Problem 9.1: Properties of the linear operator
ID: ex_properties_scattering_operator:sm2324

Learning objective

In the lecture you saw that while deriving an approximate solution to the Maxwell-Boltzmann transport equation we linearize both the flow and scattering terms and introduce the operator L. We then proceed to solving the corresponding eigenvalue problem, here, you will show that L is indeed Hermitian and negative.

Consider the following definition of a scalar product,

$$
\begin{equation*}
\left(g_{1}, g_{2}\right)=\int d^{3} p f_{l o}(\boldsymbol{p}) g_{1}(\boldsymbol{p}) g_{2}(\boldsymbol{p}) \tag{1}
\end{equation*}
$$

where $f_{l o}$ is the local Maxwell-Boltzmann distribution function.
a) Show that Eq. (1) satisfies the properties of a scalar product.

The linear operator is then defined as

$$
\begin{equation*}
L \Psi=-\int d^{3} p^{\prime} d^{3} p_{1} d^{3} p_{1}^{\prime} w_{p, p_{1} ; p^{\prime}, p_{1}^{\prime}} f_{l o}\left(\boldsymbol{p}_{\mathbf{1}}\right) \times\left[\Psi(\boldsymbol{p})+\Psi\left(\boldsymbol{p}_{\mathbf{1}}\right)-\Psi\left(\boldsymbol{p}^{\prime}\right)-\Psi\left(\boldsymbol{p}_{1}^{\prime}\right)\right] . \tag{2}
\end{equation*}
$$

b) Show that L is Hermitian and negative.

Learning objective

In this problem we consider heat transport in a temperature gradient field and derive the thermal conductivity constant κ. This problem is a typical example for solving the Maxwell-Boltzmann transport equation while being not far from equilibrium.

Given the local Maxwell-Boltzmann distribution function,

$$
\begin{equation*}
f_{l o}=\frac{n(\mathbf{r})}{\left[2 \pi m k_{B} T(\mathbf{r})\right]^{3 / 2}} \exp \left[-\frac{\mathbf{p}^{2}}{2 m k_{B} T(\mathbf{r})}\right], \tag{3}
\end{equation*}
$$

where $n(\mathbf{r})$ and $T(\mathbf{r})$ are local equilibrium parameters. $f_{l o}$ is no longer a solution of the MaxwellBoltzmann transport equation.
To find a solution, we propose the following ansatz:

$$
\begin{equation*}
f=f_{l o}(1+\Psi), \tag{4}
\end{equation*}
$$

where Ψ is small and $f_{l o}=f(t=0)$.
a) First, linearize the scattering term. Show that $\left.\partial_{t} f\right|_{\mathrm{s}}=f_{l o}(\mathbf{p}) L \Psi$. i
b) Now consider the flow term, show that for a stationary solution and in the absence of external drive, one can write

$$
\begin{equation*}
D f_{l o}=f_{l o} \frac{\varepsilon_{p}-h}{K_{B} T^{2}} \mathbf{v} \cdot \nabla T=f_{l o} L \Psi \tag{5}
\end{equation*}
$$

where h is the molar enthalpie. Define $X=-\frac{\varepsilon_{p}-h}{K_{B} T^{2}} \mathbf{v} \cdot \nabla T$.

Hints:

- We can write $f_{l o}$ in terms of the local chemical potential $\mu(\mathbf{r})$,

$$
\begin{equation*}
f_{l o}=\exp \left[-\frac{\varepsilon_{p}-\mu(\mathbf{r})}{k_{B} T(\mathbf{r})}\right] . \tag{6}
\end{equation*}
$$

- Assume constant pressure p such that $\mu=\mu(T)$.
- Use enthalpie $H=G+T S$, with $\mu=G / N$ and $\partial G / \partial T=-S$.
- Apply the relaxation time approximation to determine $L \Psi$.
c) The temperature gradient $\boldsymbol{\nabla} T$ induces a heat flux density $\boldsymbol{w}=-\kappa \boldsymbol{\nabla} T$, where κ is the coefficient of thermal conductivity. Assume that $\boldsymbol{\nabla} T=\left(\partial_{x} T, 0,0\right)$ and that \boldsymbol{v} is isotropic to derive κ for an ideal gas.

$$
\begin{equation*}
\kappa=k_{B} \frac{T^{2}}{(\nabla T)^{2}}(X, \Psi)=n k_{B} T \tau \frac{C_{p}}{m} . \tag{7}
\end{equation*}
$$

Hint: Start with the equation for the heat flow,

$$
\begin{equation*}
\boldsymbol{w}=\int d^{3} p f \boldsymbol{v} \varepsilon_{p}=\int d^{3} p f_{l 0} \Psi \boldsymbol{v} \varepsilon_{p} . \tag{8}
\end{equation*}
$$

Problem 9.3: Barometric hight formula
ID: ex_barometric_hight_formula:sm2324

Learning objective

In this exercise, you will derive the formula which describes the variation of pressure with altitude.

To model the atmosphere we assume a homogeneous ideal gas in equilibrium.
a) Use a linear temperature dependence $T(z)=T(0)-L z$ to show that the pressure $p(z)$ satisfies the following relation,

$$
\begin{equation*}
p(z)=p(0)\left(1-\frac{L z}{T(0)}\right)^{\frac{m g}{k_{B} L}} . \tag{9}
\end{equation*}
$$

b) Show that the linear dependence of temperature on altitude can be motivated by the adiabatic $1^{p t(s)}$ behavior of air. What would be the lapse rate L ?

