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Problem 14.1: Quantum Ising model with transverse field: Part 1 [Oral | 4 pt(s) ]

ID: ex_quantum_Ising_model_with_transverse_field_part_1:sm2324

Learning objective

In the classical Ising model, a spin has two states (up/down), no quantum superposition. On the other

hand, in the quantum Ising model, spin can exist with quantum superpositions of up and down states. In

this exercise, you will solve the quantum Ising model in the presence of magnetic field using mean-field

theory.

We consider a system of Ising-coupled (quantum) spins on a lattice where each spin has z nearest
neighbors (z is known as the coordination number of the lattice). A magnetic field of strength Ω is

applied perpendicular to the preferential direction of the spins. The Hamiltonian is given by

H = −J
∑
〈i,j〉

σ̂z
i σ̂

z
j + Ω

∑
i

σ̂x
i (1)

where σ̂α
i are the spin-1/2 Pauli matrices and 〈i, j〉 describes the sum over nearest neighbors. We

consider a ferromagnetic coupling J > 0.

In this exercise we are exploring the physics of this model within a mean-field analysis. We define

the mean-field m ≡ 〈σ̂z〉 as the average magnetization in z-direction.

a) We can always write the spin operators as σ̂z
i = m+ δ̂zi where δ̂z contains the residual operator 1pt(s)

character and describes the deviation from the mean-field.

Transform the Hamiltonian into a sum of uncoupled spins by assuming that the deviations from

the mean-field are small, such that we can neglect terms of second order in δ̂z . Substitute all
occurrences of δ̂z with σ̂z −m after making the approximation.

b) Diagonalize the resulting single-spin Hamiltonian. Let |↗〉 and |↙〉 be the eigenstates. 1pt(s)

c) Compute the probability p↗(T ) to be in the state |↗〉 at temperature T . Then, we can express 1pt(s)

the magnetization as

m = 〈σ̂z〉 = p↗(T ) 〈↗| σ̂z|↗〉+ p↙(T ) 〈↙| σ̂z|↙〉 (2)

= (2p↗(T )− 1) 〈↗| σ̂z|↗〉 .

Compute the right hand side of this equation (as a function of m). The resulting equation is

called a self-consistency equation.

d) Derive the phase diagram as a function of ω = Ω/J and t = kBT/J . To this end, derive an 1pt(s)

analytic expression for the critical temperature tc as a function of ω.
Hint: While the self-consistency equation can not be solved analytically, you can get the idea of how to

derive the phase boundary by inspecting the solutions graphically.
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Problem 14.2: Quantum Ising model with transverse field: Part 2 [Oral | 3 pt(s) ]

ID: ex_quantum_Ising_model_with_transverse_field_part_2:sm2324

Learning objective

In this exercise you will solve the quantum Ising model using an variational ansatz.

We consider the model from the first part at zero temperature. Intuitively, for vanishing field

Ω/J −→ 0, the system favors a configuration where all spins point in either positive or negative

z-direction. On the other hand, for Ω/J −→ ∞, the external field aligns all spins in x-direction.

Ignoring correlations between the spins, we can use these observations to devise a variational wave

function for the system

|Ψα〉 =
N∏
i=1

|↙α〉i =
N∏
i=1

Ry(α) |↓〉i . (3)

Here, Ry(α) describes a rotation around the y-axis in spin-space. An explicit representation is given

by

Ry(α) = e−iα
2
σy = 1 cos

(α
2

)
− iσy sin

(α
2

)
. (4)

a) Calculate the energy per spin of the variational state E(α) = 〈Ψα|H |Ψα〉 /N . 1pt(s)

b) Show that the variational ansatz yields the true ground state in the limits described above. 1pt(s)

c) Visualize the change in the energy landscape E(α) as Ω/J crosses the critical value for the 1pt(s)

phase transition.

Problem 14.3: Black body radiation [Oral | 5 pt(s) ]

ID: ex_black_body_radiation:sm2324

Learning objective

The goal of this exercise is to derive Planck’s law of black body radiation.

We consider a gas of photons at thermal equilibrium. For simplicity, we consider a box of volume

V = L3 and periodic boundary conditions. Due to the boundary conditions, there are discrete energy

levels (modes). Eachmode is labeled by a set of quantum numbersk = 2π
L
zwith z = (zx, zy, zz) ∈ Z3

and a polarization σ ∈ {±1}. The energy of the mode (k, σ) is given by Ek,σ = h̄ωk = h̄c|k| = h̄ck.

a) Each mode can be occupied by nk,σ = 0, 1, 2, . . . photons. Determine the partition function 1pt(s)

Zk,σ(β, V ) of a single mode and the total partition function Z(β, V ).
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b) In the following, we assume that the modes are ‘dense’ such that we can go over to a continuum 1pt(s)

description. In k-space there are exactly two modes (polarization) per ‘volume’ (2π)3/V . Show

that there are N(k)dk ≡ V
π2k

2dk states in a spherical shell of radius k and thickness dk. The

quantity N(k) is called the density of states in k-space. Use the relation D(k)dk = D(ω)dω to

transform to the (frequency) density of states D(ω), i.e. the number of states in the frequency

interval [ω, ω + dω].

c) Show that we can use the density of states to write a sum
∑

k,σ f(k) in the continuum limit as 1pt(s)∫
dωD(ω)f(ω).

d) Write the energy density u ≡ U/V = −(∂β lnZ)/V in the form u =
∫
dω u(ω). The expression 1pt(s)

for the spectral energy density u(ω) is known as Planck’s law.

e) Find the Stefan-Boltzmann law u = σT 4 by integrating the spectral energy density over the 1pt(s)

frequency. Determine the value of σ.
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