
THEO IV: STATISTISCHE MECHANIK Problem Set 10

Prof. Dr. Hans-Peter Büchler December 20th, 2023

Institute for Theoretical Physics III, University of Stuttgart WS 2023/24

Problem 10.1: Preparation∗ [Oral | 3 bonuspt(s) ]

ID: ex_preparation_airplane:sm2324

Learning objective

During this exercise, we will study the basic principle for lift forces and consequently why an airplane

can fly.

The analysis is based on an incompressible fluid described by a potential flow φ. For simplicity, the

wing is considered infinitely long and the problem reduces to a two-dimensional situation.

The potential flow satisfies the Laplace equation

∂2xφ+ ∂2yφ = 0 (1)

with the flow field V = ∇φ. In the following, we use the strength of analytical functions to solve

the problem of the flow around an airplane wing. We introduce the complex variable z = x+ iy
and consider an analytical function f(z) = φ(x, y) + iψ(x, y) with φ and ψ real valued.

a) Show that the condition that f(z) is an analytical function leads to the Laplace equation for φ 1pt(s)

and ψ.

b) Show that ∇ψ is orthogonal to ∇φ. 1pt(s)

c) Show that we can interpret the real part of an analytical function as the potential flow of an 1pt(s)

incompressible fluid, while the imaginary part gives rise to the streamline function: ψ(x, y) =
const describes the trajectory a particle takes during the flow.

Problem 10.2: Potential flow around a cylinder∗ [Oral | 4 bonuspt(s) ]

ID: ex_potential_flow_cylinder:sm2324

We start with an interesting analytical map of the complex plane onto the complex plane (so called

Joukowsky map). This mapping is defined by the function, see Fig. 1.

z = f(w) = w +
√
w2 − 1 w = f−1(z) =

1

2

(
z +

1

z

)
. (2)

It has the special property, that the flat piece (solid black) for −1 ≤ x ≤ 1 and y = 0 is mapped onto

a circle with radius 1. This mapping allows us to read of the potential flow around the cylinder:

a) Show that the surface of the circle satisfy Imf−1(z) = 0, i.e., the streamline function matches 1pt(s)

the shape of the cylinder.

b) Derive the potential flow φ(x, y) around the sphere. 1pt(s)

c) What is the velocity v0 of the fluid far a way from the cylinder. 1pt(s)
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Figure 1: Analytical mapping of a thin plate onto a cylinder

d) Express the potential in polar coordinates and derive the velocity field v in polar coordinates. 1pt(s)

How does the flow on the surface of the cylinder look like?

Problem 10.3: Potential flow around a cylinder with finite vorticity∗ [Written | 4 bonuspt(s) ]

ID: ex_potential_flow_vorticity:sm2324

An additional solution for the flow of a fluid around a cylinder is given by the analytical function

h(z) = iΓ ln(x+ iy)/2π, which exhibits a finite vorticity.

a) Draw the potential lines and streamline for this flow. 1pt(s)

b) Express the flow potential and the velocity field in polar coordinates. 1pt(s)

c) Show that the vorticity Γ =
∮
γ
ds n ∧ v reduces to Γ = Γez with ez the unit vector along the 1pt(s)

cylinder and n a unit vector orthogonal onto the surface.

d) The square root in f(z) as well as the logarithm in h(z) requires the definition of a branch 1pt(s)

cut. Therefore, h(z) is not globally defined but is only local an analytical function. The correct

positioning of the branch cut places an important role for the illustration of the streamlines.

E.g., the seemingly discontinuities at the front of the wing in Fig. 3(b) is just a consequence of

the branch cut and an artifact of the choice for the positioning of the branch. Discuss the role

of the branch cut and an optimal choice. Point out how one can enforce Mathematica to use a

different branch cut in plotting the streamlines.

Problem 10.4: A Cylinder with a finite lift force∗ [Written | 1 bonuspt(s) ]

ID: ex_cylinder_finite_lift_force:sm2324

Now we combine the two solutions to obtain the flow around a cylinder with a finite vorticity, see

Fig 2(a). The flow is defined by the analytical function f−1(x+ iy) + h(x+ iy). The lift force on the

cylinder can be calculated by the pressure on the surface of the cylinder

FLift =

∮
γ

ds n p (3)

Problem Set Version: 1.0 | sm2324 Page 2 of 5



THEO IV: STATISTISCHE MECHANIK Problem Set 10

�4 �2 0 2 4

�4

�2

0

2

4

Figure 2: (a) Analytical mapping of a thin plate onto a cylinder (b) Illustration of the

vorticity ring trailing the airplane. (Figure taken from http://www.math-

pages.com/home/kmath258/kmath258.htm)

with n the vector normal on the surface γ of the obstacle. In turn, the pressure is derived from

Bernoulli law.

p = −ρv
2

2
+ const. (4)

Use the above results for the flow field on the surface of the cylinder to derive the lift force. Show

that the lift force can be written in the form

FLift = ρv0 ∧ Γ. (5)

We conclude, that the lift force appears is a general consequence of a finite vorticity around the

obstacle. This phenomena explains the lift and drift of rotating balls, which we can observe in tennis,

soccer, etc.,

Problem 10.5: A model of an airplane wing∗ [Written | 7 bonuspt(s) ]

ID: ex_model_airplane_wing:sm2324

Remarkably, the above mapping f−1(z) not only allows us to solve trivially the flow around a

cylinder, but it also allows us to derive the flow around an object resembling the shape of an airplane

wing. Remember, that the mapping f−1(z) maps a unit circle onto the flat piece in Fig. 1. However,

if we translate the circle and scale its radius before the mapping, then the shape of the circle is

mapped onto a shape resembling a realistic airplane wing, see Fig. 3. The scaling and translation is

achieved by the mapping

g(z) = r [z − (a+ ib)] (6)

a) how that the unit circle is mapped onto a shape shown in Fig. 3 under the mapping f−1[g(z)]. 1pt(s)

Play around to derive an optimal set of parameters.

• Hint: The values a = 0.15, b = −0.1, and r = 1.2 is a good starting point.
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Figure 3: Flow around an airplane wing: (a) without vorticity with a highly unstable region (red

circle). (b) A flow with a finite vorticity in turn becomes stable due to the disappearance of

sharp edges in the flow pattern. It is this vorticity which provides the lift of the airplane.

b) How does the shape look like for b = 0 and a = 0? 1pt(s)

c) Demonstrate that the potential flow around the above obstacle in absence of a vorticity is now 1pt(s)

given by the analytical function

f−1(g−1(f(x+ iy))). (7)

d) Demonstrate, that the lift force also for this shape reduces to 1pt(s)

FLift = ρv0 ∧ Γ (8)

Therefore, in absence of a finite vorticity, the airplane wing does not experience a lift force.

• Hint: the analytical mapping provides a orthogonal coordinate transformation).

e) Show, that the flow fields reduces to the shape as shown in Fig. 3(a) by plotting the streamlines 1pt(s)

in Mathematica.

It turns out, that in absence of a vorticity, the flow is highly unstable due to the curvature at the

end of the wing (red circle). This flow decays via the formation of a finite vorticity. Then, the

flow with a finite vorticity is stable and does not exhibit such sharp edges, see Fig. 3(b).

f) Derive the potential flow for this situation from the solution of the flow around a cylinder with 1pt(s)

a vorticity.

g) Find by try and error a somehow optimal value for the vorticity, where the flow at the end of 1pt(s)

the wing becomes smooth. Which vorticity is required?
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Then, we obtain a finite lift force by the general formula in 4(b). This explains why a airplane can

fly: the shape of the wing induces a stable flow with a finite vorticity. It is this finite vorticity,

which is responsible for the lift of an airplane via the magnus force. Note, that vorticity can not

disappear, but can only be annihilated by the opposite vorticity. Therefore, two strings of finite

vorticity are trailing the airplane and disconnect from the wing at the tip, see Fig. 2 (b); it is the

latter vorticity, which is visible, when an airplane flies through smoke.
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