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Problem 13.1: Fermi gas at finite temperatures [Written | 3 pt(s) ]

ID: ex_fermi_gas_finite_temperatures:sm2324

Learning objective

In this exercise you will derive and use the Sommerfeld expansion, which is used to approximate Fermi

gases near T = 0.

We consider a quantum gas in 3 dimensions with spin 1/2 particles.

a) Derive the Sommerfeld expansion 1pt(s)

I{H} ≡
∞∫
0

H(E) fFD(E) dE =

µ∫
0

dEH(E) +
π2

6
(kBT )

2H ′(µ) +O(T 4). (1)

Here, H(E) is an arbitrary function that can be Taylor-expanded around E = µ with the

single-particle energy E. fFD(E) = (eβ(E−µ) + 1)−1 is the Fermi-Dirac distribution.

Hints:

• Separate the T = 0 behaviour from fFD(E).

•
∞∫
0

dy y/(exp y + 1) = π2/12. Be careful when shifting integral boundaries.

b) We know that at T = 0, the Fermi energy EF is equal to the chemical potential µ(T = 0), 1pt(s)

whereas the average occupation fFD jumps from 1 to 0 at E = EF = µ(T = 0). Given a small

temperature kBT � EF, use the Sommerfeld expansion to calculate the temperature corrections

of the chemical potential µ(T ) from the condition (why?)

〈N〉(T, µ) ≡
∞∫
0

dE ρ(E) fFD(E)
!
=

EF∫
0

dE ρ(E). (2)

Here, ρ(E) is the density of states in 3 dimensions. Justify, that you can use the relations
µ∫
0

dE ρ(E) ≈
EF∫
0

dE ρ(E) + (µ− EF)ρ(EF) and ρ′(µ) ≈ ρ′(EF).

Solution:

µ = EF

[
1− π2

12

(
kBT

EF

)2

+O(T 4)

]
(3)

c) Now, calculate the temperature corrections of the internal energy and from that the heat capacity. 1pt(s)

Solution:

U(T ) =
3

5
NEF

[
1 +

5π2

12

(
kBT

EF

)2

+O(T 4)

]
(4)
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Problem 13.2: Absence of Bose-Einstein condensation in 2D [Oral | 1 pt(s) ]

ID: ex_absence_bose_einstein_condensation_2d:sm2324

Learning objective

In this exercise, we will show, that the condensation of Bose-gases occurs only in 3 dimensions.

Determine the grand-canonical partition function Z(z, V, T ) for the ideal Bose gas. By z ≡ eβµ we

denote the fugacity. Use the partition function to calculate the mean density n = n(z, T ) = 〈N〉/V
of the gas for d = 2, 3 dimensions.

Show that the ideal Bose gas does not condense in two dimensions at any T > 0.

Notes:

• A powerful generalization of this result is known as Mermin-Wagner theorem. It states that a continuous

symmetry cannot be spontaneously broken at finite temperature in d ≤ 2 dimensions. A Bose-Einstein

condensate has a brokenU(1) symmetry due to the overall phase of the wave function — and is therefore

forbidden in d ≤ 2 dimensions.

• The above result is only valid for a uniform system. A two dimensional Bose gas which is harmonically

trapped condenses at a finite critical temperature.

Problem 13.3: Bose-Einstein condensate inside a harmonic trap [Oral | 3 pt(s) ]

ID: ex_bose_einstein_condensate_harmonic_trap:sm2324

Learning objective

In experiments on Bose-Einstein condensation, atoms are brought into optical traps, which can be

modeled as 3-d harmonic oscillators. In this exercise, we will calculate the influence of this trap on the

critical temperature Tc of the condensate.

Consider a Bose-Einstein condensate in an isotropic 3-d harmonic trap with frequency ω.

a) Determine the density of states ρ(E) inside the trap. 1pt(s)

b) Assume that kBT � h̄ω. Show, that when replacing
∑

i →
∫
dE ρ(E) the average number of 1pt(s)

occupied states is limited by Nmax = c1(kBT/h̄ω)
3. Determine c1.

c) For a given N you will get a temperature Tc, below which the ground state occupation 1pt(s)

〈N0〉 = N h(T/Tc) (5)

is macroscopic. Determine h(T/Tc) by separating the ground state.
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