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Problem 9.1: Properties of the linear operator [Written | 2 pt(s) ]

ID: ex_properties_scattering_operator:sm2324

Learning objective

In the lecture you saw that while deriving an approximate solution to the Maxwell-Boltzmann transport

equation we linearize both the flow and scattering terms and introduce the operator L. We then proceed

to solving the corresponding eigenvalue problem, here, you will show that L is indeed Hermitian and

negative.

Consider the following definition of a scalar product,

(g1, g2) =

∫
d3p flo(p) g1(p) g2(p). (1)

where flo is the local Maxwell-Boltzmann distribution function.

a) Show that Eq. (1) satisfies the properties of a scalar product. 1pt(s)

The linear operator is then defined as

LΨ = −
∫

d3p′ d3p1 d
3p′1wp,p1;p′,p′1

flo(p1)× [Ψ(p) + Ψ(p1)−Ψ(p′)−Ψ(p′
1)] . (2)

b) Show that L is Hermitian and negative. 1pt(s)

Problem 9.2: Heat transport in an ideal gas [Oral | 3 pt(s) ]

ID: ex_heat_transport:sm2324

Learning objective

In this problem we consider heat transport in a temperature gradient field and derive the thermal

conductivity constant κ. This problem is a typical example for solving the Maxwell-Boltzmann transport

equation while being not far from equilibrium.

Given the local Maxwell-Boltzmann distribution function,

flo =
n(r)

[2πmkBT (r)]
3/2

exp

[
− p2

2mkBT (r)

]
, (3)
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where n(r) and T (r) are local equilibrium parameters. flo is no longer a solution of the Maxwell-

Boltzmann transport equation.

To find a solution, we propose the following ansatz:

f = flo(1 + Ψ), (4)

where Ψ is small and flo = f(t = 0).

a) First, linearize the scattering term. Show that ∂tf
∣∣
s
= flo(p)LΨ. 1pt(s)

i

b) Now consider the flow term, show that for a stationary solution and in the absence of external 1pt(s)

drive, one can write

Dflo = flo
εp − h

KBT 2
v ·∇T = floLΨ, (5)

where h is the molar enthalpie. Define X = − εp−h

KBT 2 v ·∇T .

Hints:

• We can write flo in terms of the local chemical potential µ(r),

flo = exp

[
−εp − µ(r)

kBT (r)

]
. (6)

• Assume constant pressure p such that µ = µ(T ).

• Use enthalpie H = G+ TS, with µ = G/N and ∂G/∂T = −S.

• Apply the relaxation time approximation to determine LΨ.

c) The temperature gradient∇T induces a heat flux densityw = −κ∇T , where κ is the coefficient 1pt(s)

of thermal conductivity. Assume that∇T = (∂xT, 0, 0) and that v is isotropic to derive κ for

an ideal gas.

κ = kB
T 2

(∇T )2
(X,Ψ) = nkBTτ

Cp

m
. (7)

Hint: Start with the equation for the heat flow,

w =

∫
d3pfvεp =

∫
d3pfl 0Ψvεp. (8)
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Problem 9.3: Barometric hight formula [Oral | 2 pt(s) ]

ID: ex_barometric_hight_formula:sm2324

Learning objective

In this exercise, you will derive the formula which describes the variation of pressure with altitude.

To model the atmosphere we assume a homogeneous ideal gas in equilibrium.

a) Use a linear temperature dependence T (z) = T (0)− Lz to show that the pressure p(z) satisfies 1pt(s)

the following relation,

p(z) = p(0)

(
1− Lz

T (0)

) mg
kBL

. (9)

b) Show that the linear dependence of temperature on altitude can be motivated by the adiabatic 1pt(s)

behavior of air. What would be the lapse rate L?
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