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Problem 8.1: Stirling’s formula [Oral | 1 pt(s) ]

ID: ex_stirlings_formula_sm2023:sm2324

Learning objective

Here you derive the famous and (at least in statistical physics) ubiquitous approximation

n! ∼
(n
e

)n√
2πn for n ∈ N, n → ∞ (1)

which is commonly referred to as Stirling’s formula.

To do this, consider the representation

n! = Γ(n+ 1) =

∞∫
0

xne−x dx =

∞∫
0

exp (n lnx− x) dx (2)

in terms of the Γ-function. Expand the logarithm n lnx − x of the integrand around its sharp

maximum for n � 1 and evaluate the resulting Gaussian integral.

Problem 8.2: Fermionic and bosonic distribution functions [Oral | 3 pt(s) ]

ID: ex_fermionic_and_bosonic_distribution_sm2023:sm2324

Learning objective

In this exercise we re-derive theH-theorem for particles that obey bosonic and fermionic statistics to

end up with the corresponding distribution functions.

In the lecture, it was shown that for classical particles the one-particle density f satisfies the

Boltzmann equation

∂tf + q̇ · ∇qf + ṗ · ∇pf = ∂tf |S (3)

where ∂tf |S describes the change of f due to scattering of the particles. For particle-particle scattering
the expression

∂tf |S = −
∫

d3p′ d3p1 d
3p′1wp′,p′

1;p,p1
X(p,p1,p

′,p′
1) (4)

was motivated, where X(p,p1,p
′,p′

1) = f(p)f(p1)− f(p′)f(p′
1). Now we consider indistinguish-

able quantum particles — they are defined by their statistics, that is, their behaviour upon interchange

of identical particles. In the ansatz of molecular chaos the statistics can be incorporated via

X±(p,p1,p
′,p′

1) = f±(p)f±(p1)
[
1± f±(p′)

] [
1± f±(p′

1)
]
−

f±(p′)f±(p′
1)
[
1± f±(p)

] [
1± f±(p1)

]
(5)
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where X+ (X−) describes bosons (fermions). Thermodynamic equilibrium demands ∂tf
±
0 |S = 0

where f+
0 (f−

0 ) is called Bose-Einstein statistics (Fermi-Dirac statistics).

a) Derive the H-theorem for both bosonic and fermionic statistics. To do this, consider the 1pt(s)

generalized H-functional

H±[f ](t) :=

∫
d3p [f ln f ∓ (1± f) ln(1± f)] where f = f(p, t) . (6)

That is, show that ∂tH
±|S ≤ 0 by using the symmetries of wp′,p′

1;p,p1
and the definition of

X±(p,p1,p
′,p′

1).

b) Argue that ∂tH
±[f±

0 ]|S = 0 implies ln
(

f±
0

1±f±
0

)
= µ

kBT
− ε(p)

kBT
for µ ∈ R, vanishing total momen- 1pt(s)

tum p0 = 0 and energy ε(p) = p2/2m.

Hint: You are allowed to choose the occurring constants to match the required form above. You are not

asked to show that µ and T can be interpreted as chemical potential and temperature, respectively.

c) Derive the Bose-Einstein and Fermi-Dirac statistics f±
0 (p). 1pt(s)

Problem 8.3: Simulation of one-dimensional gas [Written | 5 pt(s) ]

ID: ex_simulation_of_one_dimensional_gas_sm2023:sm2324

Learning objective

In this exercise we illustrate the emergence of macroscopic thermodynamic properties by simulating

the microscopic dynamics of a many-body system. To master this task, you may use the high level

programming language or CAS of your choice. The sample solution as well as the technical hints below

refer to Mathematica. Please note that there are Mathematica installations available on the physics

CIP-pool computers.

Consider a one-dimensional system with N particles at positions qi ∈ R and (conjugate) momenta

pi ∈ R, i = 1, . . . , N . Two particles interact via the (smooth) Van der Waals potential VVdW. The gas

is trapped in the global potential VT. Then the Hamiltonian reads

H =
∑
i

p2i
2m

+
∑
i

VT(qi) +
∑
i>j

VVdW(qi, qj) (7)

where
∑

i>j denotes the sum over all pairs (i, j) and m is the particles’ mass. The Van der Waals

potential is defined as

VVdW(qi, qj) :=
λ

1 + ρ(qi − qj)6
(8)

with the fixed parameters λ, ρ ∈ R+
0 . The trapping potential can be chosen harmonic (n = 2) or

anharmonic (n = 4):

VT(qi) := γ (qi)
n , n = 2, 4 (9)

with γ ∈ R+
0 .
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a) Derive the equations of motion for both trapping potentials (n = 2, 4). What does |VVdW(qi, qj)| < 1pt(s)

∞ for all qi, qj ∈ R tell you about the behaviour of the particles?

b) Derive the time evolution of the center of mass Q := 1
N

∑
i qi for the harmonic (n = 2) trap 1pt(s)

analytically. Can you do the same for the anharmonic (n = 4) trap?

For the sake of simplicity setm = 1, γ = 1/n, λ = 1/6, and ρ = 100. Write a program that integrates

the equations of motion for 0 ≤ t ≤ 100 = tmax and N particles (n = 2, 4). As initial conditions
choose uniformly distributed positions qi(t = 0) ∈ [qmin, qmax] and momenta pi(t = 0) ∈ [pmin, pmax].

c) Plot for N = 100, [qmin = 1.9, qmax = 2.1] and [pmin = −0.01, pmax = 0.01] the center of mass 1pt(s)

motion Q(t). Do this for both, the harmonic and the anharmonic trap. Compare the result for
n = 2 with the analytic one.

d) Plot for the anharmonic trap, N = 100 and the same initial conditions as above the average 1pt(s)

kinetic energy Ekin(t) :=
1
N

∑
i
p2i (t)

2m
. How long does it take to equilibrate?

e) Let te be the equilibration time. Approximate the mean of an observable X(t) via 1pt(s)

X ≈ 1

tmax − te

∫ tmax

te

X(t) dt (10)

and compute the standard deviation σE :=
√
Var[Ekin] =

√(
Ekin − Ekin

)2
. Do this for different

particle numbersN ≤ 100 and plot
√
NσE(N)

(
Ekin

)−1
as a function ofN . In addition, measure

the time required for the solution of the equations of motion for the different particle numbersN .

What do you observe? How does your result for
√
NσE(N)

(
Ekin

)−1
motivate the macroscopic

description of thermodynamics? Based on your time measurements for N ≤ 100, give an
estimate how long an analogous computation for one mole (N = 6 · 1023) of this gas would take.
Please hand in your derivations as well as the plots and your conclusions. If you encounter any

technical problems feel free to ask your tutor. Here are some notes regarding Mathematica:

• Detailed information on all Mathematica functions can be found online:

http://reference.wolfram.com/mathematica/guide/Mathematica.html

• In Mathematica the evaluation of an expression is initiated via Shift+Enter.

• You can define vectors of functions qi(t) or pi(t) with variable length NN via

qvec=Table[Subscript[q,i][t],{i,NN}];

pvec=Table[Subscript[p,i][t],{i,NN}];

• Random initial conditions can be defined via

inq=Table[Subscript[q,i][0]==Random[Real,InitRangeQ],{i,NN}];

inp=Table[Subscript[p,i][0]==Random[Real,InitRangeP],{i,NN}];

where InitRangeQ={qmin,qmax} and InitRangeP={pmin,pmax} define the initial ranges
for qi and pi.

• You can define the differential equations via

sysq=Table[D[Subscript[q, i][t],t]==<EOM>,{i,NN}];
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sysp=Table[D[Subscript[p, i][t],t]==<EOM>,{i,NN}];

where D denotes the derivative with respect to t and for <EOM> the right-hand side of the

equations of motion is to be substituted.

• You can solve the equations of motion numerically via

sol=NDSolve[Join[sysq,sysp,inq,inp],

Join[qvec,pvec],{t,0,tmax},MaxSteps->10 ̂6];

where the solutions are stored in sol.

• You can plot e.g. the center of mass position via

Plot[Sum[Subscript[q, i][t]/NN,{i,NN}]/.sol,{t,0,tmax}]

• You can measure the time for evaluating an expression <expression> via

AbsoluteTiming[<expression>]
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