Learning objective

In this problem you will derive the thermodynamic quantities of the classical Ising model, which was introduced by Ernst Ising in 1924 to describe ferromagnetism.

Consider a chain of N classical, binary magnetic moments $s_{i} \in\{-1,+1\}$. The physics is defined by the $1 D$ Ising Hamiltonian

$$
\begin{equation*}
\mathcal{H}_{1 \mathrm{D}}\left(\left\{s_{j}\right\}\right)=-J \sum_{i=1}^{N-1} s_{i} s_{i+1} \tag{1}
\end{equation*}
$$

with coupling constant $J \in \mathbb{R}$. In the following we consider open boundary conditions (OBC), i.e. the term $s_{N+1} s_{1}$ is missing.
a) Explain pictorially why for $J>0(J<0)$ the system is called ferromagnetic (antiferromagnetic).
with inverse temperature $\beta \equiv \frac{1}{k_{B} T}$. Here $\sum_{\left\{s_{j}\right\}}$ denotes the sum over all configurations $\left\{s_{j}\right\}$. Derive an expression for the free energy per site in the thermodynamic limit

$$
\begin{equation*}
f(T)=-\lim _{N \rightarrow \infty} \frac{1}{\beta N} \ln Z_{N}(T) . \tag{3}
\end{equation*}
$$

c) Calculate the two-point correlation function
for $i=1, \ldots, N$ and $k \leq N-i$ and conclude that there is no phase transition for $T>0$. What happens for $T=0$?

Hints: Show that $\left\langle s_{i} s_{i+k}\right\rangle \rightarrow 0$ for $k, N \rightarrow \infty$ and fixed i. That is, there is no long-range order for finite T in the thermodynamic limit.

Learning objective

In Problem 12.1 you examined the classical Ising model in the absence of a magnetic field. Now, let us go one step further and switch on a magnetic field h.

In the presence of a magnetic field each magnetic moment s_{i} contributes the energy $-h s_{i}$. Then, the Hamiltonian of the system reads

$$
\begin{equation*}
\mathcal{H}_{1 \mathrm{D}}\left(\left\{s_{j}\right\}\right)=-J \sum_{i=1}^{N} s_{i} s_{i+1}-h \sum_{i=1}^{N} s_{i} \tag{5}
\end{equation*}
$$

where we now impose periodic boundary conditions (PBC), i.e. the term $s_{N+1} s_{1}$ is present and we identify $s_{N+1} \equiv s_{1}$.
a) Again calculate the canonical partition function $Z_{N}(T, h)$. To this end, show that the partition function can be cast in the form

$$
\begin{equation*}
Z_{N}(T, h)=\operatorname{Tr}\left[\mathbb{T}^{N}\right] \tag{6}
\end{equation*}
$$

where $\mathbb{T} \in \mathbb{R}^{2 \times 2}$ is a symmetric 2×2-matrix and $\operatorname{Tr}[\bullet]$ denotes the trace (\mathbb{T} is called transfer matrix).
Recall that for any diagonalisable matrix $M \in \mathbb{R}^{n \times n}$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ it holds 1) M^{N} has eigenvalues λ_{i}^{N} and 2) $\operatorname{Tr}[M]=\sum_{i=1}^{N} \lambda_{i}$. Thereby derive an expression for $Z_{N}(T, h)$.
b) Show that the free energy per site in the thermodynamic limit reads

$$
\begin{equation*}
f(T, h)=-\frac{1}{\beta} \ln \left[e^{\beta J} \cosh \beta h+\sqrt{e^{2 \beta J} \sinh ^{2} \beta h+e^{-2 \beta J}}\right] . \tag{7}
\end{equation*}
$$

c) Derive an expression for the magnetization $m(T, h)$ and the susceptibility $\chi(T, h=0)$. To this end, show that the ensemble average of the magnetic moment per spin can be calculated (in the thermodynamic limit) as

$$
\begin{equation*}
m \equiv \lim _{N \rightarrow \infty} \frac{1}{N}\left\langle\sum_{i} s_{i}\right\rangle=\lim _{N \rightarrow \infty} \frac{1}{N} \frac{\partial\left(\ln Z_{N}\right)}{\partial(\beta h)} \tag{8}
\end{equation*}
$$

and use the free energy $f(T, h)$ to evaluate this expression. Is there now a phase transition, meaning a finite magnetization for vanishing magnetic field h and finite T ? Explain the behaviour of $\chi(T, h=0)$ for $T \rightarrow 0$.
d) Compare the results in (c) with the corresponding results of Problem 11.3 for the non-interacting magnetic moments.
Note: In contrast to the one-dimensional Ising chain which we considered here, there is a phase transition at a finite temperature $T_{c}>0$ in two dimensions. The analytical solution due to OnsAger is considered a milestone of theoretical physics.

Problem 12.3: Repetition of Quantum Mechanics: Density operators
[Written | 5 pt(s)]
ID: ex_repetition_of_quantum_mechanics_density_operators:sm2324

Learning objective

This exercise sets up some crucial concepts of quantum statistical mechanics. Some (if not all) of them should already be known from your quantum mechanics lecture.

To describe the state of a quantum mechanical system as a vector $|\Psi\rangle \in \mathcal{H}$ in some Hilbert space \mathcal{H}, it is essential for the state to be known completely (e.g. by measuring a CSCO, a complete set of commuting observables).
In real setups this is usually not possible which motivates a more general notion of quantum mechanical "states". Such a generalized state is described by the statement that the considered system is with classical probability p_{i} in some state $\left|\Psi_{i}\right\rangle$ for $i=1, \ldots, n$ (where $\left\{\left|\Psi_{i}\right\rangle\right\}$ is a not neccessarily orthogonal set of states). We expect that measuring an observable \hat{A} yields the expectation value

$$
\begin{equation*}
\langle\hat{A}\rangle=\sum_{i=1}^{n} p_{i}\left\langle\Psi_{i}\right| \hat{A}\left|\Psi_{i}\right\rangle \tag{9}
\end{equation*}
$$

where $\left\langle\Psi_{i} \mid \Psi_{i}\right\rangle=1,0 \leq p_{i} \leq 1$ and $\sum_{i} p_{i}=1$. The state of the system is now described by the density operator

$$
\begin{equation*}
\hat{\rho}=\sum_{i=1}^{n} p_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right| \tag{10}
\end{equation*}
$$

(often sloppily called density matrix).
A density operator $\hat{\rho}$ is called pure if there is a state vector $|\Psi\rangle \in \mathcal{H}$ such that $\hat{\rho}=|\Psi\rangle\langle\Psi|$ and mixed otherwise. A mixed state $\hat{\rho}$ therefore encodes a classical mixture of quantum states (in contrast to a coherent superposition).
a) Explain why $\hat{\rho}$ indeed encodes our knowledge of the system completely by showing that the expectation value of an observable \hat{A} can be expressed as $\langle\hat{A}\rangle=\operatorname{Tr}[\hat{\rho} \hat{A}]=\operatorname{Tr}[\hat{A} \hat{\rho}]$ where $\operatorname{Tr}[\bullet]$ denotes the trace of an operator.
b) Prove the following characterizing properties of any density operator:
(i) $\hat{\rho}=\hat{\rho}^{\dagger}$ (self-adjoint)
(ii) $\langle\phi| \hat{\rho}|\phi\rangle \geq 0$ for all $|\phi\rangle \in \mathcal{H}$ (positive semi-definite)
(iii) $\operatorname{Tr}[\hat{\rho}]=1$ (normalized trace-class)

Mathematically speaking, a density operator is a (bounded) positive semi-definite and Hermitian trace-class operator with trace one.

In the common perception of quantum mechanics it is perfectly valid to (coherently) superimpose two states $\left|\Psi_{1}\right\rangle,\left|\Psi_{2}\right\rangle \in \mathcal{H}$ to obtain a new physical quantum state $\left|\Psi^{\prime}\right\rangle=\alpha\left|\Psi_{1}\right\rangle+\beta\left|\Psi_{2}\right\rangle$ (up to a normalizing factor). The state space \mathcal{H} (i.e. the Hilbert space) therefore exhibits a vector space structure.
c) Let $\mathcal{B}(\mathcal{H})$ be the vector space of bounded operators on \mathcal{H} ("matrices") and denote by $\mathcal{D}(\mathcal{H}) \subseteq$ $\mathcal{B}(\mathcal{H})$ the set of density operators (characterized by the properties in (b)).
Give an example to show that $\mathcal{D}(\mathcal{H})$ is not a vector space. That is, density operators cannot be linearly combined in general to form a new valid density operator. Yet $\mathcal{D}(\mathcal{H})$ features an interesting property: Show that $\mathcal{D}(\mathcal{H})$ is a convex space, i. e. show that for two density operators $\hat{\rho}_{1}, \hat{\rho}_{2} \in \mathcal{D}(\mathcal{H})$ it follows

$$
\begin{equation*}
t \cdot \hat{\rho}_{1}+(1-t) \cdot \hat{\rho}_{2} \in \mathcal{D}(\mathcal{H}) \quad \text { for } \quad 0 \leq t \leq 1 \tag{11}
\end{equation*}
$$

This is called a convex combination of density operators.
To conclude this short review of density operators, let us focus on the following two important statements:
d) Show that for any Hermitian operator \hat{H} and $\beta \in \mathbb{R}_{0}^{+}$the operator $\hat{\rho}:=e^{-\beta \hat{H}} / \operatorname{Tr}\left[e^{-\beta \hat{H}}\right]$ is a density operator.
Hint: Recall that a Hermitian matrix is positive semi-definite if and only if all eigenvalues are non-negative.
e) The quantity $\gamma[\hat{\rho}]:=\operatorname{Tr}\left[\hat{\rho}^{2}\right]$ is called purity. Show that $\gamma[\hat{\rho}]=1$ if $\hat{\rho}$ is pure and $\gamma[\hat{\rho}]<1$ if $\hat{\rho}$ is $1^{\operatorname{pt(s)}}$ mixed. We conclude that γ can be employed to check whether a given state is a pure quantum state or a classical mixture of quantum states.

