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↓ Lecture 13 [30.05.25]

3.4. Edge modes

A particularly intriguing feature of phases with topological bands is the emergence of robust edge modes
(the analogs of the chiral edge modes we encountered in quantum Hall systems, ← Section 1.6):

11 | ^ OHKM on a cylinder:

The system is therefore periodic in y-direction but has boundaries in x-direction.

The type of boundary (“zigzag” vs. “armchair”) has no effect on the existence of the edge states
but the spectrum below looks different for armchair boundaries.

! Interpret strip as a 1D system with large, Lx-dependent unit cell

! Fourier transform OHKM only in y-direction

! 1D spectrum with O.Lx/ bands labeled by y-momentum ky

12 | Numerics ! Edge modes:

This figure is taken fromKane andMele’s original work [111].
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• Topological phase ! Gapless edge modes

– Robust (= no backscattering / gap opening) to TRS perturbations

– The four band crossings of the edge modes are protected for two different reasons:

* Black crossings: The crossing modes are localized on opposite edges of the strip.
Gapping them out is therefore exponentially suppressed with the width Lx of the
strip (gapped bulk!).

* Colored crossings: The crossing modes live on the same edge of the sample (with
opposite group velocity). Gapping them out is forbidden by time-reversal symmetry
as these crossings happen at a TRIM (ky D �) and are enforced by Kramers degen-
eracy. This is why the Kane-Mele topological insulator is an SPT phase: Disorder
that breaks TRS can hybridize these edge modes and destroy the topological phase.

– On each edge there is a right-propagating mode for one spin polarization and a left-
propagating mode for the opposite spin polarization (for �R D 0, if spin is conserved).

In the original plots above, it is actually �R D 0:05 ¤ 0 so that spin conservation is
broken. The breaking of spin-conservation is responsible for the ↓ avoided crossings that
fuse the edge modes into the bulk bands (for �R D 0 the edge modes would cross the
bulk modes, → Problemset 6).

– The edge modes are helical (not chiral) since the product of spin and momentum is
constant on each edge.

• Trivial phase ! No gapless edge modes

Details: → Problemset 6

Notes:

• The two“stalactite-stalagmite” pairs in the above spectrum correspond to the 1D projections
of the two (gapped)Dirac cones aroundK andK 0. The tips of these bulk bands are connected
by the edge modes.

• For �R D 0 you can extract the edge modes of the ← Haldane Chern insulator by just looking
at one of the two spin sectors (up or down, which determines the sign of the complex NNN
hopping phase). Thus in the topological phase, the Haldane model supports one (then chiral
[since spin does not exist]) edge mode on each boundary.

13 | Final Note on symmetries and names:

• As discussed, the KMmodel OHKM without Rashba SO coupling (�R D 0) can be thought
of as two uncoupled, time-reversed copies of Haldane’s Chern insulator. As such, the
model features a particle conservation symmetry in each of the two spin sectors, i.e., its total
symmetry isU.1/"�U.1/#. By defining charge nc D n"Cn# and spin ns D n"�n#, one can
reinterpret this symmetry as U.1/charge � U.1/spin, where total charge (particle) conservation
U.1/charge and total spin conservation U.1/spin hold separately. One can then introduce the
usual charge current Jc D J" C J# and the ⁂ spin current Js D .„=2e/

�
J" � J#

�
and ask

for the linear response of these quantities when an electric field is applied. This response
is quantified by the usual charge Hall conductivity �c

xy (previously �xy) and its analogue,
the ⁂ spin Hall conductivity � s

xy . Because the ground state of OHKM is given by two filled
Chern bands with opposite Chern numbers C D ˙1, the charge Hall conductivity vanishes
identically: �c

xy D 0 (this follows from our general discussion in Section 1.4.2). By contrast,
the spin Hall conductivity is non-zero and quantized at � s

xy D e=2� D 2 � .„=2e/ � e2=h
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(because there are two counterpropagating edge modes with opposite spin, coming from the
two Chern bands with opposite Chern number). The phenomenon of a quantized spin Hall
conductivity (and vanishing charge Hall conductivity) is called ⁂ quantum spin Hall effect
(QSHE) and characterized by the combined symmetry U.1/charge � U.1/spin.

• It was a remarkable insight by Kane and Mele [111] that the two phases of the “Quantum
Spin Hall effect in Graphene” [110] remained topologically distinct (via the Pfaffian index)
even without spin conservation (�R ¤ 0) – time-reversal symmetry is sufficient! This phase,
protected by charge conservationU.1/charge and time-reversal symmetryZT

4 [recall that QT 2
U D

�1 is equivalent to T 2
U D .�1/

ONc , Section 2.1.2], and characterized by the Paffian Z2 index,
is the topological insulator (TI) phase. Since spin conservation U.1/spin is generally broken in
this phase, it is not characterized by a quantized spin Hall conductivity (= quantum spin Hall
effect). One can indeed check that adding either TRS breaking terms or superconducting
terms to the KMHamiltonian OHKM on a cylinder gaps out the edge modes, indicating that
the topological insulator is protected by TRS and charge conservation symmetry [94].

Thus, the topological insulator (TI) and the quantum spin Hall (QSH) phase are different symmetry-
protected topological phases, and the KM model happens to realize both for �R D 0 [35]. [Re-
member (Section 0.5) that the classification of SPT phases depends on our choice of protecting
symmetry!]

In the context of this (modern) terminology, the title of Kane and Mele’s original paper “Z2

Topological Order and the Quantum Spin Hall Effect” [111] is confusing for two reasons: First, the
paper is mostly about the topological insulator phase – and not the quantum spin Hall effect. The
authors event point this out explicitly: “The QSH phase is not generally characterized by a quantized
spin Hall conductivity.” In addition, their notion of “topological order” does not match the modern
terminology of “long-range entanglement.” That is, Kane and Mele’s topological insulator is the
paradigmatic example of a topological phase that is not topologically ordered but symmetry protected.
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3.5. ‡ Experiments

• The possibility to observe the quantum spin Hall effect (via a quantized ← spin Hall conductance
that requires spin conservation, i.e., �R D 0) was predicted by Bernevig et al. in 2006 [118] and
experimentally confirmed byKönig et al. in 2007 [119] in so called ↑ HgTe quantum wells (HgTe
= Mercury-Telluride).

• The alloy Bi1�xSbx (BiSb = Bismuth-Antimony) was predicted to be a (strong) topological insulator
(in three dimensions) byFu andKane in 2007 [97]whichwas experimentally confirmed byHsieh
et al. in 2008 [120].

• Following these first discoveries, many more materials were identified as topological insulators.
For an extensive review including experimental results (before 2011) seeQi and Zhang [121].

Closing remarks for Chapters 1 to 3

We have now discussed two topological indices to label topological phases in two dimensions:

• The (first) Chern number classifies two-dimensional chiral topological phases (IQHE, QWZ
model, Haldane model); we discussed these models in Chapters 1 and 2.

– The Chern number cannot be generalized to three dimensions!
(There are generalizations to even dimensions, though [122].)

– For non-zero Chern numbers, time-reversal symmetry must be broken.

– Phases of non-interacting fermions in bands with non-zero Chern numbers are examples of
the ← invertible topological orders introduced in Section 0.5 [35].

• The Z2 Pfaffian index classifies symmetry-protected topological (SPT) phases in two dimensions
(Kane-Mele topological insulator); we discussed this model in Chapter 3.

– The Pfaffian index can be generalized to three dimensions and allows for the characterization
of three-dimensional topological insulators [96, 100, 123].

– For the Pfaffian index to be well-defined, time-reversal symmetry must be preserved.

– The Kane-Mele topological insulator is a ← short-range entangled phase protected by time-
reversal symmetry (and particle number/charge conservation) [35].

We now turn to topological phases of non-interacting fermions in one dimension…
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4. Topological Insulators in 1D: The
Su-Schrieffer-Heeger Chain

After our study of two-dimensional systems with topological band structures in Chapters 1 to 3, we now
turn to one-dimensional systems (still with non-interacting fermions). We will introduce the paradigmatic
Su-Schrieffer-Heeger chain and identify a new topological invariant to characterize its quantum phases.
However, as a preliminary step, we must introduce a new symmetry (beyond time-reversal symmetry)
called sublattice symmetry…

4.1. Preliminaries: Sublattice symmetry

1 | Reminder: (Symmetries we already know.)

In the following, OH denotes a non-interacting many-body Hamiltonian on (fermionic) Fock space
andH its single-particle counterpart.

• Unitary symmetry U:

UiU�1
D Ci and UciU

�1
D

X
j

U
�
ij cj (4.1a)h

OH;U
i

D 0 , UHU �
D H , ŒH;U � D 0 (4.1b)

• Time-reversal symmetry TU : [← Section 2.1.2]

TU iT
�1

U D �i and TU ciT
�1

U D

X
j

U
�
ij cj (4.2a)h

OH; TU

i
D 0 , UH�U � $ H , ŒH; UK„ƒ‚…

TU

� D 0 (4.2b)

Note that both U and UK are valid symmetries on the single-particle Hilbert space (i.e., they
commute with the HamiltonianH ), in accordance with Wigner’s theorem (→ Problemset 1).

2 | Other symmetry types (?):

Having the (classes of ) symmetries Eqs. (4.1) and (4.2) inmind, are there other types of symmetries
that one can realize on a fermionic Fock space?

• ^ Unitary like U but with ci $ c
�
i :

CU iC
�1
U D Ci and CU ciC

�1
U D

X
j

U
��
ij c

�
j (4.3a)h

OH;CU

i
D 0 , UH�U � $ �H , fH; UK„ƒ‚…

CU

g D 0 (4.3b)
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¡! Note thatH anticommutes with CU : f�; �g D 0

(The complex conjugate in U �
ij is conventional and not crucial.)

! CU : ⁂ Particle-hole symmetry (PHS)

→ Future lectures on topological superconductors

• ^ Antiunitary like TU but with ci $ c
�
i :

SU iS
�1
U D �i and SU ciS

�1
U D

X
j

U
��
ij c

�
j (4.4a)h

OH;SU

i
D 0 , UHU � $ �H , fH; U„ƒ‚…

SU

g D 0 (4.4b)

¡! Note thatH anticommutes with SU (f�; �g D 0) but also that there is no complex conjuga-
tion on the single-particle level, i.e., SU D U is a unitary operator. (The complex conjugate
in U �

ij is again conventional and not crucial.)

! SU : ⁂ Chiral- or Sublattice symmetry (SLS)

Here we stick to the term“sublattice symmetry” (SLS).

But why should we call SU “sublattice symmetry” in the first place?
→ Next point below…

Note: The same arguments used for time-reversal symmetry (← Section 2.1.2) lead to

fH;U g D 0 )
�
H;U 2

�
D 0

H generic
HHHHH) U 2

D ei'1 (4.5)

! Redefine QU D e�i'=2U ! QU 2 D C1! w.l.o.g. U 2 D C1

! In contrast to time-reversal, there are not two“types” of sublattice symmetry!

(This difference is due to the missing antiunitarity on the single-particle level.)

¡!WhereasU and TU can be interpreted as symmetries both onFock space and on the single-particle
Hilbert space, particle-hole symmetryCU and sublattice symmetrySU are only symmetries onFock
space; on the single-particle Hilbert space they act as unitary and antiunitary ↑ pseudosymmetries,
respectively (i.e., they anticommute with the single-particle Hamiltonian).

This should be not surprising since both include an exchange of particles with holes, so that theymix
sectors of different particle numbers. Such an operation is intrinsic to the many-particle description
in Fock space and cannot be sensibly defined (or interpreted) as a symmetry in a (first quantized)
single-particle description.

3 | Why “sublattice symmetry”?

i | ^ SP HamiltonianH with UHU � D �H

! Spectrum �.H/ D �.�H/

! Spectrum symmetric about E D 0

By contrast, TRS implied a symmetric spectrum about the energy axis: E.k/ D E.�k/.

ii | AssumeH is 2L � 2L-matrix !

9 UnitaryM W MHM �
D

�
D 0

0 �D

�
with diagonal matrixD. (4.6)
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!

.QM/H.QM/� D

�
0 D

D 0

�
with Q D

1
p
2

�
1 1

1 �1

�
(4.7)

To see this, remember that a Hadamard gateH transforms a �´ Pauli matrix into a �x Pauli
matrix under conjugation.

Note thatQM is just a unitary basis transformation in the SP Hilbert space.

iii | This means that for a sublattice symmetric system, there exists a unitary transformation of
modes Qci D

P
j

QUij cj such that

OH D

X
i;j

c
�
i Hij cj

SLS
D

w.l.o.g.

X
i;j

Qc
�
i

QHij Qcj (4.8)

with block-off-diagonal SP Hamiltonian

QH D

�
0 h Hopping A 7! B

h� 0 Hopping B 7! A

�
(4.9)

The two subsets of modes A and B are referred to as “sublattices” even if a spatial lattice
structure is missing.

iv | QH couples only modes between the two“sublattices”A and B :

Often this sublattice structure is already visible in the real-space basis, i.e., a transformation
to QH is not even necessary (SSH chain → below).

If one interprets QH as a (complex valued) adjacency matrix of a graph, the “sublattice
symmetry” would be called ↑ bipartiteness. And indeed, it is well-known that a graph is
bipartite if and only if the spectrum of its adjacency matrix is symmetric [124, Chapter 6.5].

v | Example: Graphene
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Note that a chemical potential �
P

i c
�
i ci can be interpreted as a hopping from site i to the

same site; therefore it violates SLS.

4.2. The Su-Schrieffer-Heeger chain

• The Su–Schrieffer–Heeger (SSH) chain is a model of non-interacting, spinless fermions in one
dimension that has been introduced by Su, Schrieffer andHeeger in 1979 [125] to describe
soliton formation in polyacetylene (a linear chain of carbon atoms with alternating single and double
bonds and one hydrogen atom bound to each carbon atom).

• In the context of topological phases, the model has become the example of choice to illustrate
topological invariants and the emergence of robust edge modes [2] (which is why we study it).

• A detailed exposition of the SSH chain is given in the textbook byAsboth [2] but may also be
found in almost any other textbook on topological insulators. There is also an introduction in my
PhD thesis [126] (on which this section is based) with a quite detailed discussion of edge states in
the appendices of Chapter 3.

1 | ^ 1D lattice with 2L sites grouped into L unit cells:

ai ; bi : spinless fermion modes (i D 1; : : : ; L)

We can now define the ⁂ SSH chain Hamiltonian:

OHSSH D t

LX
iD1

.a
�
i bi C b

�
i ai /„ ƒ‚ …

Intra-site hopping

Cw

L0X
iD1

.b
�
i aiC1 C a

�
iC1bi /„ ƒ‚ …

Inter-site hopping

(4.10)

• t; w 2 R: alternating hopping amplitudes

• L0 D L � 1 for OBC and L0 D L for PBC

Wewill use both boundary types: Open boundaries (OBC) to study edge modes, and periodic
boundaries (PBC) allow for Fourier transformation and definition of a topological index.

2 | Symmetries:

The SSH Hamiltonian (4.10) has several symmetries, not all crucial for the following discussion:

• Particle-number conservation/symmetry (PNS)
This is an intrinsic symmetry of the class of quadratic fermion models without superconduc-
tivity; we cannot break it without leaving this class.

• Translation symmetry (TS)
Translation symmetry is typically broken in real samples due to disorder.

• Sublattice symmetry (SLS):

S iS�1
WD �i and SaiS

�1
WD a

�
i and SbiS

�1
WD �b

�
i (4.11)
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! Œ OHSSH;S � $ 0

Note that the minus sign bi 7! �b
�
i is crucial for the commutation with the Hamiltonian!

The above definition is realized by the operator

S $
Y

i

.a
�
i � ai /.b

�
i C bi / ı K (4.12)

Use fai ; a
�
i g D 1 and a2

i D 0 D .a
�
i /

2 (and the same for bi ) to show this.

• Time-reversal symmetry (TRS):

T iT �1
WD �i and T ai T

�1
WD ai and T bi T

�1
WD bi (4.13)

! Œ OHSSH; T � $ 0

• Particle-hole symmetry (PHS):

C iC�1
WD i and Cai C

�1
WD a

�
i and Cbi C

�1
WD �b

�
i (4.14)

! Œ OHSSH;C � $ 0

Are all these symmetries of the same importance to characterize the SSH chain?

3 | ^ “Generic” SSH chain:

OH 0
SSH D

LX
iD1

.ti a
�
i bi C t�i b

�
i ai /C

L0X
iD1

.wi b
�
i aiC1 C w�

i a
�
iC1bi / (4.15)

ti ; wi 2 C: site-dependent & complex hopping amplitudes
ı
�! Preserved symmetries: PN & SLS
(Check that the complex hoppings destroy both TRS and PHS but not SLS.)

! Sublattice symmetry is the natural symmetry of the SSH chain.

¡! For the analytical analysis below, we will still assume translation invariance so that we can Fourier
transform the Hamiltonian. However, if one studies the model numerically, one can add translation-
symmetry breaking perturbations to the Hamiltonian and verify that the features (in particular:
the quantum phases) of the SSH chain are robust to SLS-symmetric disorder (→ discussion of edge
modes below).
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