c

�
k�ck� with Œ OHBCS; N � D 0. Due to the interactions, Eq. (5.2) cannot be

diagonalized exactly.

2 | The BCS Hamiltonian is interacting (= not quadratic) and therefore hard to study.

! ↓ Mean-field theory:

c
�

k"
c

�

�k#
D X�

k C .c
�

k"
c

�

�k#
�X�

k/ with X�
k D hc

�

k"
c

�

�k#
i (5.3a)

c�k0#ck0" D Xk0„ƒ‚…
Mean

C .c�k0#ck0" �Xk0/„ ƒ‚ …
Small fluctations ıXk0

with Xk D hc�k0#ck0"i (5.3b)

⁂ Cooper pair condensation ,Xk0 ¤ 0 and ıXk0 small

[The approximation c�

k"
c

�

�k#
D X�

k
� 1C ıXk means that we expect the ground state to be

(approximately) invariant under the application of c�

k"
c

�

�k#
(and similarly c�k#ck"). This

can only be true if the ground state is a superposition of states with all possible numbers of
fermions (with the same parity). Such a superposition is usually called a ⁂ condensate.]

! Drop terms of order O.ıX2
k0/ (and a constant offset):

OHmf
BCS $

X
k;�

."k � �/ c
�
k�
ck�„ ƒ‚ …

Free fermions

C

X
k

h
�k c

�

k"
c

�

�k#
C��

k c�k#ck"

i
„ ƒ‚ …

Quadratic pairing terms

(5.4)

with order parameter

�kD

X
k0

Vkk0Xk0 2 C (5.5)

Since here Cooper pairs are formed by fermions with total spin zero [Xk D hc�k0#ck0"i]
this is called ↓ s-wave superconductivity.

– ¡! OHmf
BCS is no longer particle-number conserving; only the fermion parity P D .�1/N

is conserved: Œ OHmf
BCS;P � D 0.

– The Z2 group generated by P is a subgroup of U.1/ generated byN , hence this is an
example of ← spontaneous symmetry breaking (Section 0.4), where the superconducting
condenstate breaks (global) particle-number conservation and only fermion parity sur-
vives. The Hamiltonian OHmf

BCS makes only sense as an effective mean-field description that
excludes the superconducting condensate from/into which pairs of electrons can be
transfered.
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[As mentioned in Section 0.5, the correct classification of the superconducting phase
is subtle [35]. When the fermions are charged and coupled to a dynamical gauge field,
the transition is not described by SSB but a topological phase transition [39, 40]. When
the fermions couple to a static (= background) gauge field, the transition is described by
spontaneous breaking of the global U.1/ symmetry. It is not correct (as one sometimes
hears) that the (local) gauge symmetry is broken spontaneously [135–138].]

– The benefit of the mean-field description OHmf
BCS of superconductivity is that the Hamil-

tonian is quadratic in fermions and therefore fits our current class of models (“non-
interacting fermions”).

In this section, we consider quadratic fermion Hamiltonians of the form (5.4) (i.e., with
superconducting pairing terms). We treat these models as fundamental, and ignore that
they actually arise from microscopic, interacting, particle-number conserving theories via
spontaneous symmetry breaking!

5.2. The Majorana chain

A detailed exposition of the Majorana chain is given in the textbook by Bernevig [1] but may also be found
in almost any other textbook that covers topological superconductors. Furthermore, the original paper by
Kitaev is worthwile to read [139]. There is also an introduction in my PhD thesis [126] (on which this
section is based) and a more detailed account in my Master thesis [140].

1 | ^ 1D superconductor of spinless fermions ci (= p-wave pairing):

OHMC WD �

L0X
iD1

�
w c

�
i ciC1 ��ciciC1 C h.c.

�
�

LX
iD1

�

�
c

�
i ci �

1

2

�
(5.6)

w 2 R: tunneling amplitude

� D ei� j�j 2 C: superconducting gap (� is the phase of the condensate)

� 2 R: chemical potential

L0 D L (PBC) or L0 D L � 1 (OBC)

• This is the mean-field theory (in real space!) of a “triplet superconductor” with p-wave
pairing, i.e., Cooper pairs consist of spin-polarized (and therefore effectively spinless) electrons
with total angular momentum of one.

Of course there are no true “spinless fermions” because of the ↑ spin-statistics theorem.
However, imagine you apply a strong magnetic field such that only fermions in spin-polarized
modes ci" are relevant for the low-energy physics (in particular: ground state). If only
operators like ci" show up in the (low-energy) Hamiltonian, one can drop the spin-index "

altogether: ci" 7! ci . This is what we mean by“spinless fermions.”

• ¡! We are interested in topological phase transitions between different superconducting phases
– and not in the superconducting phase transition itself (which is, as mentioned above,
described by spontaneous symmetry breaking). Therefore we do not determine the gap�
self-consistently (as done in BCS theory) but simply take it as a non-zero, translation invariant
parameter of the theory.
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• With a unitary transformation ci D e�i�=2c0
i one can remove the superconducting phase, so

that w.l.o.g. � D j�j is real. Note that since the system is one-dimensional, there cannot be
vortices in the superconducting condensate (= flux tubes).

• In one dimension, the ↑ Mermin-Wagner theorem forbids the spontaneous breaking of the
continuous U.1/ symmetry (particle-number conservation) that is responsible for the su-
perconducting phase. (Instead one finds a disordered phase known as a ↑ Luttinger liquid
with correlations that decay algebraically.) Thus one should think of the superconducting
terms in OHMC as being induced by the ↑ proximity effect of an attached three dimensional bulk
superconductor:

This is also (roughly) the setting used to study the Majorana chain in experiments [141]
(although there have been setbacks [142]).

2 | ^ PBC ! Fourier transform:

Qck D
1

p
L

LX
nD1

e�ikncn , cn D
1

p
L

X
k2BZ

eikn
Qck (5.7)

with k D
2�
L
m form D 0; : : : ; L � 1.

ı
�! (up to a constant)

OHMC D �

X
k2BZ

h
.2w cos k C �/ Qc

�

k
Qck C i� sin.k/ Qck Qc�k � i� sin.k/ Qc

�

�k
Qc
�

k

i
(5.8)

Note that because of the pairing terms, this Hamiltonian is not yet diagonal (despite there being
only a single mode per unit cell and no spin involved). To diagonalize it, we can use a trick:

3 | Bogoliubov-de Gennes Hamiltonian:

We expand the cosine term artificially (using an index substitution k 7! �k in the sum):

.2w cos k C �/ Qc
�

k
Qck 7!

1

2
Œ.2w cos k C �/ Qc

�

k
Qck C .2w cos k C �/ Qc

�

�k
Qc�k � (5.9)

!

OHMC D �
1

2

X
k2BZ

"
.2w cos k C �/ Qc

�

k
Qck C .2w cos k C �/ Qc

�

�k
Qc�k

C i2� sin.k/ Qck Qc�k � i2� sin.k/ Qc
�

�k
Qc
�

k

#
(5.10)

Introduce ⁂ Nambu spinors

‰k WD

 
Qck

Qc
�

�k

!
(5.11)

Note that the degrees of freedom described by the components of the Nambu spinor are not
independent but related by particle-hole symmetry. This is different from the introduction of other
pseudo-spinors in the situation of multiple DOFs per unit cell (like sublattices or internal DOFs).
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! Rewrite the Hamiltonian (up to a constant)

OHMC D
1

2

X
k2BZ

�
Qc
�

k
Qc�k

�
�

�
�2w cos k � � �2�i sin k
2�i sin k 2w cos k C �

�
„ ƒ‚ …

HBdG.k/

�

 
Qck

Qc
�

�k

!
(5.12a)

D
1

2

X
k2BZ

‰
�

k
HBdG.k/‰k (5.12b)

with ⁂ Bogoliubov-de Gennes Hamiltonian

HBdG.k/ D �.2w cos k C �/ �´
C 2� sin k �y

D Ed.k/ � E� (5.13)

and

Ed.k/ D

0@ 0

2� sin k
�2w cos k � �

1A (5.14)

The BdG Hamiltonian is a redundant matrix encoding of the MB Hamiltonian OHMC. It exists for all
quadratic fermion Hamiltonians, but is non-trivial (= not diagonal) – and therefore useful – only for
Hamiltonians with superconducting pairing terms. As the above construction demonstrates, its
existence is rooted in the algebra of the fermion operators.

4 | Bogoliubov transformation:

To diagonalize Eq. (5.12), we must diagonalize the BdG Hamiltonian:

U
�

k
HBdG.k/Uk D

�
E.k/ 0

0 �E.k/

�
(5.15)

Uk : unitary rotation in Nambu space
The symmetry of the spectrum follows from PHS of the BdG Hamiltonian (→ below).

Define new fermion modes ! ⁂ Bogoliubov quasiparticles:

Q‰k �

 
Qak

Qa
�

�k

!
WD U

�

k
‰k $

 
uk Qck C vk Qc

�

�k

v�
�k

Qck C u�
�k

Qc
�

�k

!
(5.16)

The coefficients uk and vk satisfy certain constraints to ensure that the new modes Qak obey
fermionic anticommutation relations:n

Qak ; Qa
�

k

o
$ jukj

2
C jvkj

2 Š
D 1 ; (5.17a)

f Qak ; Qa�kg $ vku�k C ukv�k
Š

D 0 : (5.17b)

That this structure for Uk is possible is again a consequence of the PHS of the BdG Hamiltonian
(→ below). Note that this additional structure is necessary because the Bogoliubov transformation
mixes particles and holes. By contrast, for the diagonalization of a non-superconducting Bloch
Hamiltonian, any unitary Uk yields a canonical transformation (because there one does not mix
annihilation with creation operators).

For Eq. (5.12) in the important special case � D w and � D 0 (→ later), one finds the explicit
expressions

uk $ i sin
k

2
and vk $ cos

k

2
: (5.18)
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5 | Spectrum: Eqs. (2.9) and (5.14) !

E.k/ D j Ed.k/j D

q
.2w cos k C �/2 C 4�2 sin2 k (5.19)

Because of the redundancy of the BdG Hamiltonian, the second band (and therefore the second
eigenenergy �j Ed.k/j ofHBdG) is “fake”…

…because

OHMC D
1

2

X
k2BZ

�
Qa

�

k
Qa�k

�
�

�
CE.k/ 0

0 �E.k/

�
�

�
Qak

Qa
�

�k

�
(5.20a)

D
1

2

X
k2BZ

h
E.k/ Qa

�

k
Qak �E.k/ Qa�k Qa

�

�k

i
(5.20b)

D

X
k2BZ

E.k/ Qa
�

k
Qak C const (5.20c)

where we usedE.k/ D E.�k/ and f Qak ; Qa
�

k
g D 1; i.e., for every k there is only one mode Qak with

energy CE.k/.

6 | Preliminary Phase diagram:

Let � ¤ 0 ! E.k/ D 0 only possible for k D 0; � !

E.0=�/ D j ˙ 2w C �j
Š

D 0 ) 2jwj D j�j (5.21)

! Two gapped phases:

Phase A: 2jwj > j�j and Phase B: 2jwj < j�j (5.22)

¡! In contrast to models with particle-number conservation, the gap here is not given by the
separation of two bands (there is only one!), and the ground state is not obtained by“filling” the
lower of two bands. SinceE.k/ > 0 for all k 2 BZ, Eq. (5.20c) implies that the many-body ground
state is the state with all modes Qak empty (→ next), and excited states are characterizied by occupied
modes (↑ Bogoliubov quasiparticles) with a finite (system-size independent) energy. This is the
gap of the system (induced by superconductivity); the quasiparticle excitations are “particle-hole
excitations” (superpositions of a fermion above and a hole in the condensate) and can be thought
of as “broken” Cooper pairs.

7 | Many-body ground state j�i with

Qakj�i
Š

D 0 8k 2 BZ (5.23)

! Unique BCS ground state (unique in both phases, i.e., no symmetry breaking!)

j�i /

Y
kW Qak j0i¤0

Qakj0i

5.16
5.18
/

wD�
�D0

Y
k2.��;�/

Qakj0i
ı
/ Qa0

Y
k2.0;�/

�
uk C vk Qc

�

�k
Qc
�

k

�
j0i (5.24a)

• This ground state is called quasiparticle vacuum ( Qakj�i D 0) and is different from the
physical vacuum ( Qckj�i ¤ 0), i.e., j�i contains superpositions of states with different
particle numbers of ci -fermions (this is true as long as � ¤ 0, i.e., in the presence of a
superconducting condensate).

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



FREE FERMIONS → THE MAJORANA CHAIN

135
PAGE

• As we will see → below, the parameter choice w D � and � D 0 corresponds to the fixpoint
in Phase A (which is topological). That the model simplifies at this point is apparent from
the spectrum (5.19) which becomes flat.

• Notice that in phase A (forw D � and � D 0) j�i has negative fermion parity because of
the zero-mode Qa0 (the other TRIMmode Qa� annihilates j0i and must not be applied). This
can be shown by deriving uk and vk explicitely for this case [Eq. (5.18)].

5.3. Symmetries and topological indices

Our next goal is to characterize (and distinguish) the two gapped phases A and B by topological features of
the BdG Hamiltonian:

8 | ^ Time-reversal symmetry:

i | w.l.o.g. � real ! T WD 1K ! Œ OHMC; T � D 0 ! TRS 3

More precisely: T iT �1 D �i and T c
.�/
i T �1 D c

.�/
i .

ı
�! After aFourier transform,TRS is represented as (acting on“Nambu space”) [←Eq. (2.31d)]

1H�
BdG.k/1 D HBdG.�k/ (5.25)

! QT D 1K ! TRS with QT 2 D C1

Systems with a TRS that squares to C1 are combined into the…

! ⁂ Symmetry class AI [→ ??]

The label has historical/mathematical meaning but is of no importance to us.
↑ Cartan’s classification of symmetric spaces

ii | Eqs. (5.13) and (5.25) ! Constraints on the BdG vector:

dx.�k/ D dx.k/ (5.26a)

dy.�k/ D �dy.k/ (5.26b)

d´.�k/ D d´.k/ (5.26c)

! Ed.k/ on EBZ Œ0; �� determinesHBdG.k/ completely

iii | ^ K� 2 f0; �g TRIM ! dy.K
�/ D 0

! Image Od.EBZ/ [ Od.k/ D
Ed.k/

j Ed.k/j
] on S2 must start & end on great circle:
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! All paths (= gapped & symmetric Hamiltonians) can be continuously contracted

! No topological phases /

Note that a BdG vector pointing in ´-direction corresponds to the Hamiltonian (5.6) with
w D 0 D � and only a chemical potential � ¤ 0, which is obviously a trivial band insulator
with all modes either empty or filled (depending on the sign of �).

iv | Boldly generalizing these findings, we could hypothesize:

One-dimensional systems of symmetry class AI do not allow for TPs.

This is true in general; → ?? on the classification of topological insulators & superconductors.

v | Conclusion for the Majorana chain:

TRS alone is not sufficient to characterize the phases of the Majorana chain.

! We need something else…

9 | ^ Particle-hole “symmetry”:

i | ^ Eqs. (2.31d), (5.1b) and (5.13)

The BdG Hamiltonian (matrix) has an intrinsic PHS:

�x H�
BdG.k/ �

x
D �HBdG.�k/ (5.27)

In real space this would read UH�
BdGU

� D �HBdG, where U acts as �x on the Nambu
subspace spanned by ci and c

�
i . Above we had no need to explicitly defineHBdG in real space.

! QC WD �xK ! PHS with QC 2 D C1

! ⁂ Symmetry class D [→ ??]

• This “symmetry” is tautological in the sense that it derives solely from the fermion
algebra. It does not correspond to a physical many body symmetry C of OHMC, so that
some authors do not call it a “symmetry” altogether. However, it is a valid antiunitary
pseudosymmetry of the BdG Hamiltonian – and this is all that matters for the discussion
that follows. Whether the algebraic constraint Eq. (5.27) onHBdG.k/ derives from a
physical symmetry or from the algebraic structure of the fermion algebra is irrelevant for
the topological classification ofHBdG.k/.

If this all seems a bit cryptic: → Problemset 8

• This teaches us something important: The“symmetry classes” we started to introduce
(like AI and D) should be thought of as classes/ensembles of matrices with certain
constraints. If these matrices derive from a many-body Hamiltonian (like a Bloch-
oder BdG Hamiltonian), these constraints can descend from real symmetries of the
many-body Hamiltonian. However, this is not always the case (as for the PHS of
superconductors). This explains the somewhat opaque statement that D describes the
family of superconductors without symmetries – where “symmetries” refers to physical
symmetries of the many-body Hamiltonian.

Note that the proper concept of “particle-hole symmetry” has not yet been fully settled
in the community [143], partially due to the tautological nature of the PHS above (which
is then refered to as charge conjugation instead of particle-hole transformation).
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ii | Eqs. (5.13) and (5.27) ! Constraints on the BdG vector:

dx.�k/ D �dx.k/ (5.28a)

dy.�k/ D �dy.k/ (5.28b)

d´.�k/ D d´.k/ (5.28c)

! Again Ed.k/ on EBZ Œ0; �� determinesHBdG.k/ completely

iii | ^ K� 2 f0; �g TRIM ! dx.K
�/ D 0 D dy.K

�/

Note that these are now two constraints as compared to TRS!

! Image Od.EBZ/ on S2 must start & end either on “north” or “south pole”:

! Two topologicall distinct classes of paths
(Only one of which can be continuously contracted to a point.)

! One topological phase possible , ! Z2-index

Note that the orientation of the Bloch sphere (and therefore the position of the poles) has no
physical meaning as it can be changed continuously by SU.2/ rotations in Nambu space (as
we did with the Bogoliubov transformation). Consequently, a path attached to the south pole
is unitarily equivalent to the shown path attached to the north pole.

iv | Boldly generalizing these findings, we could hypothesize:

In 1D, systems of class D allow for a single TP labeled by a Z2-index.

Again, this is true in general; → ?? on the classification of topological insulators & supercon-
ductors.
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