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↓ Lecture 12 [23.05.25]

5 | ! ^ Pfaffian:

Definition: ForM a skew-symmetric 2n � 2n-matrix, the Pfaffian is defined as

Pf ŒM � WD
1

2nnŠ

X
�2S2n

.�1/�
nY

iD1

M�.2i�1/;�.2i/ (3.24)

Cf. the ↓ Leibniz formula for determinants:

det.M/ D

X
�2S2n

.�1/�
2nY

iD1

Mi�.i/ (3.25)

ı
�! It follows:

• .Pf ŒM �/2 D det.M/, i.e., the Pfaffian contains the same information as the determinant
(but with an additional sign that is lost when considering the determinant).

• Pf
�
BABT

�
D det.B/Pf ŒA� for an arbitrary 2n � 2n-matrix B

• For skew-symmetric matrices of even dimension, the Pfaffian is a“more natural” object than
the determinant (it contains at least as much information!).

This motivates the definition of the following function:

P W T 2
! C P.k/ WD Pf ŒM.k/� (3.26)

Kane-Mele model: P.k/ D M12.k/ D hu1.k/j QTU ju2.k/i

! P.k/ is a complex-valued function on the BZ that depends (continuously) on the Hamiltonian.

The idea is now to identify topologically robust properties of this function to distinguish the two
phases of the Kane-Mele model…

6 | Properties of P.k/:

Next, we carefully study the properties of P.k/ to lay the foundations for a new topological index
defined → below:

i | Not gauge invariant: ^ U 2 U.2n/ and ju0
i .k/i WD Uij juj .k/i

This gauge transformation mixes the 2n filled bands!

w.l.o.g. U D ei� QU with QU 2 SU.2n/ !

P 0.k/ D Pf
��

hu0
i .k/j

QTU ju0
j .k/i

�
ij

�
(3.27a)

D Pf
��
U �

i i 0hui 0.k/j QTU juj 0.k/iU �
jj 0

�
ij

�
(3.27b)

D Pf
h
U �

�
hui 0.k/j QTU juj 0.k/i

�
i 0j 0 .U

�/T
i

(3.27c)

D det.U �/P.k/ (3.27d)

D e�i2n�P.k/ (3.27e)

Here we used that det. QU/ D 1.

! jP.k/j is gauge invariant
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Note: We can consider even unitary transformations between filled bands (for a fixed k)
although these states are not energetically degenerate (strictly speaking, they do not even
have to be energy eigenstates to begin with, → below) because such transformations do not
alter the many-body ground state (namely the Fermi sea or the Slater determinant):

j‰0
0i D

Y
k

Y
i

c
0�
k;i j0i D

Y
k

Y
i

Uij c
�
k;j j0i (3.28a)

$
Y
k

det.U /
Y

i

c
�
k;i j0i D ei�

Y
k

Y
i

c
�
k;i j0i D ei�

j‰0i : (3.28b)

Here, c�
k;i creates a fermion inmode jui .k/i and ei� is some global (and therefore unphysical)

phase determined by (powers of ) det.U /. The determinant arises due to the anticommutation
relations fc

�
k;i ; c

�
k;j g D 0; have a look at the concepts of ↑ alternating multilinear forms and

the ↑ exterior algebra if so don’t believe this (or prove it by hand).

ii | Time-reversal symmetry (TRS/TRI)

! Chern numbers of “valence bundle” H filled
k

D span fjui .k/igiD1:::2n vanish

! H filled
k

= ↑ Trivial vector bundle

! 9 Continuous basis fjei .k/igiD1:::2n of H filled
k

on T 2

It is jei .k/i D Uij .k/juj .k/i a (potentially discontinuous) gauge transformation.

Remember that we showed in Section 1.3.1 (for the speciall case of a single band) that a
non-zero Chern number implies that a globally continuous Bloch basis does not exists. Here
we use the inverse claim (without proof ).

! P.k/ continuous on T 2 if defined by fjei .k/igiD1:::2n

This follows from the fact that the Chern number(s) of the filled Bands (mathematically
speaking, the filled ↑ Bloch bundle or ↑ valence bundle) vanish. Thus there is no obstruction in
choosing a globally defined, continuous basis fjei .k/igiD1:::2n of the filled band fiber H filled

k
at

every k. Mathematically, this means that the Bloch bundle of filled bands can be ↑ trivialized.
Because there is a continuous basis choice fjei .k/igiD1:::2n for the filled bands, the matrix
of QTU , and subsequently the Pfaffian P.k/, are continuous on T 2 if defined with this basis
choice.

Note that in general the continuous basis fjei .k/igiD1:::2n is not necessarily an eigenbasis of
the Bloch Hamiltonian! This is why we changed the notation from ui .k/ to ei .k/; in the fol-
lowing, fjei .k/igiD1:::2n always denotes a globally continuous basis whereas fjui .k/igiD1:::2n

is a (potentially discontinuous) eigenbasis of the Bloch Hamiltonian.

iii | ^ Two special subspaces of Bloch states:

• H filled
k

is ⁂ even W, QTU H filled
k

D H filled
k

This means that QTU jui .k/i D Mij juj .k/i with a unitary matrixM ¤ 0.

! jP.k/j D jPf ŒM.k/� j D
p

j detM.k/j D 1

To show thatM.k/ is unitary, evaluate .M �M/ij using the definition in Eq. (3.23) and
use that the projectorP

Hfilled
k

D
P2n

kD1 juk.k/ihuk.k/j acts as the idenity on QTU juj .k/i

since QTU H filled
k

D H filled
k

by assumption. Remember that QTU D UK with U �U D 1

and use that hu�
i .k/ju

�
j .k/i D huj .k/jui .k/i D ıij .

• H filled
k

is ⁂ odd W, QTU H filled
k

? H filled
k
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This means that huj .k/j QTU jui .k/i D 0 D Mij . Remember that i runs only over filled
bands whereas QTU can mix the whole fiber Hk D H filled

k
˚ H

empty
k

.

! jP.k/j D jPf ŒM.k/� j D 0

These are two special cases; H filled
k

can also be neither even nor odd!

iv | Observation: K� TRIM ! H filled
K� is even since

QTUH.K
�/ QT �1

U D H.K�/ (3.29)

This means that QTU can only mix states with the same eigenenergy. In particular, a mixing
between valence and conduction bands cannot occur. Note that this argument breaks down
at a gapless point!

! jP.K�/j D 1 at all TRIMs K �

v | Effective Brillouin Zones:

Remember:

TRI , QTUH.k/ QT �1
U D H.�k/ (3.30)

! DefiningH.k/ on half the BZ is sufficient!
The other half can then be reconstructed via Eq. (3.30).

! Define an ⁂ Effective Brillouin Zone (EBZ) as any subset of T 2 that does not contain
both k and �k (except for the boundaries which connect pairs of TRIMs).

Example on the hexagonal lattice:

• The EBZ has the topology of a cylinder (and not a torus).

• Note that the choice of an EBZ is not unique [113].

• The concept of anEBZwas originally introduced byMoore andBalents in 2007 [100].
See also Ref. [113] for an accessible introduction.

The concept of an EBZ will become important → below.

vi | Consequences for P.k/ from TRI:
(Remember the TRI band structure with Kramers pairs above!)

QTUH.k/ QT �1
U D H.�k/ ) QTU H filled

k D H filled
�k (3.31a)

) jei .�k/i D w�
ij .k/

QTU jej .k/i (3.31b)

wij .k/ WD hei .�k/j QTU jej .k/i: unitary ⁂ Sewing matrix

jei .k/i denotes the globally continuous basis of the valence bundle H filled
k

defined ← above.
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The sewing matrix was originally introduced by Fu and Kane in 2006 [112]. See also
Fruchart andCarpentier [113] and → Problemset 6.

! With this we can evaluate the Pfaffian at �k:

P.�k/ D Pf ŒM.�k/� (3.32a)

D Pf
h�

hei .�k/j QTU jej .�k/i
�
ij

i
(3.32b)

D Pf
h�
wi i 0.k/ h QTU ei 0.k/j QTU j QTU ej 0.k/iwjj 0.k/

�
ij

i
(3.32c)

D .�1/n Pf
h�
wjj 0.k/ hej 0.k/j QTU jei 0.k/i�wi i 0.k/

�
ij

i
(3.32d)

$ .�1/n Pf
h
w.k/M �.k/wT .k/

i
(3.32e)

D .�1/n detŒw.k/� ŒP.k/�� (3.32f )

Here we used QT 2
U D �1, Pf Œ�A� D �n Pf ŒA� and that QTU is antiunitary.

! Two conclusions:

• P.k0/ D 0 , P.�k0/ D 0

Note thatw�.k/w.k/ D 1 so that detŒw.k/� ¤ 0 for all k 2 T 2.

• The ⁂ vorticities � around k0 and �k0 have opposite signs:

�Œk0� WD
1

2�i

I
@k0

r logŒP.k/� � dk D ��Œ�k0� 2 Z (3.33)

@k0: loop around k0

– The vorticity �Œk0�measures the complex phase accumulated when travelling around
the zero of P.k/ at k0. SinceP.k/ is continuous, this can only be integer multiples
of 2� .

– Sincew.k/ is continuous and unitary, the vorticity of detŒw.k/� ¤ 0must vanish
everywhere, so that the vorticity of the expression in Eq. (3.32f) is completely
determined by ŒP.k/�� [which has the negative vorticity of P.k/].

– Let P.k/ D jP.k/jei argP.k/ so that logŒP.k/� D ln jP.k/j C i argP.k/.

Then we have

1

2�i

I
@k0

r logŒP.k/� � dk (3.34a)

D
1

2�i

I
@k0

r ln jP.k/j � dk„ ƒ‚ …
D0

C
1

2�

I
@k0

r argP.k/ � dk„ ƒ‚ …
22�Z

(3.34b)

where we used that jP.k/j ¤ 0 is continuous everywhere along the contour @k0; in
particular, the argument argP.k/ can only change by multiples of 2� . This shows
that the expression (3.33) measures the phase winding of P.k/ along the contour
@k0, i.e., its vorticity.

! Phase vortices of P.k/ on the BZ T 2 come in pairs of opposite vorticity

vii | Observation: Zeros of P.k/ with �Œk0� ¤ 0 are topologically stable

This is intuitively clear: If one makes the function non-zero at the vortex, it becomes discon-
tinuous at this point due to the winding phase. Furthermore, the winding phase cannot be
smoothly removed without discontinuous deformations of the function as well.
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7 | If we combine all the above facts, we arrive at the following…

! Generic picture:

• Without additional symmetries, the zeros of jP.k/j occur at points in the BZ.
This is true for the Kane-Mele model ifm ¤ 0.

• With additional symmetries, the zeros can form lines that avoid the TRIMs.
In the Kane-Mele model, this happens form D 0, ↑ Ref. [111] and → below.

• Zeros with vanishing vorticity are not stable and therefore not “generic” but “fine-tuned.”

• On the TRIMs, jP.k/j is pinned to 1, so that zeros (vortices) cannot occupy these positions.

• In the following, we focus on the least symmetric (and thereforemost generic) case with point-
like zeros. Without loss of generality, we assume a vorticity of ˙1 per vortex (a vortex with
vorticity j�j > 1 can be continuously split into j�j vortices of vorticity ˙1). Furthermore,
we assume that all vortices in the EBZ have the same vorticity (vortices of opposite vorticity
in the EBZ can be pairwise annihilated).

8 | Two situations:

• ^ Even number of vortices in EBZ:

! All vortices can be continuously removed

• ^ Odd number of vortices in EBZ:
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– To remove the last vortex pair, the partners must meet at one of the TRIMs.

– But this is impossible because of TRS which demands jP.K �/j D 1 [← Eq. (3.29)].

! A single pair of vortices cannot be continuously removed

! The two situations are Topologically distinct (as long as TRS is not broken)

! Odd number of vortices = Topological phase protected by time-reversal symmetry

This is our first example of a true ← symmetry-protected topological (SPT) phase.

9 | This distinction is quantified by the ⁂ Topological/Pfaffian Z2 index …

I WD
1

2�i

I
@EBZ

r logŒP.k/� � dk mod 2 D
1

2�i

I
@EBZ
d logŒP.k/� mod 2 (3.35)

@EBZ: Closed path that encircles an EBZ

…which measures the parity of the total vorticity in half the Brillouin zone.

• The choice of a EZB is constrained by the vortices. It should be chosen such that the vortices
stay away from the boundary @EBZ. For example, see Ref. [111, Fig. 2].

• I 2 Z2 is gauge invariant because a gauge transformation that is continuous everywhere
cannot change the vorticity of P.k/ [← Eq. (3.27)].

• There is an alternative way to compute the topological Z2 index I by evaluating the ← sewing
matrix w.k/ at the TRIMs:

.�1/I
�
D

Y
K� TRIM

Pf Œw.K �/�p
detw.K �/

: (3.36)

This assumes that the sewing matrix wij .k/ D hei .�k/j QTU jej .k/i is calculated from a
globally continuous basis jei .k/i. You show the equivalence of Eq. (3.35) and Eq. (3.36)
on → Problemset 6. This alternative form of the Z2 index is important because it naturally
generalizes to three dimensions and paves the way to ↑ 3D topological insulators and ↑ weak
topological insulators [96].

10 | Example: Kane-Mele model:
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• In the color plots, the BZ is deformed to a square. The color denotes the phase (red = C1,
turquoise = �1) and the lightness the absolute value (black = 0) of the Pfaffian computed
from a family of global sections of the valence bundle.

• Note that in the topological phase (form ¤ 0) there is a single vortex in each EBZ and the
phase winds once around each vortex so that I D 1. For this result, it is crucial that the
Pfaffian is computed from a globally continuous basis fjei .k/igiD1:::2n (= a family of global
sections of the valence bundle that form a basis at every point), otherwise the vorticity can
be changed by integers (even if the Pfaffian is continuous!) and I cannot distinguish the
phases. Note that these global sections are typically not eigenstates of the BlochHamiltonian;
their existence, however, is guaranteed by time-reversal symmetry (because then all Chern
numbers of the rank-2 valence bundle vanish).

• Here you can download the Mathematica notebook that I used to create the plots above:

→Download Mathematica notebook

• The enhanced symmetry form D 0make the zeros form a line that circles the central TRIM
(and therefore cannot be contracted without breaking TRS). In this situation, the Pfaffian
can be gauged real (as already mentioned by Kane an Mele [111]). Continuously breaking the
“ring of zeros” is only possible if a pair of vortices is introduced that makes the phase wind
around the two islands of zeros that result from such a procedure.

3.4. Edge modes

A particularly intriguing feature of phases with topological bands is the emergence of robust edge modes
(the analogs of the chiral edge modes we encountered in quantum Hall systems, ← Section 1.6):

11 | ^ OHKM on a cylinder:

The system is therefore periodic in y-direction but has boundaries in x-direction.

The type of boundary (“zigzag” vs. “armchair”) has no effect on the existence of the edge states
but the spectrum below looks different for armchair boundaries.

! Interpret strip as a 1D system with large, Lx-dependent unit cell

! Fourier transform OHKM only in y-direction

! 1D spectrum with O.Lx/ bands labeled by y-momentum ky
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12 | Numerics ! Edge modes:

This figure is taken fromKane andMele’s original work [111].

• Topological phase ! Gapless edge modes

– Robust (= no backscattering / gap opening) to TRS perturbations

– The four band crossings of the edge modes are protected for two different reasons:

* Black crossings: The crossing modes are localized on opposite edges of the strip.
Gapping them out is therefore exponentially suppressed with the width Lx of the
strip (gapped bulk!).

* Colored crossings: The crossing modes live on the same edge of the sample (with
opposite group velocity). Gapping them out is forbidden by time-reversal symmetry
as these crossings happen at a TRIM (ky D �) and are enforced by Kramers degen-
eracy. This is why the Kane-Mele topological insulator is an SPT phase: Disorder
that breaks TRS can hybridize these edge modes and destroy the topological phase.

– On each edge there is a right-propagating mode for one spin polarization and a left-
propagating mode for the opposite spin polarization (for �R D 0, if spin is conserved).

In the original plots above, it is actually �R D 0:05 ¤ 0 so that spin conservation is
broken. The breaking of spin-conservation is responsible for the ↓ avoided crossings that
fuse the edge modes into the bulk bands (for �R D 0 the edge modes would cross the
bulk modes, → Problemset 6).

– The edge modes are helical (not chiral) since the product of spin and momentum is
constant on each edge.

• Trivial phase ! No gapless edge modes

Details: → Problemset 5

Notes:

• The two“stalactite-stalagmite” pairs in the above spectrum correspond to the 1D projections
of the two (gapped)Dirac cones aroundK andK 0. The tips of these bulk bands are connected
by the edge modes.

• For �R D 0 you can extract the edge modes of the ← Haldane Chern insulator by just looking
at one of the two spin sectors (up or down, which determines the sign of the complex NNN
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hopping phase). Thus in the topological phase, the Haldane model supports one (then chiral
[since spin does not exist]) edge mode on each boundary.

13 | Final Note on symmetries and names:

• As discussed, the KMmodel OHKM without Rashba SO coupling (�R D 0) can be thought
of as two uncoupled, time-reversed copies of Haldane’s Chern insulator. As such, the
model features a particle conservation symmetry in each of the two spin sectors, i.e., its total
symmetry isU.1/"�U.1/#. By defining charge nc D n"Cn# and spin ns D n"�n#, one can
reinterpret this symmetry as U.1/charge � U.1/spin, where total charge (particle) conservation
U.1/charge and total spin conservation U.1/spin hold separately. One can then introduce the
usual charge current Jc D J" C J# and the ⁂ spin current Js D .„=2e/

�
J" � J#

�
and ask

for the linear response of these quantities when an electric field is applied. This response
is quantified by the usual charge Hall conductivity �c

xy (previously �xy) and its analogue,
the ⁂ spin Hall conductivity � s

xy . Because the ground state of OHKM is given by two filled
Chern bands with opposite Chern numbers C D ˙1, the charge Hall conductivity vanishes
identically: �c

xy D 0 (this follows from our general discussion in Section 1.4.2). By contrast,
the spin Hall conductivity is non-zero and quantized at � s

xy D e=2� D 2 � .„=2e/ � e2=h

(because there are two counterpropagating edge modes with opposite spin, coming from the
two Chern bands with opposite Chern number). The phenomenon of a quantized spin Hall
conductivity (and vanishing charge Hall conductivity) is called ⁂ quantum spin Hall effect
(QSHE) and characterized by the combined symmetry U.1/charge � U.1/spin.

• It was a remarkable insight by Kane and Mele [111] that the two phases of the “Quantum
Spin Hall effect in Graphene” [110] remained topologically distinct (via the Pfaffian index)
even without spin conservation (�R ¤ 0) – time-reversal symmetry is sufficient! This phase,
protected by charge conservationU.1/charge and time-reversal symmetryZT

4 [recall that QT 2
U D

�1 is equivalent to T 2
U D .�1/

ONc , Section 2.1.2], and characterized by the Paffian Z2 index,
is the topological insulator (TI) phase. Since spin conservation U.1/spin is generally broken in
this phase, it is not characterized by a quantized spin Hall conductivity (= quantum spin Hall
effect). One can indeed check that adding either TRS breaking terms or superconducting
terms to the KMHamiltonian OHKM on a cylinder gaps out the edge modes, indicating that
the topological insulator is protected by TRS and charge conservation symmetry [94].

Thus, the topological insulator (TI) and the quantum spin Hall (QSH) phase are different symmetry-
protected topological phases, and the KM model happens to realize both for �R D 0 [35]. [Re-
member (Section 0.5) that the classification of SPT phases depends on our choice of protecting
symmetry!]

In the context of this (modern) terminology, the title of Kane and Mele’s original paper “Z2

Topological Order and the Quantum Spin Hall Effect” [111] is confusing for two reasons: First, the
paper is mostly about the topological insulator phase – and not the quantum spin Hall effect. The
authors event point this out explicitly: “The QSH phase is not generally characterized by a quantized
spin Hall conductivity.” In addition, their notion of “topological order” does not match the modern
terminology of “long-range entanglement.” That is, Kane and Mele’s topological insulator is the
paradigmatic example of a topological phase that is not topologically ordered but symmetry protected.
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3.5. ‡ Experiments

• The possibility to observe the quantum spin Hall effect (via a quantized ← spin Hall conductance
that requires spin conservation, i.e., �R D 0) was predicted by Bernevig et al. in 2006 [118] and
experimentally confirmed byKönig et al. in 2007 [119] in so called ↑ HgTe quantum wells (HgTe
= Mercury-Telluride).

• The alloy Bi1�xSbx (BiSb = Bismuth-Antimony) was predicted to be a (strong) topological insulator
(in three dimensions) byFu andKane in 2007 [97]whichwas experimentally confirmed byHsieh
et al. in 2008 [120].

• Following these first discoveries, many more materials were identified as topological insulators.
For an extensive review including experimental results (before 2011) seeQi and Zhang [121].

Closing remarks for Chapters 1 to 3

We have now discussed two topological indices to label topological phases in two dimensions:

• The (first) Chern number classifies two-dimensional chiral topological phases (IQHE, QWZ
model, Haldane model); we discussed these models in Chapters 1 and 2.

– The Chern number cannot be generalized to three dimensions!
(There are generalizations to even dimensions, though [122].)

– For non-zero Chern numbers, time-reversal symmetry must be broken.

– Phases of non-interacting fermions in bands with non-zero Chern numbers are examples of
the ← invertible topological orders introduced in Section 0.5 [35].

• The Z2 Pfaffian index classifies symmetry-protected topological (SPT) phases in two dimensions
(Kane-Mele topological insulator); we discussed this model in Chapter 3.

– The Pfaffian index can be generalized to three dimensions and allows for the characterization
of three-dimensional topological insulators [96, 100, 123].

– For the Pfaffian index to be well-defined, time-reversal symmetry must be preserved.

– The Kane-Mele topological insulator is a ← short-range entangled phase protected by time-
reversal symmetry (and particle number/charge conservation) [35].

We now turn to topological phases of non-interacting fermions in one dimension…
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