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↓ Lecture 10 [16.05.25]

3 | Phases:

With our knowledge from Section 2.1.3 we can now classify the four gapped phases separated by
phase transitions atm D 0; 2; 4:

• m < 0:

Remember that neither the quantum phase nor the Chern number changes as long as the
gap does not close. Hence we can choose a limit in the phase for m < 0 that makes the
computation of the Chern number particularly simple:

^ m ! �1 ! Ed.k/ � �mEe´ ! C.m < 0/ D 0 ! Trivial band insulator

Recall that C counts the skyrmions in the BZ, i.e., how often Od.k/ D Ed.k/=j Ed.k/j“wraps”
around the sphere S2. But if Ed is pinned to the north pole of S2, it cannot “wrap” anything.

• m > 4:

^ m ! C1 ! Ed.k/ � �mEe´ ! C.m > 0/ D 0 ! Trivial band insulator

The argument is the same as form < 0.

• 0 < m < 2:

^ Transition from m < 0 to m > 0 ! Gap closing at � :

HQWZ.� C k/ D kx�
x

C ky�
y

�m�´
C O.k2/ (2.44)

Eq. (2.41) !

C.0 < m < 2/ D C.m < 0/C�C.m < 0 ! m > 0/ (2.45a)

D 0 �

�
sign.�m/jm>0

2
�

sign.�m/jm<0

2

�
(2.45b)

D C1 (2.45c)

! Topological phase (I)

• 2 < m < 4:

^ Transition from m > 4 to m < 4 ! Gap closing at M :

HQWZ.M C k/ D �kx�
x

� ky�
y

C .4 �m/�´
C O.k2/ (2.46)

The negative signs of the momenta do not affect the result for the Chern number. You show
this on → Problemset 5, see also Eq. (2.60) in Section 2.3 later.

Eq. (2.41) !

C.2 < m < 4/ D C.m > 4/C�C.m > 4 ! m < 4/ (2.47a)

D 0 �

�
sign.4 �m/jm<4

2
�

sign.4 �m/jm>4

2

�
(2.47b)

D �1 (2.47c)

! Topological phase (II) ¤ Topological phase (I)
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In summary, this leads us to the…

Phase diagram:

• The two trivial phases form < 0 andm > 4 are the same trivial quantum phase, i.e., they
can be connected by continuously deforming the Hamiltonian without closing the gap. To do
this, start from the limitm � 0 where Ed points to the north pole and then rotate this vector
[more precisely: this (almost constant) function] continuously to the south pole (without
changing its length). Then you end up in the phase form � 4 while the gap on the path was
always on the order of j Ed j (i.e., very large).

• By contrast, the two topological phases I and II are different quantum phases that cannot be
connected by smooth deformations of the Hamiltonian without closing the gap. This follows
from the discreteness of the Chern number and the definition of the latter in terms of the
normalized Bloch vector Od.k/.

• Note that we can compute C.2 < m < 4/ alternatively via the transition from m < 2 to
m > 2. At this transition there are two Dirac points (X and Y ), each of which contributes a
change of the Chern number by �1 which explains the jump from C.0 < m < 2/ D C1 to
C.2 < m < 4/ D �1.

• It is highly recommended to plot Ed.k/ on the BZ as a vector field and observe the changes
form < 0 tom > 4 (in Mathematica you can use the Manipulate function to visualize the
changes). Try to count the skyrmions, i.e., how often Ed.k/“wraps” around the sphere (and
in which direction).

4 | Real-space Hamiltonian:

The real-space Hamiltonian of the QWZmodel is defined on a square lattice with spin-1
2
fermions

on the sites (the spin DOF is responsible for the two bands):

i | SP Hilbert space spanned by

j‰i˛i ! jx; yi„ƒ‚…
external

˝ j�i„ƒ‚…
internal

(2.48)

x D 1; : : : ; Nx : x-position
y D 1; : : : ; Ny : y-position
� D ˙1: spin
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The Pauli algebra is then represented as follows:

�x
D jC1ih�1j C j�1ihC1j (2.49a)

�y
D i j�1ihC1j � i jC1ih�1j (2.49b)

�´
D jC1ihC1j � j�1ih�1j (2.49c)

ii | SP Hamiltonian:

HQWZ $ �

X
x;y

�
jx C 1; yihx; yj ˝

�´ � i�x

2
C h.c.

�
�

X
x;y

�
jx; y C 1ihx; yj ˝

�´ � i�y

2
C h.c.

�
�.m � 2/

X
x;y

jx; yihx; yj ˝ �´

(2.50)

• The kinetic terms of the Hamiltonian (hopping in x- and y-direction) couple the spatial
(“orbital”) motion with the internal (“spin”) degrees of freedom. This is an example
of ↓ spin-orbit coupling in a lattice model.

• Fourier transformHQWZ in both spatial directions and show that the Bloch Hamiltonian
isHQWZ.k/ as defined above.

Pictorially:

iii | Note that there is no magnetic field involved and therefore no magnetic unit cell necessary.

! This makes the QWZmodel our first Chern insulator! ,

(For the parameters 0 < m < 2 or 2 < m < 4, otherwise it is a trivial band insulator.)

Strictly speaking, we should use the SP Hamiltonian (2.50) to construct via Eq. (2.4) the
corresponding second quantized MB Hamiltonian OHQWZ that acts on fermionic Fock space.
The topological phase is then realized by the many-body ground state of OHQWZ for 0 < m < 2

or 2 < m < 4. This ground state is the Fermi sea obtained by filling the lower of the two
bands (both of which are Chern bands; recall that the sum of all Chern numbers always
vanishes, → Problemset 3).
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2.3. The Haldane Model

• Historically, the Haldane model (HM) on the honeycomb lattice was the first model that realized
the phenomenology of the IQHE without (external) magnetic fields (and therefore without Landau
levels) [19]; this phenomenon is nowadays referred to as ⁂ quantum anomalous Hall effect (QAHE).

• Hence the Haldane model is also regarded as the prototype of a ← Chern insulator. However, some
also refer to the ← Hofstadter model as a Chern insulator* [35].

• Regarding classification (← Section 0.6), the Haldane model belongs to the same ← invertible
topological order as the IQHE (← Chapter 1): it features chiral edge modes but no anyonic excitations
and is not protected by any symmetry (only quantization of the Hall response requires charge
conservation).

• Haldane discussed this model in his 2016 Nobel Lecture [103].

1 | Rationale of the following construction:

1. Start with the Hamiltonian of ↓ graphene:
! 2 Dirac cones in the BZ (but not gapped!)

2. Add a staggered potential (parameterm) to break the → sublattice symmetry (SLS) (→ ??):
! Gap opens at Dirac points but Chern number is zero since TRS is not broken.
! Dead end! /

3. Add instead a complex next-nearest neighbor (NNN) hopping (strength t and phase ') to
break ← time-reversal symmetry:
! Gap opens at Dirac points and Chern number is non-zero.
! Success! ,

4. Map out the phase diagram in them=t -' plane.

2 | ^ Real-space MB Hamiltonian on the honeycomb lattice:

OHH D

X
hi;j i

c
�
i cj„ ƒ‚ …

Graphene

C m
X

i

�ic
�
i ci„ ƒ‚ …

Staggered potential

C t
X

hhi;j ii

e�ij i'c
�
i cj„ ƒ‚ …

Complex NNN hopping

(2.51)
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• hi; j i: Nearest-neighbours (NN)

• hhi; j ii: Next-Nearest-neighbours (NNN)

• m: Strength of the staggered potential

• t : Strength of the complex NNN hopping

• ': Phase of the complex NNN hopping

• �i D ˙1: Sublattice-dependent sign (see sketch above)

• �ij D ˙1 and �ij D ��j i : Direction-dependent sign
It is �ij D C1 (�ij D �1) if the arrow points from i to j (j to i) in the sketch above.

Notes:

• This is a two-band model because of the two sites in each unit cell of the honeycomb lattice,
i.e., the fermions are spinless. (This is in contrast to the QWZmodel where the two bands
described internal spin degrees of freedom.)

• Despite the complex hopping, there is no net magnetic flux through the plaquettes of the
honeycomb model, ˆtot D 0, hence no magnetic unit cell is needed (cf. the ← Hofstadter
model).

• You can think of the complex hoppings arising from a local magnetic field “curled up” in
each plaquette (maybe due to local magnetic moments in the material):

Note that other equivalent gauges (= distribution of complex hopping phases) are possible.
For instance, one can“concentrate” the accumulated phase on the central third of the NNN
hopping trajectories so that the outer (orange) triangles do not carry any flux and the blue
triangles cancel the flux through the yellow hexagon.

• The staggered potential breaks → sublattice symmetry (SLS, ??) but not ← time-reversal symme-
try (TRS, Section 2.1.2), whereas the complex NNN hopping breaks SLS and TRS. Breaking
SLS and/or TRS is sufficient to open a gap at the Dirac points, but only breaking of TRS can
result in bands with non-zero Chern number.

3 | Momentum space representation of HH:

We want to understand the physics of Eq. (2.51) in momentum space:

i | Brillouin zone:

Honeycomb lattice = Hexagonal/Triangular lattice + 2-atom basis

• Hexagonal lattice ! Brillouin zone
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• 2-atom basis ! 2 bands

Basis vectors of the Hexagonal lattice:

a1 D
1

2

�p
3; 1

�T
and a2 D

1

2

�p
3;�1

�T
(2.52)

! Reciprocal lattice (= Hexagonal lattice):

b1 D 2�
�

1p
3
; 1
�T

and b2 D 2�
�

1p
3
;�1

�T
(2.53)

The ↓ reciprocal lattice is defined by vectors b that satisfy b � a 2 2�Z for a 2 Za1 C Za2

some lattice vector of the original lattice. The vectors bi above are a basis of this reciprocal
lattice.

! Brillouin zone =Wigner-Seitz cell of the reciprocal lattice:
(= rotated Honeycomb plaquette)

Note that the BZ obtained from the Wigner-Seitz cell is a torus T 2 even though this is
not obvious from its shape (the BZ of every 2D periodic system is a torus as it is just the
parallelogram spanned by the reciprocal basis bi with opposite edges identified):

(Edges with the same arrow type are identified along the direction indicated by the arrow.)

The last diagram is known as ↑ fundamental polygon of the torus.

ii | Bloch Hamiltonian:

The two sublattice degrees of freedom per unit cell lead to a 2 � 2 Bloch Hamiltonian

HH.k/ D ".k/1C Ed.k/ � E� with

dx $ cos.ka1/C cos.ka2/C 1 (2.54a)

dy $ sin.ka1/C sin.ka2/ (2.54b)

d´ $ mC 2t sin.'/ Œsin.ka1/ � sin.ka2/ � sin.k.a1 � a2//� (2.54c)

".k/$ 2t cos.'/ Œcos.ka1/C cos.ka2/C cos.k.a1 � a2//� (2.54d)
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As ".k/ has no effect on the gap and the Chern number, we set it the following to zero.

The above Bloch Hamiltonian follows straightforwardly from the Hamiltonian Eq. (2.51)
together with the sketches above (for the sign conventions) and the Fourier transform

cx;r D
1

p
L1L2

X
k2T 2

e�ikr
Qcx;k and Qcx;k D

1
p
L1L2

X
r2L

eikrcx;r (2.55)

of the fermion modes on the sublattices x D A;B with L D a1ZL1
C a2ZL2

the (periodic)
lattice and T 2 the Brillouin zone. It is then

OHH D

X
k2T 2

‰
�
k
HH.k/‰k (2.56)

with‰k D . QcA;k; QcB;k/
T .

iii | Gap can only close at the corners of the BZ (check this form D 0 and t D 0):

K $
2�

3

�p
3; 1

�
and K 0 $

2�

3

�p
3;�1

�
(2.57)

Form D 0 and t D 0 the Hamiltonian Eq. (2.51) describes the ↓ semimetal ↓ Graphene with
two Dirac cones where the two bands touch.

iv | ! Dirac Hamiltonians: (Here i; j run only over 1; 2: �x and �y)

HH.K C k/ $ kihij�
j

C

h´‚ …„ ƒ
Œm � 3

p
3t sin.'/� �´

C O.k2/ (2.58a)

with h D

p
3

2

�
0 �1

1 0

�

HH.K
0
C k/ $ kih

0
ij�

j
C

h0
´‚ …„ ƒ

ŒmC 3
p
3t sin.'/� �´

C O.k2/ (2.58b)

with h0
D

p
3

2

�
0 �1

�1 0

�
We will use these two Dirac Hamiltonians to derive conditions when the gap closes (= a
phase transition occurs) and to compute the Chern numbers of the bands using the tricks
developed in Section 2.1.3.

4 | Gap closings:

We start by identifying the parameters where the gap closes to pin down the phase transitions:

@K W h´
Š

D 0 ,
m

3
p
3t

D C sin.'/ (2.59a)

@K 0
W h0

´
Š

D 0 ,
m

3
p
3t

D � sin.'/ (2.59b)

! Preliminiary phase diagram:

Eq. (2.59) suggests to use the ratio m

3
p

3t
of staggering strengthm and NNN hopping strength t as

an independent parameter:
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There are 4 different parameter regimes that are separated by lines where the gap closes (note that
the two points ' D ˙� are identified). To identify the phases, we have to compute the Chern
number (of the lower band) in all 4 areas…

5 | To do this, we need the following generalized expression for the Chern number of a Dirac Hamilto-
nian (cf. Section 2.1.3 and our analysis of the QWZmodel in Section 2.2):

H.k/ D

2X
i;j D1

kihij�
j

C h´ �
´

) C D �
sign.h´/ sign.det h/

2
(2.60)

Proof: → Problemset 5

Eqs. (2.58) and (2.60) !

CK D �
1

2
signŒm � 3

p
3t sin.'/� ; (2.61a)

CK 0 D C
1

2
signŒmC 3

p
3t sin.'/� : (2.61b)

The different sign for CK 0 is due to det h0 D �1.

With these preparations we can finally characterize the four gapped phases…

6 | Phases:

We use the same approach as for the QWZmodel in Section 2.2.

• m ! C1:

Ed.k/
2.54
� mEe´ ! Trivial phase with C D 0 (2.62)

• m ! �1:

Ed.k/
2.54
� mEe´ ! Trivial phase with C D 0 (2.63)

• 0 < ' < � and change parameters as follows:

m > 3
p
3t sin.'/„ ƒ‚ …

A

7! m < 3
p
3t sin.'/„ ƒ‚ …

B

(2.64)
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This means we cross a phase boundary where the gap closes at K !

C D 0C CK .B/ � CK .A/
2.61a
D Œ�1=2 � .�1/� � Œ�1=2 � .C1/� D C1 (2.65)

! Topological phase (I)

• �� < ' < 0 and change parameters as follows: [note that sin.'/ < 0]

m > �3
p
3t sin.'/„ ƒ‚ …

A

7! m < �3
p
3t sin.'/„ ƒ‚ …

B

(2.66)

This means we cross a phase boundary where the gap closes at K 0 !

C D 0C CK 0.B/ � CK 0.A/
2.61b
D ŒC1=2 � .�1/� � ŒC1=2 � .C1/� D �1 (2.67)

! Topological phase (II)

! Phase diagram:

Thus in total ther are three different phases, one trivial (C D 0) and two topological (C D ˙1).
Note that just as for theQWZmodel, the two trivial regions withC D 0 are continuously connected
without closing the gap, i.e., they are the same phase.

! 2 � Topological phases + Trivial phase

7 | Time-reversal symmetry:

Finally, let us check when the model becomes time-reversal symmetric.

^ QT0 D K & Eq. (2.34) (assume t ¤ 0) !

dx.k/
‹
D dx.�k/ X (2.68a)

dy.k/
‹
D �dy.�k/ X (2.68b)

d´.k/
‹
D d´.�k/ X for ' D 0; � mod 2� 7 otherwise (2.68c)

The spin-1
2
TRS representation QT 1

2
D �yK is always broken, irrespective of the parameter '.

! C D 0 for ' D 0; � mod 2� (i.e., for real NNN hopping)

¡! Note that when TRS is broken for ' ¤ 0; � mod 2� , it is only possible that C ¤ 0; the phase
diagram above demonstrate that TRS breaking not sufficient.
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2.4. ‡ Experiments

• In 2010 it was predicted that the QAHE could be observed in certain solid state systems [104],
namely magnetic → topological insulators.

• These predictionswere experimentally confirmed in 2013 [105] and further explored in the following
years [106, 107].

• The Haldane model on the honeycomb lattice was artifically realized in a quantum simulator based
on ultracold fermions in 2014 [108].

• Much later, in 2023, a quantum simulation with ultracold fermions of the Qi-Wu-Zhang model was
reported [109].
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