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Preliminaries

Important

This script is in development and continously updated. To download the latest version:

→ itp3.info/rt

If you spot mistakes or have suggestions, send me an email:

→ nicolai.lang@itp3.uni-stuttgart.de

Requirements for this course

We assume that students are familiar with the following concepts:

• Classical mechanics (Lagrangian and Hamiltonian formalism…)

• Non-relativistic quantum mechanics (Schrödinger equation…)

• Classical electrodynamics (Maxwell equations…)

• Basics of algebra & linear algebra (groups, linear maps,…)

• Second quantization and path integrals ★
This is only required for the excursions on quantum gravity!

Literature recommendations

Special relativity

• Schröder: Spezielle Relativitätstheorie [1]
ISBN 978-3-808-55653-5

Compact, pedagogic, mathematically precise introduction (in German).

General relativity

• Schröder: Gravitation: Einführung in die Allgemeine Relativitatstheorie [2]
ISBN 978-3-817-11874-8

Compact, pedagogic, mathematically precise introduction (in German).

• Misner, Thorne, and Wheeler: Gravitation [3]
ISBN 978-0-691-17779-3

Extensive standard textbook on special and general relativity (in English).

• Carroll: Spacetime and Geometry [4]
ISBN 978-1-108-48839-6

Very accessible and mathematically clear textbook on general relativity (in English).

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART
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mailto:nicolai.lang@itp3.uni-stuttgart.de
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• Schutz: A First Course in General Relativity [5]
ISBN 978-1-108-49267-6

Extensive, pedagogic, mathematically precise introduction.

• Rovelli: General Relativity: The Essentials [6]
ISBN 978-1-009-01369-7

Very high level and compact overview with links to quantum gravity.

Quantum gravity

• Zwiebach: A First Course in String Theory [7]
ISBN 978-0-521-88032-9

Extensive, pedagogic introduction with many detailed calculations.

• Rovelli: Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity
and Spinfoam Theory [8]
ISBN 978-1-108-81025-8

Compact, pedagogic introduction, omitting some technical details.

This course follows roughly the textbook Spezielle Relativitätstheorie by Ulrich Schröder [1] in
the first part on special relativity (with admixtures from Schutz [5] and Straumann [9]). The
second part on general relativity follows roughly the textbook Gravitation by Ulrich Schröder [2]
(with admixtures from Misner [3], Carroll [4], and Rovelli [6]). The excursions on quantum
gravity at the end draw from Barton Zwiebach’s A First Course in Sring Theory [7] for the primer
on bosonic string theory, and Carlo Rovelli’s Covariant Loop Quantum Gravity [8] for the sneak
peek at loop quantum gravity (the latter is not yet written).

Original literature

• A. Einstein: Zur Elektrodynamik bewegter Körper [10]
Annalen der Physik, 17, p. 891-921, (1905)

Einstein bootstraps special relativity (in German).

• A. Einstein: Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? [11]
Annalen der Physik, 18, p. 639-641, (1905)

Einstein derives the famous mass-energy equivalence (in German).

• A. Einstein: Zur allgemeinen Relativitätstheorie [12]
Sitzungsberichte der Preußischen Akademie der Wissenschaften, p. 778-786, 799-801, (1915)

A. Einstein: Die Feldgleichungen der Gravitation [13]
Sitzungsberichte der Preußischen Akademie der Wissenschaften, p. 844-847, (1915)

Einstein bootstraps the field equations of general relativity (in German).

• A. Einstein:
Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie [14]
Sitzungsberichte der Preußischen Akademie der Wissenschaften, p. 831-839, (1915)

Einstein explains Mercury’s apsidal precession (in German).

• A. Einstein: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie [15]
Sitzungsberichte der Preußischen Akademie der Wissenschaften, p. 142-152, (1917)

Einstein kickstarts relativistic cosmology and introduces the cosmological constant (in German).

• A. Einstein: Über Gravitationswellen [16]
Sitzungsberichte der Preußischen Akademie der Wissenschaften, p. 154-167, (1918)

Einstein predicts and studies gravitational waves (in German).

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART

https://doi.itp3.info/51594d588ada7bad3fc119a9331d05f1
https://doi.itp3.info/10.1002/andp.19053231314
https://doi.itp3.info/4d77fb41fbadd4ddaee763e69186fd42
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Goals of this course

The goal of this course is to gain a thorough understanding of relativity, our modern theory
of space and time (“spacetime”). This includes both the symmetries and the dynamics of
spacetime; the former being described by special relativity, the latter by general relativity. We
close with an (optional) excursion into the quantization of gravity, and briefly discuss the two
most prominent contenders: string theory and loop quantum gravity.

In particular (★ optional):

(Gray topics are not yet covered by the script.)

Special relativity

• Conceptual foundations special relativity

• Galileian and Einsteinian relativity principles

• Lorentz transformations and the principle of invariance

• Kinematical consequences of Lorentz transformations

• Tensor calculus and the metric tensor

• Special relativity in Minkowski space

• Lorentz- and Poincaré group

• Relativistic mechanics

• Lagrange function and principle of least action

• Electrodynamics as a relativistic field theory

• Noether theorem and the energy momentum tensor

• Relativistic quantum mechanics (Klein-Gordon- and Dirac equation)

General relativity

• Incompatibility of gravitation and special relativity

• Mathematical toolbox:
Riemannian manifolds, metric tensor, Levi-Civita connection, curvature,…

• Conceptual framework of general relativity:
Metric field, general covariance vs. background independence,…

• Classical mechanics in curved spacetime

• Electrodynamics in curved spacetime

• Dynamics of general relativity (Einstein field equations)

• Implications of the Einstein field equations:
Newtonian limit, Gravitational time dilation, Apsidal precession, Light deflection…

• Application: Gravitational waves (linearized Einstein equations)

• Application: Black holes (Schwarzschild solution)

• Application: The standard model of cosmology ★ (FLRWmetric,ƒCDM,…)

• Limitations of general relativity: ★
Einstein-Hilbert action, quantum field theory, (non-)renormalizability,…

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART
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Quantum gravity (excursion)

• The bosonic string ★ :
Quantization, Virasoro algebra, anomalies, Hilbert space, gravitons, tachyons,…

• Concepts of quantum loop gravity ★ :
Discretized gravity, spin networks, vertex amplitude, transition amplitudes,…

Notes on this document

• This document is not an extension of the material covered in the lectures but the script
that I use to prepare them.

• Please have a look at the given literature for more comprehensive coverage. References
to primary and secondary resources are also given in the text.

• The content of this script is color-coded as follows:

– Text in black is written to the blackboard.

– Notes in red should be mentioned in the lecture to prevent misconceptions.

– Notes in blue can be mentioned/noted in the lecture if there is enough time.

– Notes in green are hints for the lecturer.

• One page of the script corresponds roughly to one covered panel of the blackboard.

• Enumerated lists are used for more or less rigorous chains of thought:

1 | This leads to…

2 | this. By the way:

i | This leads to…

ii | this leads to…

iii | this.

3 | Let’s proceed…

• In the bibliography (p. 490 ff.) you can find links to download most papers referenced in
this script (they look like this: Download ). Because most of these papers are not freely
available, you need a username & password to access them. These credentials are made
available to students of my classes.

• This document has been composed in Vim on Arch Linux and is typeset by LuaLATEX
and BIBTEX. Thanks to all contributors to free software!

• This document is typeset in Equity, Concourse and MathTimeProfessional.

Acknowledgements

• Manya Willberg translated some of my ugly sketches into nice TikZ figures.

• Thanks to Angelos Aslanidis, Manya Willberg and Niklas Buschmann who spotted
mistakes and/or typos in the script.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART
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Symbols & Scientific Abbreviations

The following abbreviations and glyphs are used in this document:

cf confer (“compare”)

dof degree(s) of freedom

eg exempli gratia (“for example”)

etc et cetera (“and so forth”)

et al et alii (“and others”)

ie id est (“that is”)

viz videlicet (“namely”)

vs versus (“against”)

wlog without loss of generality

wrt with respect to

iff if and only if

^ “consider”

! “therefore”

¡! “Beware!”

$ non-obvious equality that may require lengthy, but straightforward calculations
�
D non-trivial equality that cannot be derived without additional input
ı
�! “it is easy to show”
�
�! “it is not easy to show”

) logical implication

^ logical conjunction

_ logical disjunction

� repeated expression

� anonymous reference

w/o “without”

w/ “with”

→ internal forward reference (“see below/later”)

← internal backward reference (“see above/before”)

↑ external reference to advanced concepts (“have a look at an advanced textbook on…”)

↓ external reference to basic concepts (“remember your basic course on…”)

→ reference to previous or upcoming exercises

★ optional choice/item

⁂ implicit or explicit definition of a new technical term (“so called…”)

‡ Aside

� Synonymous terms

WD Definition

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART
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The following scientific abbreviations are used in this document:

BRT Belinfante-Rosenfeld tensor
CERN European Organization for Nuclear Research
COE Center of energy
COM Center of mass | Center of momentum

CO Continuity
DFST Dual field-strength tensor

EM Electromagnetic
EMT Energy momentum tensor
EOM Equation of motion

ES Einstein synchronization
FLRW Friedmann–Lemaître–Robertson–Walker (metric)
FST Field-strength tensor
GR general relativity

HME Homogeneous Maxwell equations
HO Homogeneity
IC Invariance of coincidence

IME Inhomogeneous Maxwell equations
IN Inertial (test)

IRF Instantaneous rest frame
IRS Instantaneous rest system
IS Inertial system | Isotropy

ISS International space station
IT Infinitesimal transformation
KG Klein-Gordon

KGE Klein-Gordon equation
LT Lorentz transformation
ME Maxwell equation(s)
OC Orthonormal Cartesian (coordinates)

PDE Partial differential equation
QED Quantum electrodynamics
QFT Quantum field theory

RI Reparametrization invariance
SE Schrödinger equation
SI Système international d’unités
SL Speed of light
SR special relativity

UV Ultraviolett

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART
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↓ Lecture 1 [17.10.23]

0. Setting the Stage

0.1. Terminology

The most important terms in this course and their German correspondence:

relativity D Relativitätstheorie

special relativity D Spezielle Relativitätstheorie (SRT)

general relativity D Allgemeine Relativitätstheorie (ART)

Relation of the theories:

relativity

(
special relativity

general relativity

0.2. Motivation

relativity is arguably the most popular of scientific theories, for it speaks about an entity of every day
experience: space and time. This popularity comes with a caveat:

The“Mona Lisa perspective”

The popular status of relativity in physics parallels

that of the Mona Lisa in arts: Einstein’s magnum opus

inherits an aura of perfection and finality.

The“Puzzle Perspective”

relativity is interesting because it describes some, but
not all facets of reality. Its incompatibility with quantum

mechanics hints at a reality even stranger than its pieces.

¡! You should not view relativity as the “Mona Lisa of physics” but as the harbinger of quantum
gravity1 that, most likely, will come with a reformulation of reality so profound that the “strangeness” of
quantum mechanics and relativity alike will pale in comparison (→ Excursions).

1I use the term“quantum gravity” here very loosely and essentially synonymous with “theory of everything”.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART
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0.3. Ontology

1 | The ⁂ ontology of physics is the collection of “things that exist” (⁂ entities):

Ontology D f Leptons; Hadrons; Higgs„ ƒ‚ …
Matter: Atoms…

; Gauge bosons„ ƒ‚ …
Interactions: Photons…„ ƒ‚ …

Standard Model of Particle Physics

g

2 | Physical theories are models that describe how these entities behave.

Examples:

Classical mechanics describes the dynamics of matter on macroscopic scales.

Quantummechanics describes the dynamics of matter on microscopic scales.

Electrodynamics describes the dynamics of electromagnetic fields on macroscopic scales.

Note that these can be effective (approximate) descriptions that are restricted to finite scales of
validity (length, energy, time).

3 | What is relativity a theory of ?

i | ^ Two notions of space and time:

Events

happens
after

happens
next to

⁂ Relational space & time

Space

Ti
m
e

happens then

Events

happens here

⁂ Newtonian space & time

ii | ^ Delete all entities from the world:

Nothing!

Space

Ti
m
e

then

here

Newtonian space & time left!

Question: Which notion describes reality?

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART
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iii | ^ Newton’s bucket:

flat

no relative motion

flat

relative motion

concave

no relative motion

Question: Rotation with respect to what determines the shape of the water surface?

Tentative answer: Rotation with respect to Newtonian space!

¡! Today, Newtonian space & time (sometimes called neo-Newtonian or Galilean spacetime)
is not seen as a preferred (“absolute”) coordinate system, with respect to which absolute
positions, times and velocities can be measured; it is the entity that is responsible for the
absolute notion of acceleration in Newtonian physics (which is also present in relativity).
It is “the thing” that determines the reference frames that are inertial [6].

! Space & time (Spacetime) is an independent “thing that exists.”

The correct answer to the bucket experiment in relativity will be: The rotation with
respect to the local inertial frame—which is determined by the local gravitational field—
determines the shape of the water surface. This field is determined by the large-scale dis-
tribution of mass and energy in the universe, i.e., the fixed stars; the (rotating) mass of the
earth has a non-zero but tiny effect as well (→ Frame dragging).

4 | Thus we should extend our ontology:

Extended Ontology D f Leptons; Hadrons; Gauge bosons; Higgs„ ƒ‚ …
Standard Model of Particle Physics

; Spacetime„ ƒ‚ …
relativity„ ƒ‚ …

Core Theory
IR Energy scale UV
 �������������! Theory of Everything (?)

g

The ⁂ Core Theory [17] (→ below) is an effective (quantum) field theory that encompasses the
standard model and relativity. It describes all entities know to us on our scales—but is expected
to fail on the Planck scale (in the “UV limit”). The theory that the Core Theory renormalized to
in this UV limit is the famous“Theory of Everything”. This is uncharted territory and we do not
know what this theory looks like.

The extended ontology above is known as ⁂ substantivalism in the philosophy of science, see [18]
for a review and [19] for a supportive account of this ontology. Opposing substantivalism is
⁂ relationalism, which defends the view that spacetime is not an independent entity but an emergent
description of relations between entitites (↑ The Hole Argument). Relationalism is exemplified
by ↑ Mach’s principle, which has been historically influential in the development of general
relativity (though Einstein later changed his views). In the light of non-trivial solutions (of
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the Einstein field equations) for “empty” universes in general relativity, and the (now
experimentally confirmed) existence of gravitational waves, I take a substantivalist stance in this
course.

5 | This extended ontology allows us to answers the question:

relativity is the theory of spacetime (on macroscopic scales),

just as electrodynamics is the theory of the electromagnetic field.

¡! Despite these conceptual similarities, there is a fundamental difference between relativity
and electrodynamics (→ below): Whereas electrodynamics describes the dynamics of the electro-
magnetic field on spacetime, the gravitational field of relativity does not evolve on spacetime;
it is spacetime!

0.4. ‡ The Core Theory

The ⁂ Core Theory S� is the ⁂ effective field theory that describes all entities on the energy scales relevant
for our everyday life [17]. As typical for a field theory, it is best expressed as a ↑ path integral:

A� D

Z
k<ƒ

DgDGD D� exp
�
i

„
S�Œg;G; ; ��

�
:

Momentum
cutoff

Gravitational field
(Metric)

Gauge fields
(Photons…)

Fermion fields
(Electrons…)

Higgs field
(Higgs boson)

Action

What makes this an effective theory is the momentum cutoff ƒ: The theory describes the dynamics of
the fields only up to some finite momentum/energy cutoffƒ. In [17] it is argued thatƒ � 1011 eV is a
reasonable cutoff; since this is well below the Planck scale of 1028 eV, A� does not describe the physics
on these energy scales (e.g., what happens in black holes or near the Big Bang is not encoded in A�). This
reflects the lack of a consistent theory of quantum gravity.

The action S� splits into two parts (plus one additional, technical term that we can savely ignore here):

S�Œg;G; ; �� D SEHŒg�C SSMŒg;G; ; �� :

The first part is the famous ⁂ Einstein-Hilbert action and describes the gravitational field g:

SEHŒg� D
c3

16�G

Z
d4x
p
gR.g/ :

Here,G in the denominator denotes the gravitational constant (not to be confused with the gauge fields
G above). We will encounter this action in the second part of this course as it encodes the (source-free)
⁂ Einstein field equations; there you will learn whatR.g/ is.

The second part is the action of the ⁂ standard model of particle physics (coupled to gravity via g) and
describes all the stuff in our world (matter and interactions) except gravity:

SSMŒg;G; ; �� D

Z
d4x
p
g

�
i N =D �

1

4
G2 C jD�j2 � V.�/C

�
N iLYij� 

j
R C h.c.

��
:

Dirac
(Fermion ke&i)

Yang-Mills
(Gauge boson ke&i)

Klein-Gordon
(Higgs boson ke&i)

Higgs potential
(Symmetry breaking)

Yukawa coupling
(Fermion masses)
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Here“ke&i” stands for kinetic energy and interactions (with gauge bosons). The standard model action
SSMŒG;  ; �� � SSMŒ�; G; ; �� on a static, flat spacetime g D � is typically discussed in a course on
quantum field theory with focus on high energy physics (↑ Section 10.2 of my script on QFT [20]). In this
course on relativity, the existence of SSM will leave its (classical) mark on the Einstein field equations
in form of the ⁂ energy-momentum tensor.

0.5. Relation to other theories

1 | relativity is similar to other theories in that it is a theory of an entity that makes up reality.
However, it is also different in that this very entity makes an appearance in most other theories:

Classical mechanics describes the macr. dynamics ofmatter on spacetime: Ex.t/.
Quantummechanics describes the micr. dynamics ofmatter on spacetime: ‰.Ex; t/.
Electrodynamics describes the macr. dynamics of EM fields on spacetime: E.Ex; t/; B.Ex; t/.

In the light of the extended ontology (where spacetime is an idependent entity described by rela-
tivity), it can be useful to reframe the objective of various theories as follows:

Classical mechanics describes the macr. dynamics ofmatter interacting with a (static) spacetime.
Quantummechanics describes the micr. dynamics ofmatter interacting with a (static) spacetime.
Electrodynamics describes the macr. dynamics of EM fields interacting with a (static) spacetime.

Note that this reading is manifest in the background-independent formulation of the Core Theory
S?Œg;G; ; �� where the metric g and the other fields are treated on the same footing.

! The properties of spacetime (as posited by relativity) must be reflected by these
theories!

This means that we might have to modify known theories to be consistent with relativity.
These modifications must adhere to the ⁂ correspondence priciple: The “old” (non-relativistic)
versions of the theories must be included in the“new” (relativistic) versions as limiting cases.

2 | Incorporating the tenets of special relativity leads to…

• Relativistic mechanics

• Relativistic quantum mechanics (Dirac equation, Klein-Gordon equation)

• Relativistic electrodynamics (= classical electrodynamics)

Classical
Mechanics

Special
Relativity

Electro-
dynamics

Quantum
Mechanics

Relativistic
Mechanics

Special
Relativity

Electro-
dynamics

Relativistic
Quantum
Mechanics
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Luckily, classical electrodynamics is already consistent with special relativity and needs no
modification. By constrast, both classical mechanics and the quantum mechanics you learned in
your previous courses must be modified to reflect the symmetries of spacetime posited by special
relativity.

3 | Incorporating the tenets of general relativity leads to…

• (Relativistic) Mechanics on curved spacetimes

• (Relativistic) Quantum mechanics on curved spacetimes

• (Relativistic) Electrodynamics on curved spacetimes

Relativistic
Mechanics

General
Relativity

Electro-
dynamics

Relativistic
Quantum
Mechanics

Mechanics 
@ Curved ST

General
Relativity

Electro-
dynamics

@ Curved ST

Quantum
Mechanics
@ Curved ST

In this course, we will discuss the modifications needed for mechanics and electrodynamics to fit
the framework of general relativity. We won’t discuss quantum mechanics on curved
spacetimes.

¡! Quantummechanics (describingmatter and gauge bosons) on a curved spacetime is not“quantum
gravity!” Quantum gravity is a theory where the metric field g itself is quantized (which we do not
know how to do).

0.6. Spoiler

The gist of relativity can be summarized as follows:

Spacetime $ Four dimensional Lorentzian manifold .M; g/

Gravitational field $ Metric tensor field g

This is what is meant by the popular statement that gravity “is not a force” but a geometrical deformation
(“curvature”) of spacetime.

and

special relativity W g has signature .1; 3/ (Lorentz symmetry)

general relativity W g is a dynamical field (Background independence)
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You most likely do not understand these statements at this point. That’s fine! To provide you with the
background knowledge to do so is the purpose of this course.

So let’s start…
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1. Conceptual Foundations

◊ Concepts

• Events, Observations, Coincidences, Observers, Reference frames, Einstein synchronization, Cartesian
coordinates, Inertial frames, Inertial coordinate systems, Coordinate transformations, Laws of nature,
Physical models and theories

• Newtonian mechanics, Form-invariance and covariance, Invariance group, Active and passive transfor-
mations, Galilei transformations, Galilei group, Galilean principle of relativity

• Maxwell equations, Aether, Michelson Morley experiment, Principle of Special Relativity

• Isotropy, Homogeneity, Affine transformations

• Special Lorentz transformations, Lorentz Boosts, Lorentz group, Lorentz factor, Limiting velocity,
Lorentz covariance, Addition of collinear velocities, Finite speed of causality

• Spacetime interval, Invariant interval, Time-like, Space-like, Light-like, Light cone, Invariant hyperbo-
lae, Causality, Time-like trajectories, Partial order of events, Causal automorphism

• Relativity principles, Symmetries of spacetime, Simplicity of nature, Compressibility, Anthropic princi-
ple

1.1. Events, frames, laws, and models

1 | Events:

i | A. Einstein writes in his 1905 paper “Zur Elektrodynamik bewegter Körper” [10]:

Wir haben zu berücksichtigen, daß alle unserer Urteile, in welchen die Zeit eine Rolle
spielt, immer Urteile über gleichzeitige Ereignisse sind. Wenn ich z. B. sage: “Jener Zug
kommt hier um 7 Uhr an,” so heißt dies etwa: “Das Zeigen des kleinen Zeigers meiner
Uhr auf 7 und das Ankommen des Zuges sind gleichzeitige Ereignisse.”

And in his 1916 review“Die Grundlage der allgemeinen Relativitätstheorie” [21]:

Alle unsere zeiträumlichen Konstatierungen laufen stets auf die Bestimmung zeiträum-
licher Koinzidenzen hinaus. Bestände beispielsweise das Geschehen nur in der Bewegung
materieller Punkte, so wäre letzten Endes nichts beobachtbar als die Begegnungen zweier
oder mehrerer dieser Punkte. Auch die Ergebnisse unserer Messungen sind nichts anderes
als die Konstatierung derartiger Begegnungen materieller Punkte unserer Maßstäbe mit
anderen materiellen Punkten bzw. Koinzidenzen zwischen Uhrzeigern, Zifferblattpunk-
ten und ins Auge gefaßten, am gleichen Orte und zur gleichen Zeit stattfindenden
Punktereignissen.

We condense this into the following postulate:

§ Postulate 1: Invariance of coincidence IC

• Observations are coincidences of events local in space and time.
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• Coincidences of events are absolute and observer independent.

ii | Example:

Event e1 D hClock A shows time 11:30i

Event e2 D hDetector B detects electroni

Event e3 D hClock C shows time 9:45i

If detector B and clock A are at the same location (spatial coincidence), and clock A shows
11:30 when detector B detects and electron (temporal coincidence), we say that the events e1
and e2 coincide: e1 � e2.

! Collect all events ei that coincide into an equivalence class E:

e1 � e2 � e3 � : : : ! E D fe1; e2; e3; : : : g„ ƒ‚ …
⁂ Coincidence class

In a slight abuse of nomenclature we call the coincidence classE also event. Sometimes we
refer toE as also equivalence class (of events); we use the two terms“coincidence class” and
“equivalence class” interchangeably when referring to classes of events.

Note that this abuse of nomenclature is also used in everyday life: What makes up an“event”
(like a party) is the set of all “little events” (like you meeting your friend) that happen
(roughly) at the same location and the same time.

iii | Assumption:

The set E D fE1; E2; : : : g of all coincidence classes is a complete, observer
independent record of reality.

We call the information stored in E absolute because all observers agree on it.

2 | ⁂ Observer O �⁂ (Reference) Frame O:

Goal: Systematic description of physical phenomena in terms of models.

Question: How to systematically observe reality and encode these observations?

WD Experimental setup to collect data about events in space & time:

x

y

Particle

A

B

C

D

Observer
O

(x,y,T )

Collect data
of events

x

t

y

Event …

A

B

C

D

x

yT
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↓ Lecture 2 [24.10.23]

Assumptions:

• The rods and clocks are conceptual: they do not affect physical experiments.

• All rods and clocks are identical (when brought together, the rods have the same,
time-independent length and the clocks tick with the same rate).

• The lattice is “infinitely dense”: there is a clock at every point in space.

• Each clock is assigned a unique position label Ex and the reference frame label O.

For example, a unique position label Ex for a clock can be obtained by counting the rods in x-,
y- and ´-direction that one has to traverse to reach the clock from the origin. The originO
is, by definition, a “special” clock that is assigned the position label ExO D E0.

¡! Observers are not sitting at the origin, looking at their wristwatch, and observing the events
with binoculars! They are simply collecting and processing the data that is accumulated by the
contraption we call a reference frame.

Since we assume that (ideally) there is one clock at every point in space:

! For every observer O and every coincidence class E there is a unique event eO

E 3 eO D hClock with frame label O and position label Ex shows time ti (1.1a)

DW .t; Ex/O , ŒE�O D .t; Ex/ (1.1b)

for some position label Ex and clock reading t .

We refer to the event .t; Ex/O as the spacetime coordinates of E with respect to frame O. A different
observer O0 will use its own clocks and therefore other events (“coordinates”) .t 0; Ex0/O0 2 E to
refer toE.

In the real world, the↑ tracking detectors of particle colliders are reminiscent of this ideal setup: They
are comprised of 3D arrangements of semiconductor-based particle detectors that all report to a
central computer that then reconstructs the trajectories of scattering products from the combination
of all detection events.

3 | ⁂ Inertial (coordinate) systems:

The setup of a reference frame O above is incomplete and actually very hard to work with: Without
additional constraints on the geometry of the lattice and the correlations of clocks (their “calibra-
tion”), the record of events is essentially arbitrary. Let us therefore impose some deterministic
“calibration procedure” (the same for all frames) that determines how to lay out the rod lattice
and how to synchronize the clocks. This procedure endows our reference frame with a specific
coordinate system, a labeling scheme to describe events.

i | Clock calibration: ⁂ (Poincaré-)Einstein synchronization ES

The conventional synchronization procedure (which is actually in practical use) is
(Poincaré-)Einstein synchronization:

tO
‹
D

1
2

�
tA C QtA

�
(1.2)
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You will study this particular procedure and its properties in → Problemset 1.

In brief, the procedure goes as follows: Consider a reference clockO and some other clock
A you wish to synchronize withO .

(1) To do so, you send a light signal from A toO and note the time tA your clock A reads
when the signal is emitted.

(2) When the signal arrives atO, it is immediately reflected back to A together with the
reading tO of clockO at this very moment.

(3) When the signal arrives back at your clock A (together with the timestamp tO), you
note again the reading of your clock as QtA.

(4) You are now in the possession of three timestamps: .tA; tO ; QtA/. The idea of Einstein
synchronization is to postulate the reciprocity of the speed of light: We declare that the
speed of the signal from A toO is the same as on its way back fromO to A (note that
we cannot measure this reciprocity because we would need already synchronized clocks
to do so!). Under this assumption, the readings of synchronized clocks must satisfy [10]

�tA!O � tO � tA
Š
D QtA � tO � �tO!A , tO

Š
D

1
2
.tA C QtA/ ; (1.3)

which you can locally check with your data .tA; tO ; QtA/. Note that you do not need to
know the distance fromO to A, nor the numerical value of the speed of light c for this
procedure to work!

(5) Now if you just powered on your shiny new clock A for the first time, it is very unlikely
that the condition Eq. (1.3) will be satisfied:

tO D
1
2
.tA C QtA/C ıt D

1
2
Œ.tA C ıt/C .QtA C ıt/� : (1.4)

Here ıt is an offset that you might encounter. But then you can just recalibrate your
clock A by ıt such that the new readings are tA C ıt and QtA C ıt .

Repeating this procedure for all clocks of the frame O allows you to establish a synchroniza-
tion relation between arbitrary pairs of clocks. The fact that (under some reasonable and
experimentally verified assumptions) the order in which you synchronize your clocks does
not matter (the established relation is an equivalence relation, → Problemset 1 and Ref. [22])
makes Einstein synchronization a very useful and peculiar convention [23–25]. However,
one can show that it is the only convention that yields a non-trivial equivalence relation of
simultaneity that is consistent with the causal structure on E (→ later) [26].

ii | Lattice calibration: ⁂ Orthonormal Cartesian coordinates OC :

The layout of the lattice of rods assigns coordinates Ex D .x; y; ´/ to each clock. Depending
on the actual shape of the lattice, we will denote events by different position labels. (Note
that even with rigid rods connected in the topology of a cubic lattice the geometry is not fixed;
for example, you can shear the lattice.) If we assume that space (not spacetime!) is a flat
Euclidean space where all the facts of Euclidean geometry hold good (angles of triangles add
up � , the Pythagorean theorem holds, the area of circles is �r2, etc.), we can parametrize it
without loss of generality by orthonormal Cartesian coordinates. In these coordinates, distances
can be calculated by the Pythagorean formula:
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Spatial distance between clocks at Ex and Ey:

d.Ex; Ey/„ ƒ‚ …
“Physics”

D

q
.x1 � y1/2 C .x2 � y2/2 C .x3 � y3/2„ ƒ‚ …

“Mathematics”

(1.5)

The fact that the coordinates of a point .x; y; ´/ are distances along paths parallel to the
coordinate axes makes the coordinates Cartesian. The fact that Eq. (1.5) holds makes them
orthonormal (i.e., the axes are orthogonal and have the same scale, as suggested by the sketch
above). Coordinates are an intrinsically mathematical concept, they are “labels” to identify
points on a manifold of physical points (or events, if you consider spacetime coordinates). By
contrast, distances carry physical significance: You can measure them with light signals or
rods. The prevalence of Cartesian coordinates makes it easy to conflate these two concepts
(this will become particularly important in general relativity).

Here is a way to check whether your lattice satisfies the OC condition using the clocks of O

(and the assumption of the isotropy of the two-way speed of light):

iii | “Inertial Test” (⁂ law of inertia):

Once you have arranged your rods and synchronized your clocks and thereby established a
Cartesian coordinate system and a (allegedly) well-defined notion of simultaneity, you can
perform the following test and check whether your particular reference frame O passes it or
not:

IN Free particles move at constant velocity and in straight lines.
(⁂ Homogeneity of Inertia)

• It is implied that this statement is true everywhere, anytime, and in all directions.

• Velocities are computed as the time derivative of trajectories in the frame: dEx.t/
dt .

• The property IN implies a certain form of homogeneity in space and time (since free
particles must move in straight lines anywhere and anytime) and isotropy in space (they
must move in straight lines in any direction). Without additional empirical input, this
does not automatically imply that every experiment yields the same result anywhere,
anytime and in any direction. This more general form of homogeneity and isotropy will
be introduced later as HO and IS . Empirical evidence shows that spacetime indeed is
homogeneous HO and space isotropic IS (in the absence of gravity). With this additional
input, the“Inertial Test” to establish IN can be simplified to only one particlemoving in
a straight line at one place for somefinite time (which is actually doable). If you presupose
homogeneity HO but not isotropy IS , you could observe multiple free particles starting
at the same point but moving in different (linearly independent) directions.

Frames equipped with a coordinate system defined by ES + OC

which satisfy IN are called ⁂ inertial coordinate systems.
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To distinguish arbitrary frames O (with arbitrary coordinates) from the special frames
(equipped with Cartesian coordinates and synchronized clocks) that passed the inertial
test, we label these coordinate systems byK, K 0, K 00 etc. (if we refer to arbitrary inertial
systems) and by A, B, C etc. (if we refer to specific inertial systems); the set of all inertial
systems is denoted I.

Alternative definitions:

There seem to be as many definitions of inertial systems as there are texts on special
relativity. Some are equivalent, some are not. Some more useful, others less so (none
are “wrong”, though, because definitions cannot be wrong). Some are operational in nature
(like the one above), some purely mathematical. Here I only want to point out two ways one
can modify the above definition without changing the concept of an inertial system:

• The“inertial test” is crucial to the concept of an inertial frame. It rules out accelerated
frames (both linear or rotating). An alternative to throwing test masses in different
directions and recording their trajectories is to repeat the ES procedure periodically
to test whether the clocks stay in sync. That is, to setup the coordinate system one
synchronizes the clocks once (by recalibrating the clocks) and then repeats the procedure
periodically to check whether the Einstein-synchronization condition remains valid
(ıt D 0 in our description above). As it will turn out in general relativity,
your clocks will not stay in sync in frames that do not pass IN (and vice versa). This is
essentially the definition given by Schutz [5].

• Instead of “hiding” the law of inertia in the synchronization of clocks, one can do a
somewhat reverse modification and“hide” the synchronization of clocks in (an exten-
sion of ) the law of inertia. To this end one extends the “inertial test” by a second class
of tests/experiments, namely:

IN* Two identical particles that are initially adjacent and at rest, and then interact to
repel each other, fly apart with the same velocity in opposite directions. (⁂ Isotropy
of Inertia)

This statement about the isotropy of inertia implies an operational definition of simul-
taneity that is (empirically) equivalent to ES : You synchronize your clocks such that IN*

is satisfied, for example by performing the experiment described by IN* equidistant
between two clocks. When the particles reach the clocks, you reset both to t D 0.
In this synchronization IN* is satisfied by construction; experiments show that clocks
synchronized in this way are also synchronized according to ES (and vice versa).

4 | ⁂ Spacetime diagram

WD Data structure that encodes the collected data of an inertial coordinate system K:

• Often we draw only one dimension of space for the sake of simplicity.
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• Because it will prove useful later, we measure time in units of length by multiplying t with
the speed of light c. The choice of c is arbitrary at this point.

Notation: ^ Two inertial systems K and K 0:

We use the following shorthand notations to refer to the coordinates of events in the spacetime
diagrams ofK andK 0, respectively:

.t; Ex/K � .x/K � x � .t; Ex/ and .t 0; Ex0/K0 �
�
x0
�
K0 � x

0
� .t 0; Ex0/ (1.6)

When it is clear to which inertial system the coordinates belong we drop the subscriptsK andK 0.

↓ Interlude: Reconstructing spacetime diagrams from E

If you are given the set E of events you can reconstruct the spacetime diagram of an inertial system
K by looking in each coincidence class E 2 E for the clock event .t; Ex/K 2 E. You then place E
(or some sub-event you are interested in) graphically at the coordinate .t; Ex/ on a sheet of paper. The
resulting picture is the spacetime diagram ofK. In a another inertial systemK0 the events are arranged
differently because different clock events .t 0; Ex0/K0 2 E and hence coordinates .t 0; Ex0/ are used to draw
the spacetime diagram. How .t; Ex/ and .t 0; Ex0/ are related is unclear at this point.

5 | Empirical facts:

The following facts cannot be bootstrapped from logical thinking alone. They are facts about our
physical reality that we have strong experimental evidence for.

• Inertial systems exist (at least in some approximation).

Examples would be an unaccelerated spaceship floating far away from the solar system or the
interior of the international space station (if you do not measure too precisely). In special
relativity we assume that these systems can be extended to encompass all of spacetime.

• Constructing inertial systems (of arbitrary size) is not possible everywhere.

! general relativity

We will find in our discussion of general relativity that in a gravitational field the
construction of inertial systems is only possible locally. For example: If you extend the ISS
inertial system rigidly beyond the ISS itself, at some point you will find the trajectories of
free particles to deviate from straight lines due to the inhomogeneity of the gravitational
field. We will also see that the synchronization procedure used to calibrate the clocks fails in
gravitational fields (you cannot keep your clocks in sync). For our discussion of special
relativity we ignore this and assume that our inertial systems cover all of spacetime.

6 | Relations between inertial systems:

i | There are three straightforward ways to construct a new inertial systemK 0 from a given one
K. They have in common that the two observers do not move with respect to one another so
that pairs of clocks fromK andK 0 spatially coincide for all times (this implies in particular
that you can check that these pairs of clock run at the same rate):

(1) Translation in time by s 2 R (! 1 parameter)

Procedure:
Duplicate all clocks & rods in place. Label the new clocks withK 0 and the old position
labels. Shift the reading of all clocks by a constant value �s:

.t 0; Ex0/K0 � .t; Ex/K with t 0 D t � s and Ex0
D Ex : (1.7)
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It is easy to see that this modification does not invalidate ES , OC or IN . In particular,
the Einstein synchronization condition Eq. (1.2) remains valid:

tO D
1
2

�
tA C QtA

�
, .tO � s/ D

1
2

�
.tA � s/C .QtA � s/

�
: (1.8)

How to check fromK:
At .t/K D 0 the reading of the origin clock ofK 0 is shifted by �s 2 R.

(2) Translation in space by Eb 2 R3 (! 3 parameters)

Procedure:
Duplicate all clocks & rods and translate the whole lattice by Eb (since all clocks are
type-identical, you can also simply modify the position labels without moving anything).
Label the new clocks withK 0 and keep their synchronization:

.t 0; Ex0/K0 � .t; Ex/K with t 0 D t and Ex0
D Ex � Eb : (1.9)

¡! If you move the lattice K 0 in direction Eb, the origin clock of K with position label
Ex D E0 will spatially coincide with a clock of K 0 with position label translated in the
opposite direction, namely�Eb. The same happens for rotations (→ below) and translations
in time (← above).

It is easy to see that this modification does not invalidate ES , OC or IN . In particular,
distances can still be computed with Eq. (1.5) since

d.Ex; Ey/ D d.Ex � Eb; Ey � Eb/ for Eb 2 R3 : (1.10)

How to check fromK:
At .t/K D 0 the origin ofK 0 is translated by Eb 2 R3 wrt. the origin ofK.

(3) Rotation in space by R 2 SO.3/ (! 3 parameters)

Procedure:
Duplicate all clocks & rods and rotate the whole lattice by the axis and angle defined by
the rotation matrixR (since all clocks are type-identical, you can again simply modify
the position labels without moving anything). Label the new clocks withK 0 and keep
their synchronization:

.t 0; Ex0/K0 � .t; Ex/K with t 0 D t and Ex0
D R�1

Ex : (1.11)

It is easy to see that this modification does not invalidate ES , OC or IN . In particular,
distances can still be computed with Eq. (1.5) since

d.Ex; Ey/ D d.R�1
Ex;R�1

Ey/ for R�1
2 SO.3/ : (1.12)

How to check fromK:
The spatial axes ofK 0 are rotated byR 2 SO.3/ wrt. the spatial axes ofK.

¡! You can add spatial reflections to these transformations (↓ improper rotations), i.e.,
R 2 O.3/ instead of R 2 SO.3/. In our discussions we will omit these and only
comment on them where necessary.

The combination of spatial rotations (proper and improper, i.e., including reflections) and
spatial translations form the ↑ Euclidean group E.3/ D ISO.3/.

However, experiments (and everyday experience) tell us that there is a fourth possibility how
two inertial systems can be related:

Empirical fact:
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(4) Uniform linear motion (⁂ Boost) by Ev 2 R3 (! 3 parameters)

You experience this fact whenever you have a very smooth flight: If you don’t look
out the window (and cover your ears) everything behaves just as if the airplane were
standing still on the ground; there is no evidence that you move with several hundred
kilometers per hour relative to the ground.

How to check fromK:
The origin ofK 0 moves with constant velocity

�
Ev
�
K
D

�
dx.t/
dt

�
K
2 R3.

Note that just from this observation one cannot distinguish between a pure boost and
a boost combined with a spatial rotation of the axes (because one probes only for the
trajectory of a single point). We will → later be more precise about this distinction.

¡! We cannot write down the coordinate transformations for this relation (yet). The
fundamental difference to (1)-(3) is that now the clocks ofK 0 move wrt. the clocks of
K. We cannot interpret this as a simple relabeling of fixed clocks. We cannot even be
sure that theK- andK 0-clocks “run at the same rate” (even if they are type-identical)
because to check this we would have to compare the reading of a pair of clocks (one in
K and one inK 0) at two consecutive points in time. To do this, however, the two clocks
must be at the same place (remember that we can only observe coincidences!). But this
is not possible: Since the two frames move uniformly, two clocks can never meet twice!
As it will turn out, it is this relation (4) [and its concatenations with (1)-(3)] that harbors
the essence of special relativity.

ii | Empirical fact: The relations (1)-(4) are exhaustive.

With this we mean that whenever you encounter two inertial systemsK andK 0 (i.e., both
observers certify that they satisfy our definition of an inertial system, in particular, the
“Inertial Test” IN ), then you will find that the relation between the two is one of the four
relations (1)-(4) or a combination of them.

! The relation of two inertial systems K and K 0 is given by 10 parameters:

Note that all these relations can be operationally defined and measured within the frameK.

¡! The first three sketches can be taken at face value: For example, a translation in time really
corresponds to the situation where all clocks are shifted by s an all spatial labels (in particular
the axes) remain unaffected. However, for the boost (the last sketch on the right) we do not
know (yet) how the coordinates transform (neither time nor space) except that the origin
clock ofK 0 follows a trajectory inK with uniform velocity Ev. This implies that you should
not take the sketch for a boost at face value: For example, we do not know whether the axes
remain parallel as suggested by the sketch (spoiler: in general they will not).

iii | Since the transformations (1)-(3) do not change the state of motion of the observer (and
can therefore be interpreted as a simple relabeling of the position labels and clock readings),
it makes sense to collect all inertial systems K that can be connected in this way into an
equivalence class ŒK� which we call…

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → CONCEPTUAL FOUNDATIONS

29
PAGE

⁂ Inertial frame := Equivalence class ŒK� of all inertial coordinate systemsK related
by spacetime translations and spatial rotations.

Inertial frames ŒK� therefore correspond to the physical notion of a “state of motion.” Physi-
cally, an inertial frame corresponds to the class of all freely moving particles in the universe
that aremutually at rest. Given such a“state of motion” (e.g., by declaring one of the particles
as reference point), you can then construct various Cartesian coordinate systems (e.g., using
said reference particle as your origin) to describe events; these are the inertial systems that
make up the equivalence class ŒK�.

iv | Notation:

We denote these relations between two inertial systems with the following shorthand nota-
tions:

K
R;Ev;s;Eb
�����! K 0; K

R;Ev
��! K 0; K

Ev
�! K 0; K

vx
�! K 0 (1.13)

From left to right the relations become increasingly specialized.

¡! These relations are not symmetric (as indicated by the arrow). For example, K
vx
�! K 0

specifies the situation where the (origin of ) systemK 0 moves with velocity vx in x-direction
as measured in systemK.

v | Coordinate transformations:

^ Two descriptions of the same events:

! Transformation between these descriptions?

'.K ! K 0/ W .t; Ex/K 7! .t 0; Ex0/K0 ⁂ Coordinate transformation
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Finding the functional form of ' (for the non-trivial case Ev ¤ 0) will be our main goal and
central result of this chapter. However, before we can tackle this problem, we first have to
introduce a few more concepts.

↓ Interlude: Relative information

Wecalled the data inE absolute because all observers agree on the coincidence of events. However,
this data cannot include arbitrary statements, e.g., the event “the particle has velocity Ev” cannot
be part of E because we know from experience that different observers in general do not agree on
the velocity of an object. However, following Einstein, we postulated that coincidences are all we
can ever observe; thus all there is to know must be encoded in E! How is this consistent with the
fact that velocities (for example) cannot show up in E?

To understand this, it is instructive to think about quantities that can be derived from the absolute
data in E by means of prescribed algorithms. An algorithm A is simply a program using data from
E to compute other data (it can use potentially multiple eventsE1; E2; : : : ; EN 2 E to do so).
Furthermore, we allow the algorithm to take the label of an inertial systemK 2 I as input:

A W EN � I ! Output data (1.14)

As a constraint, we require that the algorithm must not use any (static) labels A;B; : : : 2 I of
inertial systems. The only reference to a frame it can use is the variable K. This somewhat
arbitrary sounding restriction formalizes the notion that there are no inertial systems that are
“special”. Since all inertial systems must be treated equal, the algorithm cannot refer to any
specific frame. (This → principle of relativity will take the center stage later and turns out to be
crucial for the derivation of the transformation '.)

Let us now contrive two algorithms to compute two quantities that are clearly physically relevant
but are not contained in E :

• Example 1: Velocity

First think about how you would measure the velocity of a particle in the lab: You would
detect the particle at two different (but nearby) locations, measure the time it requires to
get from one to the other, and then compute the difference quotient of distance traveled by
the time needed. Note that there is no way to measure the velocity at one point in space
and time; you always need two points!

To formalize this, consider two eventsE1 andE2 that both contain the sub-event“particle
detected”. The algorithm V.E1; E2IK/ computes the (average) velocity between the two
events as follows:

1. Select the event .t1; Ex1/K 2 E1.

2. Select the event .t2; Ex2/K 2 E2.

3. Compute and return the value Ev D Ex2�Ex1
t2�t1

.

It is important that this algorithm can be used without modifications by all observersK 2 I.
To do so, each observerK plugs into V the two events (which are objective) an its own label
K (since this is the only non-random choice possible).

But then two different observersK andK0 will pick different coordinates .ti ; Exi / (measured
by different clocks) to compute their value of Ev, which obviously can yield different outcomes
(as expected for velocities). Note that for the velocities to be really different it must be
ŒK0� ¤ ŒK�, i.e., the two inertial systems must belong to different frames.

• Example 2: Duration & Simultaneity

A very natural question is how much time passed between two events E1 and E2. The
formal prescription how to answer this question is given by the algorithm T .E1; E2IK/:

1. Select the event .t1; Ex1/K 2 E1.

2. Select the event .t2; Ex2/K 2 E2.
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3. Compute and return the value �t D t2 � t1.

For the very same reason as for the velocity algorithm above, the return value of course
will depend on the chosen“clock events” .ti ; Exi /. And so for the very same reason that
velocities can be observer-dependent, time intervals can be as well. Since we define“simul-
taneity” as the property�t D 0, this possibility for observer-dependent results directly
transfers to our notion of simultaneity!

Note that we did not make quantitative statements about the outcomes for different observers.
We neither showed how velocities depend on the frame nor whether simultaneity really is relative.
(It could just be the case that in our world t2 � t1 always equals t 02 � t

0
1 for a fixed event.) This

depends on the actual numbers of the coordinates. Such statements therefore require quantitative
statements about the relation of .t; Ex/K 2 E and .t 0; Ex0/K0 2 E, which we do not know at this
point (this is exactly the question for the functional form of the coordinate transformation ').

However, what we did show is the possibility that simultaneity is relative, just as we already expect
velocities to be! So when we later find the correct transformation ' and (surprise!) that indeed
simultaneity is not an observer independent fact, you should not be surprised.

Question: Can the values of the electric and magnetic fields EE and EB be included in E? If not,
can you think of an algorithm that determines the electric and magnetic fields EE and EB using
only coincidence data available in E? Do you expect the electromagnetic field to be observer-
dependent?

7 | Henceforth:

Unless noted otherwise, all frames will be inertial (with Cartesian coordinates).

!We will (almost exclusively) work with inertial coordinate systems.

We use the concept of inertial systems because to describe physics by equations, coordinates are a
useful tool. As it turns out, Cartesian coordinates allow for particularly simple equations (at least if
space is Euclidean). So our concept of inertial systems as defined above is the most useful one.

8 | Physical Models:

Let us fix a bit of terminology:

• ⁂ (Physical) laws are ontic features of reality (↑ scientific realism).

Physical laws can only be discovered; they can neither be invented nor modified.

• ⁂ (Physical) models are algorithms used to describe reality.
These algorithms are typically encoded in the language of mathematics.

Physical models are invented and can be modified; I will use the terms model and theory
interchangeably.

¡! These definitions are by no means conventional and you will find many variations in the literature.
For the following discussion, it is only important that the terms we use have precise meaning.
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¡! The validity of models cannot be proven; we can only gradually increase our trust in a model by
repeated observations (experiments) – or reject it as invalid by demonstrating that its predictions
contradict reality (↑ Karl Popper). Note that models might describe reality only approximately and
in specific parameter regimes and still be useful.

You may dismiss this focus on terminology as “philosophical banter.” Conceptual clarity, however,
is absolutely crucial for science – in particular for relativity. Whenever there is confusion in
physics, it is often rooted in the conceptual fuzziness of our thinking.

1.2. Galilei’s principle of relativity

9 | Example: Newtonian mechanics

i | Definition of the model:

• ^ Closed system of N massive particles with masses mi and positions Exi .

• ^ Force exerted by k on i :

Fk!i .Exk � Exi / D .Exk � Exi /fk$i .jExk � Exi j/ (1.15)

It is fk$i D fi$k and therefore Fk!i .Exk � Exi / D �Fi!k.Exi � Exk/.

! Newtonian equations of motion (in some inertial systemK):

mi
d2 EXi
dt2

D

X
k¤i

EFk!i . EXk � EXi / (1.16)

We denote with EXi � EXi .t/ coordinate-valued functions; i.e., Exi D EXi .t/ determines a
spatial point Exi for given t .

Remember: This model fully implements “Newton’s laws of motion”:

1. Lex prima:

A body remains at rest, or in motion at a constant speed in a straight line, unless
acted upon by a force.

This is the ↓ principle of inertia. It is part of the definition of the concept of a Newtonian
force used in Eq. (1.16). Note that it is not a consequence of Eq. (1.16) for Fk!i � 0. It
rather defines (together with the lex tertia below) the frames and coordinate systems
(← inertial systems) in which Eq. (1.16) is valid (recall IN ).
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2. Lex secunda:

When a body is acted upon by a net force, the body’s acceleration multiplied by its
mass is equal to the net force.

This is just the functional form of Eq. (1.16) in words.

3. Lex tertia:

If two bodies exert forces on each other, these forces have the same magnitude but
opposite directions.

This is guaranteed by the property Fk!i D �Fi!k of the forces. Together with the
lex secunda this is an expression of momentum conservation. For two particles:

m1
dv1
dt
Cm2

dv2
dt
D

dp1
dt
C

dp2
dt
D F2!1 C F1!2 D 0 (1.17)

This implies in particular that two identical particles (m1 D m2) that are both at rest at
t D 0must obey v1.t/ D �v2.t/ for all times (recall IN* ).

ii | Application of the model:

As a working hypothesis, let us assume that the model Eq. (1.16) describes the dynamics of
massive particles perfectly (from experience we know that there are at least regimes where it
is good enough for all practical purposes).

iii | Symmetries of Newtonian mechanics:

To understand the solution space of Eq. (1.16) better, it is instructive to study transformations
that map solutions to other solutions.

a | ⁂ Galilei transformations:

We define the following coordinate transformation:

G W R4 ! R4 W

(
t 0 D t C s

Ex0
D REx C Evt C Eb

(1.18)

A Galilei transformationG is characterized by 10 real parameters:

• s 2 R: Time translation (1 parameter)

• Eb 2 R3: Space translation (3 parameters)

• Ev 2 R3: Boost (3 parameters)

• R 2 SO.3/: Spatial rotation (3 parameters; rotation axis: 2, rotation angle: 1)
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The set of all transformations forms (the matrix representation of ) a group:

G
"

C
D fG.R; Ev; s; Eb/g ⁂ Proper orthochronous Galilei group (1.19)

with group multiplication

G3 D G1 �G2 D G.R1R2„ƒ‚…
R3

; R1Ev2 C Ev1„ ƒ‚ …
v3

; s1 C s2„ ƒ‚ …
s3

; R1 Eb2 C Ev1s2 C Eb1„ ƒ‚ …
Eb3

/ (1.20)

You derive this multiplication in → Problemset 1 and show that the group axioms are
indeed satisfied.

As a special case, themultiplication yields the rule for addition of velocities inNewtonian
mechanics:

G.1; Ev1; 0; E0/ �G.1; Ev2; 0; E0/ D G.1; Ev1 C Ev2„ ƒ‚ …
Ev3

; 0; E0/ (1.21)

The full Galilei group is generated by the proper orthochronous transformations together
with space and time inversion:

G D hG
"

C
[ fP; T gi ⁂ Galilei group (1.22a)

P W .t; Ex/ 7! .t;�Ex/ Space inversion (parity) (1.22b)

T W .t; Ex/ 7! .�t; Ex/ Time inversion (1.22c)

b | Galilei covariance & Form-invariance:

Details: → Problemset 1

^ Coordinate transformation Eq. (1.18)

We express the total differential and the trajectory in the new coordinates:

d
dt
D

dt 0

dt
d
dt 0
D

d
dt 0

(1.23)

and

EX 0
i .t

0/ D R EXi .t/C Evt C Eb D R EXi .t
0
� s/C Ev.t 0 � s/C Eb (1.24a)

, EXi .t/ D R
�1
h
EX 0
i .t

0/ � Ev.t 0 � s/ � Eb
i

(1.24b)

Thus the left-hand side of the Newtonian equation of motion Eq. (1.16) reads in new
coordinates:

mi
d2 EXi .t/

dt2
D mi

d2

dt 02
R�1

h
EX 0
i .t

0/ � Ev.t 0 � s/ � Eb
i
D R�1mi

d2 EX 0
i .t

0/

dt 02
(1.25)

Note that the quantitymi d2

dt2
EXi .t/ is not invariant; it transforms with anR�1 2 SO.3/.

And the right-hand side:X
k¤i

EFk!i . EXk.t/ � EXi .t// D R
�1
X
k¤i

EFk!i . EX
0
k.t

0/ � EX 0
i .t

0// (1.26a)
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Here we used the form of the force Eq. (1.15), that EXk.t/ � EXi .t/ D R�1Œ EX 0
k
.t 0/ �

EX 0
i .t

0/� and j EXk.t/ � EXi .t/j D j EX 0
k
.t 0/ � EX 0

i .t
0/j because of R 2 SO.3/.

Note that the force on the right-hand side is not invariant either; luckily, it transforms
with the same R�1 2 SO.3/; it “co-varies” with the left-hand side!

In conclusion, Newton’s equation of motion Eq. (1.16) reads in the new coordinates:

R�1mi
d2X 0

i .t
0/

dt 02
D R�1

X
k¤i

EFk!i . EX
0
k.t

0/ � EX 0
i .t

0//„ ƒ‚ …
! Covariance

(1.27a)

�R
, mi

d2X 0
i .t

0/

dt 02
D

X
k¤i

EFk!i . EX
0
k.t

0/ � EX 0
i .t

0//„ ƒ‚ …
! Form-invariance

(1.27b)

(You can easily check that this holds for P and T as well.)

!

Newton’s EOMs Eq. (1.16) are form-invariant under Galilei transformations.

Or: Newton’s EOMs Eq. (1.16) are Galilei-covariant.

↓ Interlude: Nomenclature

LetX be some group of coordinate transformations (here: X D G the Galilei group).

• A quantity is calledX -invariant if it does not change under the coordinate transfor-
mation. Such quantities are calledX -scalars.

An example is the massm in Eq. (1.16) (which is also constant).

• A quantity is calledX -covariant if it transforms under some given representation of
theX -group. If this representation is the trivial one (i.e., the quantity does not change
at all) this particularX -covariant quantity is then also anX -scalar.

An example of a Galilei-covariant (but not invariant) quantity is the force EFk!i which
transforms under a representation of G .

• An equation is called X -covariant if the quantity on the left-hand side and on the
right-hand side areX -covariant (under the sameX -representation).

An example is Newton’s lex secunda Eq. (1.16) wheremi d2

dt2
xi .t/ transforms in the

same (non-trivial) representation as EFk!i .

• X -covariant equations have the feature that a X -transformation leaves them form-
invariant, i.e., they“look the same” afterX -transformations because their left- and
right-hand side vary in the same way (they“co-vary”). Note that the quantities in a
form-invariant equation do not have to be invariant.

An example is again Eq. (1.16) as we just showed. Note that Ex0
i .t

0/ and Exi .t/ are
different vectors such that the two sides of the equation as not invariant (but covariant).
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↓ Lecture 3 [31.10.23]

c | Active symmetries:

There is something additional and particularly useful to be learned from the coordinate
transformation above. We showed:

If EXi .t/ satisfies mi
d2 EXi .t/

dt2
D

X
k¤i

EFk!i . EXk.t/ � EXi .t// (1.28a)

then EX 0
i .t

0/ satisfies mi
d2 EX 0

i .t
0/

dt 02
D

X
k¤i

EFk!i . EX
0
k.t

0/ � EX 0
i .t

0// (1.28b)

But t 0 in the lower statement is just a dummy variable that can be renamed to whatever
we want:

If EXi .t/ satisfies mi
d2 EXi .t/

dt2
D

X
k¤i

EFk!i . EXk.t/ � EXi .t// (1.29a)

then EX 0
i .t/ satisfies mi

d2 EX 0
i .t/

dt2
D

X
k¤i

EFk!i . EX
0
k.t/ �

EX 0
i .t// (1.29b)

Use colors to highlight the changes.

! EX 0
i .t/ D R

EXi .t � s/C Ev.t � s/C Eb is a new solution of Eq. (1.16)!

Note that for s D 0 it is EX 0
i .0/ D R EXi .0/ C Eb and PEXi .0/ D R

PEXi .0/ C Ev, i.e., the
solution EX 0

i .t/ satisfies different initial conditions.

!We say:

The Galilei group G is an ⁂ invariance group or an (active) symmetry of
Eq. (1.16).

↓ Interlude: Active and passive transformations

It is important to understand the conceptual difference between the two last points:

• In the previous step we took a specific trajectory (solution of Newton’s equation) and
expressed it in different coordinates. We then found that the differential equation
obeyed by the same physical trajectory in these new coordinates “looks the same” as
in the old coordinates. We called this peculiar feature of the differential equation
“Galilei-covariance” or “form-invariance”. This type of a transformation is called
passive because we keep the physics the same and only change our description of it.

• In the last step, we have shown that there is a dual interpretation to this: If a differential
equation is form-invariant under a coordinate transformation, then we can exploit this
fact to construct new solutions from given solutions (in the same coordinate system!).
This type of transformation is called active because we keep the coordinate frame fixed
and actually change the physics. You can therefore think of active transformations/sym-
metries as “algorithms” to construct new solutions of a differential equation (a quite
useful feature since solving differential equations is often tedious).

10 | Galilean relativity:
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i | Remember:

The law of inertia holds (by definition) in all inertial systems.

! The “inertial test” IN cannot be used to distinguish inertial systems.

This is a tautological statement because we define inertial systems in this way!

Empirical fact:

Every mechanical experiment (not just the “inertial test”) yields the same result in
all inertial systems.

This is not a tautology but an empirically tested feature of reality.

This motivates the following postulate (first given by Galileo Galilei):

§ Postulate 2: Galilei’s principle of Relativity GR

No mechanical experiment can distinguish between inertial systems.

¡! In this formulation, GR encodes a (so far uncontested) empirical fact. In particular, it does
neither refer nor rely on (the validity of ) any physical model, e.g., Newtonian mechanics. As
such we should expect that it survives our transition to special relativity.

Here is amore operational formulation of GR : You describe a detailed experimental procedure
using equipment governed bymechanics (springs, pendula, masses,…) that can be performed
in a closed (but otherwise perfectly equipped) laboratory. Then you copy these instructions
withoutmodifications and hand them to scientists with labs in different inertial systems. They
all perform your instructions and get some results (e.g. the final velocities of a complicated
contraption of pendula). When they report back to you, their results will all be identical.
This is the essence of GR .

ii | In the language of models that describe themechanical laws faithfully, GR can be reformulated:

§ Postulate 3: Galilei’s principle of Relativity GR'

The equations that describe mechanical phenomena faithfully have the same
form in all inertial systems.

If this would not be the case you could distinguish between different inertial systems by
checking which formula you have to use to describe your observations. Imagine a rotating
(non-inertial) frame where you have to use a modified version of Newton’s EOMs (that
include additional terms for the Coriolis force) to describe your observations.

Note that “the same form” actually means that the models are functionally equivalent (have
the same solution space). Functional equivalence is equivalent to the possibility to formulate
the model (= equation of motion) in the same form.

iii | Under the assumption (!) that Newtonian physics (in particular Eq. (1.16)) describes
mechanical phenomena faithfully, this implies:

Newton’s equations of motion have the same form in all inertial systems.
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¡! This statement is not equivalent to GR or GR' as it relies on an independent empirical
claim (namely the validity of Newton’s equation as a model of mechanical phenomena).

We can now combine this claim with our (purely mathematical!) finding concerning the
invariance group of Newton’s equations:

! Preliminary/Historical conclusion:

'.K
R;Ev;s;Eb
�����! K 0/

‹
D G.R�1;�Ev;�s;�Eb/ 2 G

Recall that rotating the coordinate axes byR makes the coordinates of fixed events rotate in
the opposite directionR�1; the same is true for the other transformations.

Since this is a course on relativity, we should be skeptical (like Einstein) and ask:

Is this true?

1.3. Einstein’s principle of special relativity

11 | Mathematical fact:

The Maxwell equations of electrodynamics are not Galilei-covariant.

Proof: → Problemset 1

Here for your (and my) convenience the Maxwell equations in vacuum (in cgs units):

Gauss’s law (electric): r �E D 0 (1.30a)

Gauss’s law (magnetic): r �B D 0 (1.30b)

Law of induction: r �E D �
1

c
@tB (1.30c)

Ampère’s circuital law: r �B D
1

c
@tE (1.30d)

“Handwavy explanation” for the absence of Galilei symmetry:

The Maxwell equations imply the wave equation for both fields:�
r
2
�
1

c2
@2t

�
X D 0 for X 2 fE ;Bg : (1.31)
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Here the speed of light c plays the role of the phase and group velocity of the waves; i.e., all light
signals propagate with c. Form-invariance under some coordinate transformation ' implies that
the same light signal propagates with the same velocity c in all coordinate systems related by '. This
is clearly incompatible with the Galilean law for adding velocities (according to which a signal with

velocity u0
x in frameK 0 propagates with velocity ux D u0

x C vx in frameK ifK
vx
�! K 0).

12 | The simplest escape from our predicament:

Maybe there is no relativity principle for electrodynamics?

Reasoning: If we cling to the validity of Newtonian mechanics and Galilean relativity GR , we are
forced to assume ' D G as the transformation between inertial systems. Since the Maxwell
equations are not form-invariant under these transformations, they look differently in different
inertial systems. So there must be a (class of ) designated inertial coordinate systems ŒK0� in which
the Maxwell equations in the specific form Eq. (1.30) you’ve learned in your electrodynamics
course are valid.

! ŒK0� = Frame in which the“luminiferous aether” is at rest (?)

13 | Michelson Morley experiment (plots from [27,28]):

Michelson’s original setup (1881) Michelson &Morley’s improved setup (1887)

! The (two-way) speed of light is the same in all directions.

! There is no“luminiferous aether” ŒK0�.
(Or it is pulled along by earth – which contradicts the observed ↑ aberration of light.)

! The speed of light c cannot be fixed wrt. some designated reference frame ŒK0�.

!No experimental evidence that the Maxwell equations do not hold in all inertial systems.

! Relativity principle for electrodynamics?!

• Historical note:

A. Einstein writes in a letter to F. G. Davenport (see Ref. [29]):

[...] In my own development Michelson’s result has not had a considerable influence. I
even do not remember if I knew of it at all when I wrote my first paper on the subject
(1905). The explanation is that I was, for general reasons, firmly convinced how this
could be reconciled with our knowledge of electro-dynamics. One can therefore understand
why in my personal struggle Michelson’s experiment played no role or at least no decisive
role.

! The Michelson Morley experiment did not kickstart special relativity.

• ModernMichelson-Morley like tests of the isotropy of the speed of light achieve much higher
precision than the original experiment. The authors of Refs. [30, 31], for example, report
an upper bound of�c=c � 10�17 on potential anisotropies of the speed of light by rotating
optical resonators.

14 | Two observations:

(1) No evidence that there is no relativity principle for electrodynamics.
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(2) Why does Galilean relativity GR treat mechanics differently anyway?

Put differently: Why should mechanics, a branch of physics artificially created by human
society, be different from any other branch of physics? This is not impossible, of course, but
it certainly lacks simplicity! (To Galilei’s defence: At his time“mechanics” was more or
less identical to “physics”.)

! A. Einstein writes in §2 of Ref. [10] as his first postulate:

1. Die Gesetze, nach denen sich die Zustände der physikalischen Systeme ändern, sind
unabhängig davon, auf welches von zwei relativ zueinander in gleichförmiger Translations-
bewegung befindlichen Koordinatensystemen diese Zustandsänderungen bezogen werden.

We reformulate this into the following postulate:

§ Postulate 4: (Einstein’s principle of) Special Relativity SR

No(((((mechanical experiment can distinguish between inertial systems.

Note the difference to Galilean relativity GR according to which no experiment governed by classical
mechanics can distinguish between inertial systems. Einstein simply extended this idea to all of
physics – no special treatment for mechanics!

¡! There are various names used in the literature to refer to SR . Here we call it the principle of
special relativity, where the“special” refers to its restriction on inertial systems – as compared to
the principle of general relativity in general relativity that refers to all frames (→ later). To
emphasize its difference to Galilean relativity GR , some authors call SR the universal principle of
relativity, where“universal” refers to its applicability on all laws of nature (not just the realm of
classical mechanics).

15 | But now that there are more contenders (mechanics, electrodynamics, quantum mechanics) all of
which must be invariant under the same transformation ', we have to open the quest for ' again:

What is '?

The differently colored/shaped trajectories symbolize phenomena of mechanics (red), electro-
dynamics (blue), and quantum mechanics (green). According to SR , all of them must be form-
invariant under a common coordinate transformation '.

¡! To reiterate: This is not a question about symmetry properties of equations or models! It is an
experimentally testable fact about reality. There is only one correct ' and it is just as real as the
three-dimensionality of space.
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1.4. Transformations consistent with the relativity principle

Since this is a theory lecture, so we cannot do experiments. Let us therefore weaken the question slightly:

What is most general form of ' consistent with reasonable assumptions about reality?

§ Assumptions 1

SR Special Relativity: There is no distinguished inertial system.

IS Isotropy: There is no distinguished direction in space.

HO Homomgeneity: There is no distinguished place in space or point in time.

CO Continuity: ' is a continuous function (in the origin).

Something is “distinguished” if there exists an experiment that can be used to identify it unambiguously.

This derivation follows Straumann [9] with input from Schröder [1] and Pal [32].

Detailed calculations: → Problemset 2

1 | Setup:

^ Two inertial systems K
R;Ev;s;Eb
�����! K 0.

^ Event E 2 E with coordinates x � .t; Ex/K 2 E and x0 � .t 0; Ex0/K0 2 E:

We are interested in the transformation ' � '
R;Ev;s;Eb

with

x0
D '.x/ : (1.32)

Note that SR forbids us to use the inertial system labelsK orK 0 in the definition of '! We can
only use the relative parameters .R; Ev; s; Eb/measured inK wrt K 0.

2 | Affine structure:

Our first goal is to show that ' must be an affine map.

i | ^ Event QE 2 E with coordinates Qx D x C a in K for some shift a 2 R4.

ii | Homogeneity HO !

'.x C a/ � '.x/
Š
D a0.'; a/ (1.33)
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a0.'; a/: Shift in K 0 independent of x (this reflects homogeneity in space and time)

Imagine the right-hand side a0.'; a/ where not independent of x. Then there would be an
interval (say, a rod of spatial extend Ea) that has the same length Ea inK no matter where it is
located, but variable length Ea.'; Ea; Ex/ inK 0 as a function of Ex. The observer inK 0 can then
use this “magic rod” to pinpoint absolute positions in space (the same argument works in
time, then with a clock instead of a rod).

iii | For x D 0: a0.'; a/ D '.a/ � '.0/!

'.x C a/ D '.x/C '.a/ � '.0/ : (1.34)

iv | Let ‰.x/ WD '.x/ � '.0/!

‰.x C a/ D ‰.x/C‰.a/ and ‰.0/ D 0 : (1.35)

This would be satisfied if ‰ were linear! But we do not know this yet…

v | Claim: ‰.x/ continuous at x D 0 (follows from CO )) ‰ is linear.

a | Eq. (1.35)! ‰.nx/ D n‰.x/ for n 2 N (show by induction!)

b | Eq. (1.35)! ‰.�x/ D �‰.x/ (use‰.0/ D 0)! ‰.nx/ D n‰.x/ for n 2 Z

c | ^ Rational number r D m
n
, m; n 2 Z!

r‰.x/ D m
n
‰.x/ D 1

n
‰.mx/ D 1

n
‰.nrx/ D n

n
‰.rx/ D ‰.rx/ : (1.36)

d | ‰.x/ continuous at x D 0
Eq. (1.35)
�����! ‰.x/ continuous everywhere.

Show this using the definition of continuity, i.e., limx!0‰.x/ D ‰.0/!

e | r‰.x/ D ‰.rx/ for r 2 Q
‰ continuous
��������! r‰.x/ D ‰.rx/ for r 2 R

Remember that real numbers are defined in terms of (equivalence classes of ) limits of
rational numbers, i.e., Q is dense in R.

f | In conclusion:

‰.x C a/ D ‰.x/C‰.a/ and ‰.rx/ D r‰.x/ (1.37)

! ‰ is linear.

vi | If ‰ is linear, '.x/ D ‰.x/C '.0/ is affine:

'.x/ D ƒx C a (1.38)

withƒ D ƒ.R; Ev; s; Eb/ a 4 � 4matrix and a D a.R; Ev; s; Eb/ a 4-dimensional vector.

3 | The spacetime translation a is simply a D .�s;�Eb/ [recall Eqs. (1.7) and (1.9)].

! ^ Homogeneous transformations (a D 0) in the following:

x0
D '.x/ D ƒx : (1.39)
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4 | We already know from our discussion of inertial systems [recall Eq. (1.11)]:

Rotation group SO.3/ must be part of the transformations ' with representation

x0
D ƒR�1x with ƒR WD

�
1 0

0 R

�
where R 2 SO.3/ : (1.40)

This is just a fancy way to rewrite Eq. (1.11).

5 | ⁂ Pure boost K
1;Ev;0;E0
�����! K 0:

i | ^ .t/K D 0! Ex
0 DMEx for an invertible matrix M 2 R3�3:

This is the most general transformation for the position labels of the K and K 0-clocks at
t D 0. Note that we make no statements on the times t 0 displayed by theK 0-clocks at t D 0.

MD R1DR2 D R1DR
T
1 R DMR (1.41)

with R 2 O.3/ andMT DM .

This follows from the ↓ singular value decomposition of real matrices withR1; R2 2 O.3/ and
D a diagonal matrix.

ii | With spatial rotations Eq. (1.40) we can always transform theK-coordinates by Ex 7! R�1 Ex

such that Ex0 DMEx DM Ex at t D 0!

⁂ Pure boost K
1;Ev;0;E0
�����! K 0:

x0
D ƒEvx ,

(
t 0 D a.Ev/ t C Eb.Ev/ � Ex

Ex0
DM.Ev/ Ex C Ee.Ev/ t

(1.42)

• a: Ev-dependent scalar

• Eb; Ee: Ev-dependent vectors

• MT DM : Ev-dependent 3 � 3-matrix

Pure boosts are therefore characterized by a symmetric transformation of the spatial coor-
dinates at t D 0 in K. Geometrically, this implies that there are three (orthogonal) lines
through the origin of K which are mapped onto themselves under the boost (spanned by
the eigenvectors ofM.Ev/). The only other possibility is that there is a single invariant line,
which then coincides with the rotation axis of a spatial rotation mixed into the boost. The
pure boosts are therefore those boosts without any rotation mixed in.

!We focus on pure boosts in the remainder of this derivation:
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¡! Our characterization of a pure boost does not imply that at t D 0 the axes of the two
systemsK andK 0 align (as suggested by the sketch and naïvely expected). If this were the
case, the eigenbasis ofM.Ev/ would be given by the basis vectors Oei inK. Since we do not
know the form ofM.Ev/ (yet), we cannot make this assumption! So do not take this sketch
literally, it only illustrates symbolically the situation of a pure boost in an arbitrary direction.

6 | Isotropy:

Here are two lines of arguments that use isotropy IS to restrict the form of Eq. (1.42) further:

• Argument A:

i | We claim that isotropy IS requires the followingmultiplicative structure for pure boosts
and rotations:

ƒRƒEvƒR�1
Š
D ƒREv , 8x W ƒRƒEvx D ƒRx

0 Š
D ƒREvƒRx : (1.43a)

, 8x W ƒEvx
Š
D ƒR�1ƒREv.ƒRx/ : (1.43b)

The reasoning goes as follows:

1. ^ Left-hand side of Eq. (1.43b):

x D .t; Ex/ are the coordinates of some event inK andƒEvx of the same event in
K 0:

2. ^ Right-hand side of Eq. (1.43b):

We consider y D .t; Ey/ WD ƒRx D .t; REx/ as an active transformation, i.e., y
denotes a different event that is spatially rotated from x byR. To state our isotropy
claim IS , we now rotate the coordinate systemK 00 in which we want to express
this event in the same way. This implies a rotated boost ƒREv and a subsequent
rotation of the coordinate axes byR viaƒR�1 . (Remember that when rotating the
coordinate axes byR, the coordinates of an event transform byƒR�1 .):
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3. Spatial isotropy IS is the property that the event x as seen from K 0 cannot be
distinguished from the rotated event y as seen from the rotated systemK 00; this is
Eq. (1.43b).

ii | Now we can use Eq. (1.42) to rewrite Eq. (1.43a) as

t 0
Š
D a.REv/ t C Eb.REv/ �REx (1.44a)

REx0 Š
DM.REv/REx C Ee.REv/ t (1.44b)

iii | A comparison with Eq. (1.42) (for all t and Ex and arbitrary Ev andR) leads to constraints
on the unknown functions:

– a.Ev/
Š
D a.REv/! a.Ev/ D av with v D jEvj

Functions invariant under arbitrary rotations can only depend on the norm jEvj.

– Eb.Ev/ Š
D RT Eb.REv/! Eb.Ev/ D bv Ev

Note that Eb.REv/�REx D ŒRT Eb.REv/�� Ex. LetR Ov be some rotationwith axis Ov D Ev=v

such thatR Ov Ev D Ev; then Eb.Ev/
Š
D RT

Ov
Eb.Ev/ and therefore Eb.Ev/ / Ev since rotation

matrices have only a single eigenvector.

– RM.Ev/
Š
DM.REv/R!M.Ev/ D cv 1C dv Ov Ov

T

First recall thatM T .Ev/ DM.Ev/ such thatM.Ev/ can be written as sum of orthog-

onal projectors (projecting onto its eigenspaces). It is in particularR OvM.Ev/R
T
Ov

Š
D

M.Ev/ such that one of the eigenvectors must be Ov / Ev. The remaining two eigen-
vectors are orthogonal to Ov and can therefore be mapped onto each other by R Ov .
SinceR Ov commutes withM.Ev/, their eigenvalues must be degenerate such that
the two-dimensional subspace orthogonal to Ov is a degenerate eigenspace. The
most general spectral decomposition ofM.Ev/ is then the one given above.

– REe.Ev/
Š
D Ee.REv/! Ee.Ev/ D ev Ev

This is the same argument as for Eb.Ev/.

• Argument B:

A shorter (but less rigorous) line of arguments goes as follows:

i | To define the unknown functions algebraically, we are only allowed to use the vector Ev
and constant scalars. We cannot use Ex or t due to linearity, and any other constant vector
(like Oex D .1; 0; 0/T ) would pick out some direction and therefore violate isotropy IS .

ii | Since the only scalar one can construct from a single vector is its norm, jEvj2 D Ev � Ev, it
must be a.Ev/ D av .

iii | Similarly, since the only vector one can construct from a single vector is a scalar multi-
plied by the vector itself, it must be Eb.Ev/ D bv Ev and Ee.Ev/ D ev Ev.

iv | Lastly, sinceM T .Ev/ DM.Ev/, we can decompose the matrix into orthogonal projectors:
M.Ev/ D

P
i �i .v/Pi .Ev/. The only projectors that can be defined by a single vector

are P0 D Ov OvT and P1 D 1 � P0 D 1 � Ov OvT which leads to the most general form
M.Ev/ D cv 1C dv Ov Ov

T .

Both arguments lead to the same form for pure boostsƒEv consistent with isotropy IS :

t 0 D av t C bv .Ev � Ex/ (1.45a)

Ex0
D cv Ex C

dv

v2 Ev.Ev � Ex/C ev Ev t (1.45b)

with v D jEvj D jREvj and .REv �REx/ D .Ev � Ex/.
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7 | ^ Trajectory of origin O 0 of K 0:

• In K 0: Ex0
O 0 D 0 (This is the operational definition of the originO 0.)

• In K: ExO 0 D Evt (This is the operational definition of Ev inK
1;Ev;0;E0
����! K 0.)

In Eq. (1.45b):

E0 D cv Evt C
dv

v2 Ev.Ev � Ev/t C ev Ev t (1.46a)

Ev ¤ E0 & 8t ) 0 D cv C dv C ev (1.46b)

8 | Reciprocity:

i | ^ Inverse transformation K 0
1;Ev0;0;E0
�����! K from K 0 to K:

ƒEv0ƒEv D 1 , ƒEv0 D ƒ�1
Ev
: (1.47)

Note that Ev0 is the velocity of the originO ofK as measured inK 0.

In general: Ev0 D EV .Ev/ with unknown function EV .

We assume reciprocity: Ev0 D �Ev such that

ƒ�1
Ev
D ƒ�Ev : (1.48)

While this is clearly the most reasonable/intuitive assumption, it is not trivial! Recall that Ev
is the speed of the originO 0 ofK 0 measured with the clocks inK, whereas Ev0 is the speed of
the originO of K measured with different clocks inK 0. So without additional assumptions
we cannot conclude that the results of these measurements yield reciprocal results.

However, the assumption of reciprocity can be rigorously derived from relativity SR , isotropy
IS and homogeneity HO , see Ref. [33]. Reciprocity is therefore not an independent assump-
tion.

ii | ^ Inverse transformation in Eq. (1.45):

t D av t
0
� bv .Ev � Ex

0/ (1.49a)

Ex D cv Ex
0
C

dv

v2 Ev.Ev � Ex
0/ � ev Ev t

0 (1.49b)

iii | Eq. (1.49) in Eq. (1.45) & Eq. (1.46b)
ı
�! (we suppress the v dependence)

c2 D 1 ; (1.50a)

a2 � ebv2 D 1 ; (1.50b)

e2 � ebv2 D 1 ; (1.50c)

e.aC e/ D 0 ; (1.50d)

b.aC e/ D 0 : (1.50e)

To show this, use Ev D .vx ; 0; 0/T with vx ¤ 0 and remember that the equations you obtain
from plugging Eq. (1.49) into Eq. (1.45) must be valid for all t 0 and Ex0. Use Eq. (1.46b) to
replace cv C dv by �ev .

We can conclude:
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•
Eq. (1.50a)
������! c D 1 (c D �1 contradicts limv!0ƒEv

Š
D 1)

•
Eq. (1.50c)
������! e ¤ 0

Eq. (1.50d)
������! aC e D 0

! Eq. (1.50b)� Eq. (1.50c) & Eq. (1.50e) satisfied

9 | Collecting results from Eq. (1.50) & Eq. (1.46b):

c D 1 ; e D �a ; d D a � 1 ; b D 1�a2

av2 : (1.51)

d D a � 1 follows from Eq. (1.46b) and the first two equations.

Eq. (1.45)
Eq. (1.51)
�����!

t 0 D av t C
1�a2

v

vav
. Ov � Ex/ (1.52a)

Ex0
D Ex C Œav � 1� Ov. Ov � Ex/ � vav Ov t (1.52b)

with Ov WD Ev=jEvj.

10 | ^ Special boost Ev D .vx; 0; 0/T in x-direction:

t 0 D av t C
1�a2

v

vxav
x (1.53a)

x0
D av x � vxav t (1.53b)

y0
D y (1.53c)

´0
D ´ (1.53d)

Note that v D jvxj with vx 2 R.

Matrix form: 0BB@
t 0

x0

y0

´0

1CCA D
0BBB@

av
1�a2

v

vxav

�vxav av
1 0

0 1

1CCCA
„ ƒ‚ …

DWƒvx

0BB@
t

x

y

´

1CCA (1.54)

In the following, we refer to the upper 2 � 2-block as A.vx/.

11 | Group structure:

i | Relativity principle SR !

'.K 0 R2;Ev2;s2;Eb2
��������! K 00/ ı '.K

R1;Ev1;s1;Eb1
��������! K 0/

Š
D '.K

R3;Ev3;s3;Eb3
��������! K 00/ (1.55)
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for some parameters .R3; Ev3; s3; Eb3/ that are a function of .Ri ; Evi ; si ; Ebi /iD1;2.

In words:

The concatenation of a coordinate transformations fromK toK 0 and fromK 0 toK 00 must be
another coordinate transformation that is parametrized by data that relates the reference systems
K withK 00 directly (without referring toK 0 in any way).

You may ask why Eq. (1.55) is a constraint on ' in the first place. After all, we could just
define that

'.K
R3;Ev3;s3;Eb3
��������! K 00/ WD '.K 0

R2;Ev2;s2;Eb2
��������! K 00/ ı '.K

R1;Ev1;s1;Eb1
��������! K 0/ : (1.56)

The problem is that the function defined such generically depends on 8 (!) parameters
R1; Ev1; s1; Eb1; R2; Ev2; s2; Eb2 – it is a non-trivial functional constraint on ' that these can
be compressed to four parametersR3; Ev3; s3; Eb3. This “compression” is mandated by the
relativity principle SR according to which all inertial systems must be treated equally. In
particular, the transformation between two systemsK andK 00 can only depend on parameters
that can be experimentally determined from within these two systems. (The existence of ) a
third frameK 0 cannot be of relevance for this transformation as this would makeK 0 special.

Combined with the existence of an inverse transformation (← above):

! The set of all transformations forms a ↓ (multiplicative) group.

Note that associativity is implicit since we talk about the concatenation of linear/affine maps.

ii | In particular:

ƒvx
ƒux

Š
D ƒwx

, A.vx/A.ux/
Š
D A.wx/ (1.57)

where wx D W.vx; ux/ has to be determined.

• ¡! Using the restricted form of the boost Eq. (1.54) that followed from previous argu-
ments, it follows indeed that the concatenation of two pure boosts in the same direction
has again the form of a pure boost (in the same direction). For the arguments that follow,
this is sufficient.

However, in general, the multiplicative group structure Eq. (1.55) allows for two boosts
to concatenate to a combination of boosts and rotations. As we will see → later, this is
indeed what happens: The concatenation of two pure boosts (in different directions)
produces a boost with a rotation mixed in (↑ Thomas-Wigner rotation).

• Note that due to Eq. (1.43a) all that follows holds for any pair of collinear velocities Ev
and Eu (there is nothing special about the x-direction). Indeed, letR be a rotation that
maps Ev and Eu to vectors on the x-axis, Evx WD REv and Eux WD REu. Then

ƒEvƒEu
1.43a
D ƒR�1ƒEvx

ƒEux
ƒR

Š
D ƒR�1ƒ Ewx

ƒR
1.43a
D ƒ Ew (1.58)

where Ew is again collinear with Ev and Eu.
ı
�! (use that the diagonal elements of A.wx/must be equal)

8vx ;ux
W

1 � a2v
v2xa

2
v

Š
D
1 � a2u
u2xa

2
u

(1.59)

! Universal constant:

� WD
a2v � 1

v2xa
2
v

D const (1.60)
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Note: Œ�� D Velocity�2

!

av D
1p

1 � �v2x
: (1.61)

We use the positive solution for av since limv!0A.v/
Š
D 1, i.e., limv!0 av

Š
D 1.

iii | With this we check: A.vx/A.ux/ $ A.wx/ with

wx D W.vx; ux/ $
vx C ux

1C uxvx�
: (1.62)

Eq. (1.62) becomes important later: it tells us how to add velocities in special relativ-
ity.

12 | Preliminary result:

Eq. (1.52) & Eq. (1.60)! Boost ƒEv in direction Ov with velocity Ev D v Ov:

t 0 D av
�
t � � .Ev � Ex/

�
Ex0
D Ex C Œav � 1� Ov. Ov � Ex/ � av Ev t

(1.63a)

(1.63b)

with

av D
1

p
1 � �v2

: (1.64)

This is the most general transformation between two inertial coordinate systems that move with
relative velocity Ev (with coinciding axes at t D 0) that is consistent with our basic assumptions
stated at the beginning of this section: SR , HO , and IS .

The only undetermined parameter left is �.

1.5. The Lorentz transformation

The purpose of this section is to select the value for � that describes our reality.

13 | Since Œ�� D Velocity�2 define formally: � � 1=v2max.

Why we subscribe the velocity vmax with“max” will become clear below.

14 | Three cases:

• � D 0 , vmax D1:

Eq. (1.63) )
t 0 D t

Ex0
D Ex � Ev t

)
⁂ Galilei boost (1.65a)

!Maxwell equations are not form-invariant under '.
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!Maxwell equations cannot be correct and must be modified.

! Experiment that shows the invalidity of Maxwell equations?

Note that we cannot conclude the validity of classical mechanics from this; Newton’s equa-
tions may still require modifications (without spoiling the Galilean symmetry, of course).

• � > 0 , vmax <1:

Eq. (1.63) )
t 0 D 

�
t � Ev� Ex

v2
max

�
Ex0
D Ex C . � 1/ Ov. Ov � Ex/ �  Ev t

9=; ⁂ Lorentz boost

(1.66a)

with the ⁂ Lorentz factor

v �  WD
1p
1 � ˇ2

and ˇ WD v=vmax : (1.67)

! Newton’s equations are not form-invariant under '.

! Classical mechanics cannot be correct and must be modified.

! Experiment that shows the invalidity of Newton’s equations?

Similarly, we cannot conclude the validity of electrodynamics from this; Maxwell equations
may still require modifications (without spoiling the Lorentz symmetry).

• � < 0: Physically not relevant. (→ Problemset 2; we ignore this solution in the following.)

This solution is not self-consistent (see e.g. Ref. [32]) and immediately leads to implications
that are not observed in nature.

For example, the rule Eq. (1.62) to compute the velocitywx betweenK/K 00 from the veloci-
ties vx and ux betweenK/K 0 andK 0/K 00 reads for � < 0

wx D
vx C ux

1 � uxvxj�j
: (1.68)

Let ux ; vx > 0 be positive, i.e.,K 0 moves in positive x-direction wrt K andK 00 moves also
in positive x-direction wrt K 0. But for large enough velocities uxvx > 1=j�j we findwx < 0
such thatK 00 moves in negative x-direction wrt K.

No such effect has ever been observed; if you do, let us know!

Note that at no point we used or claimed that vmax is the speed of light!

Which transformation describes reality: vmax <1 or vmax D1?

15 | Evidence:

• Maximum velocity vmax � c <1 for electrons (plot from Ref. [34]):
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! Newton’s equations are clearly invalid for high velocities!

See Refs. [34, 35] for more technical details. Note that these results were obtained decades
after Einstein published his seminal paper in 1905.

• By contrast:

No evidence for the invalidity of Maxwell equations (on the macroscopic level).

Electrodynamics, as encoded by the Maxwell equations, is of course not a truly fundamental
theory as it is the classical limit of a quantum theory: Quantum electrodynamics (QED).
For example, the linearity of the Maxwell equations (= EM waves cannot scatter off each
other) is an approximation; in QED photons can (weakly) scatter off each other! This is why I
emphasize that Maxwell theory is experimentally valid only on the macroscopic level. Note,
however, that QED has the same spacetime symmetry group as electrodynamics, namely
Lorentz transformations.

16 | Hence it is reasonable stipulate vmax <1 and postulate:

The transformations ' between inertial systems are given by Lorentz transformations.

These transformations must be (part of ) the spacetime symmetries of all physical theories.

The last statement is often rephrased as follows:

All (fundamental) theories must be form-invariant (covariant) under Lorentz transformations.

This is just SR all over again: The equations of models that describe reality must “look the same”
(more precisely: be functionally equivalent) in all inertial systems. Since the transformations
between inertial systems are given by Lorentz transformations (and not Galilean transformations,
as historically anticipated), this requires their form-invariance under Lorentz transformations.

! special relativity restricts the structure of all fundamental theories of physics!

This is what is meant by the statement that special relativity is a theoretical framework
(German: Rahmentheorie) or “meta theory”: It provides a “recipe” (ordering principle) of how to
construct consistent theories of physics. The Standard Model of particle physics, for example,
is form-invariant under Lorentz transformations, and if you propose an extension thereof (for
example to give neutrinos a mass) you better make sure that the terms you write down are also
form-invariant under Lorentz transformations (otherwise you will not be taken seriously!). Note,
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however, that this perspective prevents an important insight: What we really study is an entity
called spacetime, and this entity has a property: Lorentz symmetry. Since all our (fundamental)
physical theories are formulated on spacetime, it should not come as a surprise that the Lorentz
symmetry of spacetime shows up all over the place.

17 | Interpreation of vmax:

i | ^ Systems K
vx
�! K 0 and signal with velocity dx0

dt 0 D u
0
x :

Question: What is the velocity ux D dx
dt of this signal in K?

ii | Remember (Group structure!):

'.K 0 v2
�! K 00/ ı '.K

v1
�! K 0/ D '.K

v3
�! K 00/ with v3 D

v1 C v2

1C v1v2

v2
max

: (1.69)

Let v1 D vx and v2 D u0
x so that v3 D ux (i.e., the signal is at rest in the origin ofK 00).

You can also derive this by computing the time derivative of the position of the signal inK
using a Lorentz transformation; you will do this properly when you derive a more general
addition of velocities (→ Problemset 2).

iii | Addition formula for collinear velocities:

ux D
vx C u

0
x

1C
vxu

0
x

v2
max

(1.70)

Because of isotropy IS this formula must be true in all directions (not just in x-direction) as
long as the two velocities to be added are parallel. We still keep the index x to signify that these
are not absolute values of velocities.

• Note that for vmax ! 1 we get back the “conventional” (= Galilean) additivity of
velocities:

ux D .vx C u
0
x/
h
1 �

vxu
0
x

v2
max
C : : :

i
vmax!1
D vx C u

0
x (1.71)

From this expansion and the validity of classical mechanics for small velocities (in
particular its law for adding velocities), we can also conclude that vmax must be large
compared to everyday experience.

• A historically influential experiment that (in hindsight) can be explained by the relativis-
tic addition of velocities Eq. (1.70) is the ↑ Fizeau experiment [36, 37] (see also ↑ Fresnel
drag coefficient). The Fizeau experiment was one of the crucial hints that led Einstein to
special relativity.
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iv | ^ 0 � vx; u
0
x � vmax: ( Qvx WD vx=vmax so that 0 � Qvx ; Qux � 1)

ux D vmax
Qvx C Qu

0
x

1C Qvx Qu0
x

� vmax (1.72)

Here we used that aC b � 1C ab for numbers 0 � a; b � 1.

! “Addition” of velocities Eq. (1.70) never exceeds vmax.

! vmax plays the role of a maximum velocity.

v | ^ Signal with maximum velocity in K 0: u0
x D vmax:

ux D
vmax C vx

1C vmaxvx

v2
max

D vmax
vmax C vx

vmax C vx
D vmax (1.73)

Note that the result is completely independent of the velocity vx ofK 0!

!Whatever moves with the maximum velocity vmax does so in all inertial systems!

Please appreciate how counterintuitive this effect is from the perspective of everyday experience!
But also notice that we didn’t have to postulate it: The relativity principle SR together with
the existence of a (finite) maximum velocity is sufficient.

If you think about it: Assuming a maximum velocity (in the absence of a preferred reference
frame) automatically invalidates the simple Galilean law of additive velocities. So it is actually
not surprising at all that the maximum velocity must be independent of the reference system.
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↓ Lecture 4 [07.11.23]

18 | Experiments (in particular: the validity of Maxwell equations) show:

vmax D c D 299 792 458ms�1 (1.74)

Note that since 1983 the value of c in the international system of units (SI) is exact by definition.

A. Einstein incorporated this insight in §2 of Ref. [10] as his second postulate:

2. Jeder Lichtstrahl bewegt sich im “ruhenden” Koordinatensystem mit der bestimmten
Geschwindigkeit V , unabhängig davon, ob dieser Lichstrahl von einem ruhenden oder be-
wegten Körper emittiert ist.

Note that at the time it was conventional to denote the speed of light with a capital V . The
convention switched to our now standard lower-case c just a few years later. For more historical
background:

→ https://math.ucr.edu/home/baez/physics/Relativity/SpeedOfLight/c.html

We can condense this into:

§ Postulate 5: Constancy of the speed of light SL

The speed of light is independent of the inertial system in which it is measured.

Comments:

• If you take the validity of the Maxwell equations for granted, then vmax D c < 1 (and
thereby SL ) follows immediately from the relativity principle SR because then the Maxwell
equations must be valid in all inertial systems. But you’ve learned in your course on electro-
dynamics that the wavelike solutions of these equations always propagate with group velocity
c in vacuum. This is only possible if the speed of light plays the role of the limiting velocity:
vmax D c.

Einstein acknowledges as much at the beginning of Ref. [11]. However, SL is empirically
weaker than claiming the validity of Maxwell’s equations (after all, there could be alternative
equations that also predict the velocity c of wavelike solutions). At the time when Einstein
formulated SL in [10], he also worked on the photoelectric effect (another of his annus
mirabilis papers [38]). The postulation of “quanta of light” is the foundation of quantum
mechanics, but cannot be explained by Maxwell’s equations. It is therefore reasonable
to assume that Einstein didn’t want to rely on the validity of this specific theory when
formulating his special relativity. He therefore opted for the empirically weaker (but
still sufficient) assumption SL .

• If you derive the transformation ' using both postulates SR and SL the derivation is shorter
(see e.g. [1] or [5]); one then of course doesn’t find the Galilei transformations as an option.
Note, however, that the relativity principle SR is a reasonable and intuitive starting point that
doesn’t need much convincing (after all, we witness the relativity of Newtonian mechanics
in our everyday life). By contrast, the speed of light postulate SL clashes directly with our
everyday experience (how velocities add up, that is). Through our elaborate derivation we
learned how much is already implied by the simple, reasonable assumption of relativity. We
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only had to check whether there is any evidence of a finite maximum velocity vmax. The
counterintuitive feature that this velocity is the same viewed from all inertial systems was
then a necessary conclusion from our derivation.

† Note: Finite speed of causality (Locality)

Another insight from our SR -based derivation of the Lorentz transformation is that the
formulation of the speed-of-light postulate SL is conceptually misleading:

• The constant vmax and its role as a maximum velocity followed without referring to light
(or electrodynamics) in any way!

Put bluntly: special relativity is not about the “strange behavior” of light!

• The relevant speed for special relativity is the speed of causality: How fast can
information travel, i.e., one event affect another. vmax is the maximum speed of causal
interactions, irrespective of the mediator of these interactions.

In our world, the fastest and most salient information carrier just happens to be the
electromagnetic field (“light”). For example, to synchronize our clocks with light
signals, it wasn’t the light per se we were interested in; we just used it as carrier of
information to correlate the clocks.

• Given the relativity principle SR and our derivation in Section 1.4, we showed that
there are only two possibilities: (1) There is no upper bound on velocities (Galilean
symmetry) or (2) there is such an upper bound vmax (Lorentz symmetry). In the latter
case, every signal that propagates with vmax in some frame automatically does so in all
inertial systems. (Which immediately leads to the counterintuitive conclusion, akin to
SL , that there are signals the velocity of which does not depend on the velocity of the
observer.)

• We could replace SL therefore by the (empirically weaker) postulate that there are no
instantaneous actions at a distance (this is essentially a statement about locality). This
modified postulate implies the existence of a maximal velocity vmax < 1 which, in
turn, selects the Lorentz transformation as the correct symmetry. That vmax D c is
then a fact to be discovered by experiments.

• It turns out that everything with vanishing rest mass travels at this maximum speed
vmax D c. Since photons are the only elementary particles that are massless and can be
easily detected, we just happen to refer to this maximum velocity as “speed of light.”

For example: Without Higgs symmetry breaking, theW ˙ andZ bosons of the weak
interaction are massless and would propagated with light velocity, just as the photon
(the weak interactions would then be no longer“weak”). For a long time it was believed
that neutrinos are massless as well, and therefore would also propagate with the speed
of light (today we know that they have a very tiny mass).

19 | Special Lorentz transformations = Lorentz boosts:

Now that everything is settled, let us write down our final result in their conventional form.

¡! These are not the most general (homogeneous) Lorentz transformations since we omit rotations,
parity and time inversion. We will discuss the structure of the full homogeneous Lorentz group
and its inhomogeneous generalization (→ Poincaré group) later. To discuss the “fancy” phenomena
of special relativity, the transformations below are sufficient.
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i | Boost in arbitrary directions (Ev D v Ov with Ov � Ev=jEvj):

ƒ.K
Ev
�! K 0/ W

(
ct 0 D 

�
ct � ˇ Ex � Ov

�
Ex0
D Ex C . � 1/.Ex � Ov/ � Ov �  Evt

(1.75)

(Since we now settled on Lorentz transformation for ', we write ' D ƒ henceforth.)

with ˇ � v=c and the Lorentz factor

v �  D
1p

1 � v2=c2
D

1p
1 � ˇ2

: (1.76)

ii | Special case: Boost in x-direction (Ev D vx Ox):

ƒ.K
vx
�! K 0/ W

8̂̂̂<̂
ˆ̂:

ct 0 D 
�
ct � vx

c
x
�

x0
D .x � vxt /

y0
D y

´0
D ´

(1.77)

20 | State of affairs:

Now that we know the spacetime symmetry ' of reality, we have quite a to-do list:

• We will have to modify Newton’s equations to replace their Galilean by a Lorentz
symmetry, without changing their predictions for small velocities v � c (↓ correspondence
principle).

! Relativistic mechanics

• We can keep the Maxwell equations in their current form ,.

Note that we still have to check that they are really Lorentz covariant (→ Problemset ?)!

In the end we will come up with a neat notation that allows us to rewrite (not modify!) the
Maxwell equations in a compact form to make their Lorentz symmetry apparent.

• Similar to classical mechanics, we will have to replace the Schrödinger equation in
quantum mechanics by a modified version with Lorentz symmetry.

! Relativistic quantum mechanics (Klein-Gordon and Dirac equation)

But before we do all the heavy work:

Simple implications of this transformation? (→ below and next lectures)

With“simple” we refer to implications that follow without imposing a model-specific dynamics
(= equation of motion). We will refer to these implications as kinematic because they follow from
fundamental constraints on the degrees of freedom of all relativistic theories.
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1.6. Invariant intervals and the causal partial order of events

1 | ^ Trajectory of a light signal in x-direction in K:

x.t/ D ct; y D 0; ´ D 0 (1.78)

Trajectory of the same signal in K 0 with K
vx
�! K 0:

x0.t 0/ D ct 0; y0
D 0; ´0

D 0 (1.79)

This follows from our previous discussion: signals propagating with c D vmax do so in all inertial
systems!

You can also simply calculate this using the Lorentz boost Eq. (1.77):

ct 0 D 
�
ct � vx

c
ct
�

(1.80a)

and x0
D .ct � vxt / D ct

0 : (1.80b)

!

.ct/2 � x2 D 0 D .ct 0/2 � .x0/2 is a frame-independent quantity. (1.81)

Note that the separate summands [.ct/2 etc.] are not frame-independent!

This finding motivates the definition of the…

2 | ⁂ Spacetime interval:

Details: → Problemset 2

^ Two events E1 3 .t1; Ex1/K and E2 3 .t2; Ex2/K with temporal and spatial separation

.�t/K WD t1 � t2 and .�Ex/K WD Ex1 � Ex2 : (1.82)

Then the spacetime interval between E1 and E2 is denoted .�s/2 � �s2 and defined as

.�s/2 WD .c�t/2K � .�Ex/
2
K : (1.83)

We omit the subscriptK from�s because it is frame-independent (→ next).

In our example above it was �t D t � 0 and �Ex D .x � 0; 0 � 0; 0 � 0/, i.e., we considered
the interval between the event in the origin xO D .0; E0/ and the events along the trajectory
.ct; x.t/; 0; 0/ of the light signal.
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3 | The importance of�s2 stems from the following fact:

The spacetime interval �s2 is independent of the frame in which it is calculated.

This means that given two events, all observers agree on the numerical value of the interval�s2

between these two events.

Proof: Use Eq. (1.75) to calculate (Details: → Problemset 2)

.ct 0/2 D
�

�
ct � ˇ Ex � Ov

��2
(1.84a)

.Ex0/2 D
�
Ex C . � 1/.Ex � Ov/ � Ov �  Evt

�2
(1.84b)

) .ct 0/2 � .Ex0/2 $ .ct/2 � .Ex/2 C : : :„ƒ‚…
D0

(1.84c)

Note that we do not have to do the computation for two events and an interval�t and�Ex since
the special Lorentz transformations are linear.

This proves the invariance under special Lorentz transformations (= Lorentz boosts). It is easy to
see that the invariance is also valid for inhomogneous shifts in time and space (these drop out in the
intervals�t etc.) and spatial rotationsƒR [since .�Ex/2 is clearly invariant under rotations]. We
will come back to this when we discuss the structure of the Lorentz group in more detail (→ later).

4 | Two events E1 and E2 are in one of three possible (frame-independent) relations:

�s2

8̂<̂
:
> 0 E1 and E2 are ⁂ time-like separated
D 0 E1 and E2 are ⁂ light-like separated
< 0 E1 and E2 are ⁂ space-like separated

(1.85)

Note that �s2 can be negative so that �s2 should be read as a symbol rather than defining an
imaginary number�s. For the special case of time-like intervals, however,�s2 indeed defines a
real number�s D

p
�s2 which we will later relate to the time measured by moving clocks (the so

called proper time).

All events that are light-like separated from an event E (wlog in the origin) satisfy

�s2 D 0 , .ct/2 D .Ex/2 , jct j D jExj (1.86)

which determines the ⁂ light cone of E:
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Here we show the light cone of an event E in a space time with two spatial dimensions x and y.
The light cone in our 3C 1 dimensional space time is a higher-dimensional generalization which
obeys the same equations.

• Time-like events satisfy�s2 > 0 , jct j > jExj which characterizes the (disconnected)
interior of the light cone. The manifold with ct > jExj � 0 is called ⁂ future light cone (of E)
whereas the events with �ct > jExj � 0make up the ⁂ past light cone (of E).

• Space-like events satisfy �s2 < 0 , jct j < jExj which characterizes the (connected)
spacetime volume outside the light cone.

5 | Causality:

The importance of the threefold classification of spacetime intervals stems from the following
observations.

i | ^ Actions of (homogeneous) Lorentz transformations:

Since�s2 is invariant under Lorentz transformations, the manifold of events characterized
by a specific value�s2 D ˙C (C � 0) must be mapped onto itself under these transfor-
mations: Events on these hyperbolic manifolds cannot leave their manifolds under Lorentz
transformations.

Invariant hyperbolae:

time-like: �s2 D C > 0 ) ct D ˙

q
C C jExj2 (1.87a)

light-like: �s2 D C D 0 ) ct D ˙jExj (1.87b)

space-like: �s2 D �C < 0 ) ct D ˙

q
jExj2 � C (1.87c)
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This picture leads immediately to two conclusions:

ii | ^ Two distinct events E1 3 .t1; Ex1/K and E2 3 .t2; Ex2/K with coordinates in K:

• If �s2 � 0 (= time-like or light-like), then

either 8K W .t1/K > .t2/K or 8K W .t1/K < .t2/K : (1.88)

This means that for time-like or light-like separated events all observers agree on their
temporal ordering! Note that they do not necessarily agree on the time .t1/K � .t2/K
elapsed between the two events.

Proof: Assume .t1/A < .t2/A and .t1/B > .t2/B for two inertial systems A and B .
Because of the continuity of Lorentz transformations there must exist a frame C with
.t1/C D .t2/C . But in this frame .�s/2C D �.�Ex/

2
C � 0 such that .Ex1/C D .Ex2/C

and therefore E1 D E2 (which contradicts our assumption that the two events are
distinct).

Proof by picture!

• If �s2 < 0 (= space-like), then

9A;B W .t1/A > .t2/A and .t1/B < .t2/B : (1.89)

This means that for space-like separated events there are always observers who seeE1
happening beforeE2 while other observers seeE1 happening afterE2. The temporal
order of space-like separated events is therefore observer-dependent!

Proof: → Problemset ?

Proof by picture!

iii | Conventional relation of time order and causality:

E1 can causally affect E2 ) E1 happens before E2 (1.90)

Since causality should be an objective, observer-independent fact, and we just showed that
only time- and light-like separated events have an observer-independent temporal order, it is
reasonable to define the following…

…↓ (strict) partial order � on the set E of events:

E1 � E2 W, �s2 � 0 and t1 < t2 W “E1 can affect E2” (1.91)

E1 � E2 W, �s2 � 0 and t1 > t2 W “E2 can affect E1” (1.92)
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This is a partial order because for �s2 < 0 there is no relation between E1 and E2 (we
denote this byE1 G E2).

To be a partial order, one has to show irreflexivity (which is trivial since t < t is not true) and
transitivity. To show transitivity, show that�s21;2 � 0 and�s

2
2;3 � 0 together with t2 > t1

and t3 > t2 implies�s21;3 � 0 and t3 > t1 (use the triangle inequality).

iv | This definition of causality is consistent with our previous findings that no signal can travel
faster than the speed of light c:

• E � E1: There exists a signal trajectory Ex.t/ with
ˇ̌̌
dEx.t/
dt

ˇ̌̌
� c connecting the two

events (blue in the sketch).

• E G E3: Any trajectory Ex.t/ connecting the two events (red in the sketch) has some

segment with
ˇ̌̌
dEx.t/
dt

ˇ̌̌
> c (yellow in the sketch). Since this is physically impossible,

there is no signal of any kind that can mediate causal influence fromE toE3 (and vice
versa).

This follows from an application of (a generalization of ) the ↓ mean value theorem.

6 | Since the causal structure .E;�/ is observer independent:

There is no relativity of causality in special relativity!

If one observer states thatE1 can causally affectE2, then all observers will agree on this statement.

7 | Fun fact:

If one starts from the causal structure .E;�/ and derives the group of ↑ causality-preserving
automorphisms ˆ,

E1 � E2 , ˆ.E1/ � ˆ.E2/ ; (1.93)

one again finds the homogeneous Lorentz transformations (boosts & rotations) that we constructed
above (plus space-inversion, spacetime dilations and translations), see Ref. [39] for more details.
Most interestingly, for the proof neither a continuity assumption on ˆ nor a topology on E is
required; all this follows (at least in 2C 1 spacetime dimensions and more) from the partial order�.
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1.7. ‡ Relativity, compressibility, and the anthropic principle

The statements in this section are not specific to Einstein’s relativity principle SR .

1 | Relativity principles…

• …are statements about (the existence of ) symmetries of spacetime.

• … imply the versatility of models to predict events from many viewpoints.

• …are statements about an a priori unnecessary simplicity of nature.

2 | Imagine a world without any relativity principle:

The equations (models) that capture physical laws faithfully are different from frame to frame.

! Your brain must learn arbitrary many different models adapted to all possible reference
frames to anticipate the future in all situations.

! Biologically impossible (your brain capacity is finite, building models is expensive)

3 | Example: Catching balls:

Notice that most reference frames that we naturally encounter are (approximately) inertial only in
x and y direction (the axes that are locally parallel to earth’s surface) and constantly accelerated in
´ direction (the axis perpendicular to earth’s surface; the acceleration is g � 9:81m=s2). The non-
relativistic symmetries that relate these frames are a subgroup of the full Gallilei group (excluding
rotations around the x and y axes as well as “large” translations). Our brain contains only models
for these frames (equipped with Cartesian coordinates). Have you ever tried throwing or catching a
ball in frames with acceleration in x or y directions (like a centrifuge)?

→ YouTube Video: The artificial gravity lab (Tom Scott)

Note that it is not impossible to train specificmodels for other frames to which the relativity principle
of our everyday experience does not apply (after some practice you can throw and catch balls in a
centrifuge of constant angular velocity). But this is just one additional model and even this is not
implemented in our brains by default!

4 | Relativity principle

! Descriptions of natural phenomena are highly compressible.

! Only few models (equations) are necessary to anticipate the future.

5 | Anthropic principle:

Question: Why are there spacetime symmetries / relativity principles in the first place?

Answer: Because if there were none, evolution would most likely be impossible, hence we
would be unable to ask the question.
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Note that evolution relies on the somewhat reliable proliferation of information over time. This
seems only possible if the individuals carrying this information survive. Surviving in environ-
ments with life-threatening phenomena (thunderstorms, predators,…) relies on its (approximate)
predictability by (approximate) models that are learned evolutionary and/or by experience.

For this argument to work some form of “ensemble interpretation” of reality is required (e.g.
↑ multiverses) [40].
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2. Kinematic Consequences

In this chapter we study implications of the special Lorentz transformations Eq. (1.75) and Eq. (1.77) that
follow without imposing a model-specific dynamics (= equations of motion). We refer to these implications
as kinematic because they follow from fundamental constraints on the degrees of freedom of all relativistic
theories. The phenomena we will encounter are therefore features of spacetime itself – and not of some
entities that live on/in (or couple to) spacetime.

¡! The phenomena we will encounter are not “illusions” (in the sense that we“see” things differently than
they“really are”). Remember that we precisely defined what we mean by observers/reference frames;
in particular, we emphasized that we do not “look” at anything, we measure events in a systematic way,
using a well-defined structure called ← inertial system. All phenomena we will encounter are derived from
and to be understood in this operational, physically meaningful context.

2.1. Length contraction and the Relativity of Simultaneity

1 | ^ Inertial systems A
vx
�! A0 with rod on x0-axis and at rest in A0:

Remember that A
vx
�! A0 denotes a boost in x-direction with vx (as measured in A) where the

spatial axes of both A and A0 coincide at t D 0:

In such situations, we refer to A0 as the ⁂ rest frame of the rod and A as the ⁂ lab frame (some
call A the ⁂ stationary frame). In the following, coordinates of events in the inertial system A0 are
marked by primes.

2 | First, we have to define what we mean by the“lenght” of an object:

“Length” is an intrinsically non-local concept. It is not something you can measure or define at a
single point in space. Consequently, there are no“length-events” in E . Thus we need an algorithm
(= operational definition) of what we mean by“length”.

^ Two event types:

feLg D fhLeft end of rod detectedig (2.1a)

feRg D fhRight end of rod detectedig (2.1b)

Think of an event type as a set (equivalence class) of all elementary events that you deem ↑ type-
identical (but not ↑ token-identical). In the example given here, there will be many events eL in
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spacetime that signify “Left end of rod detected” (if there is one rod, there will be one such event
for each time t); these are different events of the same type feLg.

One could even declare that the event type feLg is what we refer to as “the left end of the rod.”

! Algorithm LENGTH to compute“Length of Rod” in system K at time t :

LENGTH:

→ Input: Coincidences E, Inertial system label K, Time t

← Output: Length lK of rod at time t as measured in K

1. Find (unique) event L 2 E with feLg 2 L and .t; El/K 2 L.

2. Find (unique) event R 2 E with feRg 2 R and .t; Er/K 2 R.

3. Return lK WD jEl � Er j.

Here, feLg 2 L is shorthand for feLg \ L ¤ ;. In words: the coincidence class L contains an
event of the type “Left end of rod detected”.

Note that we define“length” as the spatial distance between the two ends of the rod at the same
time t (as measured by the clocks inK). I hope you agree that this is what one typically means by
“length.”
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↓ Lecture 5 [14.11.23]

3 | We now apply this algorithm twice, in the lab frame A and the rest frame A0:

i | Rest frame A0:

⁂ Proper length �⁂ Rest length WD Length of rod in A0:

l0 WD LENGTH.E; t 00IA
0/ D jEl 00 � Er

0
0j D jl

0
0 � r

0
0j (2.2)

with simultaneous clock events .t 00; El
0
0/A0 2 L0 and .t 00; Er

0
0/A0 2 R0.

The time t 00 that we choose is irrelevant since the rod is (by definition) at rest in A0. Since
the rod lies on the x0-axis, it is El 00 D .l

0
0; 0; 0/ and Er

0
0 D .r

0
0; 0; 0/.

The subscript “0” in L0 indicates that this is a specific event (coincidence class) we selected
in A0 to compute the length of the rod. It does not mean“as seen from the rest frame A0” or
anything like that. Remember that coincidence classes in E are objective information!

ii | Lab frame A:

Length of moving rod in A:

l WD LENGTH.E; t IA/ D jEl � Er j (2.3)

with simultaneous clock events .tl ; El/A 2 L and .tr ; Er/A 2 R with tl D tr D t .

The time t that we choose might be irrelevant as well, but we do not know this yet.

¡! There is no reason to assume that the eventsL0/R0 chosen in A0 to measure the length of
the rod are identical to the events L/R used in A: L0 ¤ L andR0 ¤ R in general.

4 | How does l0 relate to l?

i | In Section 1.5 we did a lot of hard work to compute the transformation ' which transforms
the coordinates of an event in one inertial system into the coordinates of the same event in
another inertial system. We identified the transformation as the Lorentz transformation:

ƒ.A
vx
�! A0/ W ŒE�A D .t; Ex/ D x 7! ƒvx

x D x0
D .t 0; Ex0/ D ŒE�A0 (2.4)

ii | So let us use this tool [namely Eq. (1.77)] to obtain the coordinates of the events L and R
(used for the length measurement in A) in the rest frame A0 of the rod:

ŒL�A0 D

8̂̂̂̂
<̂
ˆ̂̂:
ct 0l D 

�
ctl �

vx

c
lx
�

l 0x D .lx � vxtl/

l 0y D ly

l 0´ D l´

and ŒR�A0 D

8̂̂̂̂
<̂
ˆ̂̂:
ct 0r D 

�
ctr �

vx

c
rx
�

r 0
x D .rx � vxtr/

r 0
y D ry

r 0
´ D r´

(2.5)

Here we use El D .lx ; ly ; l´/ and Er D .rx ; ry ; r´/. Since we declared that the rod is fixed on
the x0-axis of A0, and feLg 2 L and feRg 2 R, it must be l 0y D l 0´ D r 0

y D r 0
´ D 0, and

therefore El D .lx ; 0; 0/ and Er D .rx ; 0; 0/. That is, the rod is not rotated by the boost and
always lies on the x-axis of A as well. In particular: l D jEl � Er j D jlx � rxj.

! Two immediate conclusions:
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a | In A0 the two events L and R are no longer simultaneous:

tl D tr in A but t 0l ¤ t
0
r in A0 (since lx ¤ rx). (2.6)

! The simultaneity of events is observer-dependent.

This ambiguity of simultaneity can be graphically illustrated in a spacetime diagram (for
details on how to draw the .t 0; x0/-axes in A: → Problemset 2):

• As a side note, this calculation implies that not only is it generally not true that
L0 D L andR0 D R, it is actually impossible (at least for both pairs).

• In the sketch above, the “interior of rod”-events are painted gray. One is tempted
to ask: Which “line” of these events is the rod? The counterintuitive answer is
that this depends on the observer: For A-observers, horizontal lines of gray events
make up “the rod”, whereas for the A0-observer tilted lines are “the rod”. It is
actually more reasonable to think of the complete area of gray events as “the rod”,
just as the event type feLg is “the left edge” of the rod. This suggests that our
intuitive concept of the instantaneous existence of extended objects – which feels so
natural to us – is, to some extend, misleading.

b | In A0 the coordinate distance is different:

jl 0x � r
0
xj
tl Dtr
D  jlx � rxj

vx¤0

¤ jlx � rxj D l (2.7)

¡! The time-dependence cancels so that the expressions are time-independent.

At this point, it is a bit premature to identify the left-hand side as the rest length l0
of the rod because these are spatial coordinates of events that are not simultaneous!
(Remember that the length of any object in any frame is defined as the coordinate
distance of simultaneous events.)

However, since A0 is (by definition) the rest frame of the rod, the position labels of the
A0-clocks adjacent to the ends of the rod are the same for all events:

l 0x
feLg2L
D l 00

r 0
x

feRg2R
D r 0

0

9=; ) jl 0x � r
0
xj D jl

0
0 � r

0
0j D l0 (2.8)
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!⁂ Length contraction �⁂ Lorentz contraction:

A rod of rest length l0 is shorter if measured from an inertial system in relative motion:

l D l0

q
1 � v2

c2

v¤0
< l0 (2.9)

• ¡! Due to isotropy, this result is true for any length of extended objects in the
direction of the boost. A rod along the y0-axis, for example, is contracted according
to Eq. (2.9) for a boost in y-direction, but not for a boost in x-direction.

• The rod is just a proxy for any physical object; the Lorentz contraction therefore
affects all physical objects in the same way. The contraction is not a dynamical
feature of the object itself (like a force that compresses the atomic lattice) but an
intrinsic property of space(time).

• Note that we say above“if measured from…” and not “as viewed from….” This
distinction is important: If you ask how you would visually perceive extended objects
flying by (or how they look on a picture taken by a camera) you have to factor in
that the photons bouncing of the object at different points take different times to
reach your eye (our the camera sensor). If you do the math (→ Problemset 3), this
additional optical effect leads to the surprising result that 3D objects actually do
not look “squeezed” but rotated. This implies in particular that a moving sphere
still looks like a sphere and not like an ellipse (↑ Penrose-Terrell effect [41, 42], see
also Ref. [43]).

You can experience this effect (among others) in the educational game“A Slower
Speed of Light,” which has been developed by the MIT Game Lab for educa-
tional purposes, and can be downloaded here for Windows, Mac, and Linux (→
Problemset 3):

→ Download“A Slower Speed of Light”

You should always keep in mind, however, that this “looking” is not what we refer
to as observing in relativity; the latter has been defined operationally as a
measurement procedure at the beginning of this course.

2.2. Time dilation

1 | ^ Inertial systems A
vx
�! A0 and a clock Ex0 at rest in A0:

2 | ^ Two events:

A0-Clock Ex0 meets A-clock Ex0: .t 00; Ex
0/A0 � .t0; Ex0/A 2 E0 (2.10a)

A0-Clock Ex0 meets A-clock Ex1: .t 01; Ex
0/A0 � .t1; Ex1/A 2 E1 (2.10b)
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¡! The two eventsE0 andE1 relate three different clocks: The single A0-clock Ex0 and two different
A-clocks Ex0 and Ex1.

3 | As for length, the concept of “duration” cannot be defined locally in spacetime. We therefore need
an operational definition (algorithm) of “duration”:

DURATION:

→ Input: Two events E0 and E1, Inertial system label K

← Output: Time interval �tK between events as measured in K

1. Find (unique) clock event .t0; Ex0/K 2 E0.

2. Find (unique) clock event .t1; Ex1/K 2 E1.

3. Return �tK WD t1 � t0.

Hopefully you agree that this is a reasonable definition of the duration (or time interval) between
two events.

4 | We can now apply this algorithm to determine the time elapsed betweenE0 andE1:

In A0
W �t 0 D DURATION.E0; E1IA

0/ D t 01 � t
0
0 Measured by a single clock! (2.11a)

In A W �t D DURATION.E0; E1IA/ D t1 � t0 Measured by two clocks! (2.11b)

5 | How does �t relate to �t 0?

i | Since .t 00; Ex
0/A0 � .t0; Ex0/A and .t 01; Ex

0/A0 � .t1; Ex1/A, we can use the Lorentz transformation
to translate between the coordinates:
Inverse of Eq. (1.77)
�����������!

Remember thatƒ�1
Ev
D ƒ�Ev because of reciprocity; the inverse Lorentz transformation can

then be obtained by substituting vx 7! �vx :

ŒE0�A D

(
ct0 D 

�
ct 00 C

vx

c
x0
�

x0 D .x
0
C vxt

0
0/

and ŒE1�A D

(
ct1 D 

�
ct 01 C

vx

c
x0
�

x1 D .x
0
C vxt

0
1/

(2.12)

We omit the other two coordinates since they are invariant anyway; the transformation of
the spatial coordinate is also not necessary for the following derivation.

ii | Subtracting the equations for the time coordinate of both events yields:

c.t1 � t0/ D c.t
0
1 � t

0
0/ (2.13)

Note that in the inverse Lorentz transformation Eq. (2.12) the position coordinate in A0 is x0

for both events because the same A0-clock takes part in both coincidences.

iii | ⁂ Time dilation:

! The moving clocks in A0 run slower than the stationary clocks in A:

�t D
�t0q
1 � v2

c2

v¤0
> �t0 (2.14)

We renamed�t 0 � �t0 to emphasize the analogy to the proper length l0:

�t0: ⁂ Proper time elapsed in A0 between E0 and E1
�t : Time elapsed in A between E0 and E1
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• The characteristic feature of the proper time �t0 between two (time-like separated)
eventsE0 andE1 is that it can be measured by a single inertial clock that takes part in
both events. All other time intervals must be measured by subtracting the reading of
two different clocks. Eq. (2.14) tells you that these time intervals are always longer than
the proper time�t0.

• ¡! Due to isotropy, our result above is true for boosts in any direction.

Note that in the derivation above, we did not impose any special constraints on the
positions of the clocks (except that they coincide pairwise atE0 andE1). In particular,
we did not assume (despite the sketch suggesting this) that the clocks are located on
the x=x0-axis. All clocks in A0 are slowed down in the same way, irrespective of their
location!

• This result does not contradict our assumption that all clocks are type-identical (= run
with the same rate if put next to each other at rest) because the two events needed
to compare the tick rate of moving clocks necessarily describe coincidences between
different pairs of clocks.

6 | Relativity principle:

Because of the relativity principle SR time dilation must be completely symmetrical: The A0-clocks
run slower compared to the A-clocks, and the A-clocks run slower compared to the A0 clocks.
That this is indeed that case (without being a clock“paradox”) is best illustrated in a symmetric
spacetime diagram:

The existence of the “median frame”A00 between A
vx
�! A0 can be easily shown with the addition

for collinear velocities Eq. (1.70). This symmetric form of a spacetime diagram is sometimes called
↑ Loedel diagram [44] and makes the symmetry between inertial frames manifest; in particular,
the units on the axes of A and A0 are identical (they are not identical to the units of A00, tough). In
this symmetric form, the t 0-axis is orthogonal to the x-axis and the t -axis to the x0-axis. Note that

because of the relativistic addition of velocities, it is A00
Qvx
�! A0 and A00

�Qvx
��! A with Qvx D vx


1C

and tan.'/ D Qvx

c
(→ Problemset 3). Only in the non-relativistic limit vx=c ! 0 one finds Qvx D vx

2

as naïvely expected.

Note that due to the relativity of simultaneity, the two observers use different pairs of clock-events
to decide which of the two origin clocks runs slower:

• ForA the two clock events QD and C are simultaneous such that one has to conclude that the
(blue) A0-clock runs slower than the (red) A-clock.
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• By contrast, for the observer A0 the two eventsD and QC are simultaneous such that one has
to conclude that the (red) A-clock runs slower than the (blue) A0-clock.

It is evident from the diagram that there is no disagreement about coincidences of events (or
readings of clocks). It is just the observer-dependent concept of simultaneity that leads to the
seemingly “paradoxical” reciprocity of time dilation.

7 | Experiments:

• Muon decay [45]:

Muons quickly decay into electrons (and neutrinos):

��
! e�

C �� C N�e : (2.15)

This decay can be readily observed in storage rings of particle colliders like CERN. The
lifetime of muons at rest (measured by clocks in an inertial laboratory frame) is �0� �
2:1948.10/ µs. However, the lifetime of muons in flight (close to the speed of light) is
measured to be �� � 64:368.29/ µs, i.e., much longer! If one carefully takes into account
the speed of the muons and additional experimental imperfections, this result fits Eq. (2.14)
with deviations of only� 0:1% [45].

Notes:

– In the rest frame of the flying muons one would measure the usual lifetime �0� �
2:1948.10/ µs. However, in this frame, the laboratory is Lorentz contracted such that the
muon reaches exactly the same point in space where it decays in this “shorter” lifetime.
Note how time-dilation and Lorentz contraction provide different explanations for the
same experimental obervation.

– One can also use different particle species to study time dilation, for example pions (a
sort of meson, i.e., a hadron with one quark and one antiquark) [46].

• Hafele-Keating experiment [47,48]:

In 1971, J.C. Hafele and R. E. Keating took four Cesium atomic clocks along commerical jet
flights around the globe twice: once eastward and once westward. Compared to a reference
clock on the ground, the clocks on the eastward flight lost on average � 59 ns (= they
ran slower) and the clocks on the westward flight gained � 273 ns (= they ran faster). To
understand this qualitatively, note that the reference clock on the ground is rotating (together
with earth) and therefore is not an inertial clock. Therefore imagine an (approximately)
inertial reference system flying along earth around the sun, and from this system look down
on the north pole; earth is now slowly rotating beneath you. From this inertial system,
the eastward flight has higher velocity than the reference clock, which, in turn, has higher
velocity than the westward flight. Thus you find that the eastward clock runs slower than the
reference clock which runs slower than the westward clock (this is also true if the clocks are
accelerated,→ below). These theoretical considerations are explained in [47].

2.3. Addition of velocities

Details: → Problemset 2

1 | ^ Particle moving with Eu0 D
dEx0

dt 0 in system K 0 and inertial system K with K
Ev
�! K 0:
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2 | Velocity Eu in K:

Eu D
dEx
dt
� Ev ˚ Eu0 $

1

1C Ev�Eu0

c2

�
Ev C
Eu0

v
C

v

c2.1C v/
.Eu0
� Ev/ Ev

�
(2.16)

Proof: Use Eq. (1.75) (→ Problemset 2).

¡! The relativistic addition of velocities ˚ is in general not commutative (Ev ˚ Eu ¤ Eu ˚ Ev) nor
associative [Ev˚ .Eu˚ Ew/ ¤ .Ev˚ Eu/˚ Ew]. As you can easily see from Eq. (2.16), it is also not linear:
.�Ev/˚ .�Eu/ ¤ �.Ev ˚ Eu/. Be careful: There are different notations (in particular: orderings) used
in the literature.

3 | ^ Non-relativistic limit (c !1 ) v ! 1):

lim
c!1

Ev ˚ Eu0
D lim
c!1

Eu0
˚ Ev D Ev C Eu0 (2.17)

! Galilean addition of velocities

4 | Special case: Ev D .vx; 0; 0/:

ux $
vx C u

0
x

1C
vxu

0
x

c2

; uy $
u0
y=v

1C
vxu

0
x

c2

; u´ $
u0
´=v

1C
vxu

0
x

c2

: (2.18)

¡! Note that also the transverse components of Eu0 are modified, but in a different way than the
collinear component u0

x . For Eu
0 D .u0

x ; 0; 0/ we get our previous result for collinear velocities
Eq. (1.70) back.

5 | Thomas-Wigner rotation [49, 50]:

Remember that for collinear addition of velocities the concatenation of two boosts yields another
boost: ƒvx

ƒux
D ƒwx

[recall Eq. (1.57)].

As a straightforward (but tedious) calculation using two general boosts Eq. (1.75) shows, this is not
true in general: ƒEvƒEu ¤ ƒ Ew with Ew D Eu˚ Ev. Rather one finds

ƒEvƒEu D ƒEu˚EvƒR.Eu;Ev/ (2.19)

with the ⁂ Thomas-Wigner rotation R.Eu; Ev/ 2 SO.3/ (we omit the expliclit form of R.Eu; Ev/ here).

This is not in contradiction with our general addition for velocities above because there we were
only interested in the velocity of a moving particle (which you can identify with the origin of its
rest frameK 00); we completely ignored the axes ofK 00. The Thomas-Wigner rotation tells you that
the concatenation of two pure boosts is not a pure boost in general.
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2.4. Proper time and the twin“paradox”

1 | ^ Time-like trajectory P � E of a spaceship with departureD 2 P and arrival A 2 P .

^ Coordinate parametrization Ex.t/ of P in system K with

departure ŒD�K D .tD; ExD/ and arrival ŒA�K D .tA; ExA/ W (2.20)

Formally, P is a set of coincidence classes parametrized inK by the clock events .t; Ex.t//K :

P D f Œ.t; Ex.t//K � j t 2 ŒtD; tA� g � E : (2.21)

This suggests the formal notation ŒP �K D .t; Ex.t//.

2 | Thought experiment:

The spaceship takes a clock along and resets it to �D D �.tD/ at departureD.

What is the reading �A D �.tA/ of the clock at arrival A?

We assume that the clock in the spaceship is type-identical to the clocks used for inertial observers.

3 | Idea:

Approximate the trajectory by a polygon of N segments i D 1; : : : ; N separated by time steps ti
(with t0 WD tD and tN WD tA):

i | Let �ti WD ti�1 � ti and �Exi WD Ex.ti�1/ � Ex.ti /

For each segment, there is an inertial frame K 0 with a t 0-axis that follows the spacetime
segment (because all segments are time-like!). This is the instantaneous rest frame of the
spaceship where the clock in the spaceship and the origin clock ofK 0 are at the same place and
at rest relative to each other. Since the clocks are type-identical, the time��i accumulated
by the spaceship clock on this segment is identical to the time �t 0i elapsed for the origin
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clock of K 0 on this segment: ��i D �t 0i . This time is equal to the spacetime interval
.�s0

i /
2 D .c�t 0i /

2 � 0 because the origin clock is at rest in K 0 (so that �Ex0
i D

E0). But
remember that the spacetime interval .�s0

i /
2 is Lorentz invariant so that we can calculate

the same number in any inertial system: .�s0
i /
2 D .�si /

2 D .c�ti /
2 � .�Exi /

2.

In summary, on the i th interval, the spaceship clock accumulates the time

��i D
�si

c
WD

q
�s2i

c
D

p
.c�ti /2 � .�Exi /2

c
D �ti

q
1 � .�Exi=�ti /

2

c2 (2.22)

The above chain of arguments provided us with a physical interpretation for the Lorentz
invariant spacetime interval .�s/2 > 0 of time-like separated events: It measures (up to a
factor of c) the time accumulated by an inertial (= unaccelerated) clock that takes part in
both events.

ii | Continuum limit N !1 (v.t/ WD jEv.t/j D j PEx.t/j):

d� D
ds
c
D dt

r
1 �

PEx.t/2

c2 ,
dt
d�
D v.t/ (2.23)

Note that this is just an infinitesimal version of the time-dilation formula Eq. (2.14) with
�t ! dt and�t0 ! d� .

Since .�s/2 D .�s0/2 is Lorentz invariant:

K
ƒ
�! K 0

W dt

r
1 �

PEx.t/2

c2 D
ds
c
D

ds0

c
D dt 0

r
1 �

PEx0.t 0/2

c2 (2.24)

You can check this also explicitly using the Lorentz transformation Eq. (1.75).
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↓ Lecture 6 [21.11.23]

iii | !⁂ Proper time accumulated by the spaceship clock along the trajectory P :

��ŒP � D lim
N!1

NX
Segment
iD1

��i D

Z
P

d� D
Z

P

ds
c
WD

Z tA

tD

dt

r
1 �

PEx.t/2

c2 (2.25)

• As constructed, the proper time��ŒP � of a time-like trajectoryP , parametrized by Ex.t/
for t 2 Œt0; t1�, is the time elapsed by a clock that follows this trajectory in spacetime.

• ¡! This result is valid for accelerated clocks.

In general, special relativity can described the physics of accelerated objects as
long as the descpription of the process is given in an inertial coordinate system (as is
the case here).

• ¡! The right-most expression in Eq. (2.25) yields the same result in all inertial systems
K [recall Eq. (2.24)]. This is why �ŒP � is a function of the event trajectory P and
not its coordinate parametrization Ex.t/. This is important: It tells us that all inertial
observers will agree on the reading of the spaceship clock �A at arrivalA (although their
parametrization Ex.t/may look different).

• Note that since Ex.t/ is assumed to be time-like, it is 8t W j PEx.t/j < c such that the
radicand is always non-negative.

• �Œ�� is a functional of the trajectory P ; this is why we use square-brackets.

4 | Which trajectory P � between the two eventsD and A maximizes the proper time��?

i | D and A are time-like separated! 9 Inertial system K 0 D K.D;A/ with

ŒD�K0 D .t 0D D 0; Ex
0
D D

E0/ and ŒA�K0 D .t 0A; Ex
0
A D
E0/ (2.26)

That is, without loss of generality, we can Lorentz transform into an inertial systemwhere the
two events happen at the same location (and by translations we can assume that this location
is the origin E0 and that the coordinate time is t 0D D 0 atD). We label the time and space
coordinate in K 0 by t 0 and Ex0. Because of the relativity principle SR , K 0 is as good as any
system to describe events.

ii | Time of an arbitrary path P 3 D;A with ŒP �K0 D .t 0; Ex0.t 0//:

��ŒP � D

Z t 0A

t 0D

dt 0
r
1 �

PEx0.t 0/2

c2

Ex0.t 0/�E0
�

Z t 0A

t 0D

dt 0 D t 0A � t
0
D D ��ŒP

�� (2.27)
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Here P � is the trajectory betweenD and A that is parametrized by the constant function
Ex0.t 0/ � E0 inK 0. In other inertial systems, this trajectory will not be constant; however, it is
inertial, i.e., P � is described by a trajectory betweenD and A with uniform velocity.

Check this by applying a Lorentz transformation to the coordinates .t 0; E0/K0 !

! Clocks that travel along the inertial trajectory P � betweenD and A collect the
largest proper time �� D ��ŒP ��.

Collecting the“largest time”means that the these clocks run the fastest.

5 | It is important to let this result sink in:

LetK 0 be the rest frame of earth (which is located in the origin E0) and consider two twins of age �D :

• Twin S departs with a Spaceship atD, flies away from earth, turns around and returns to
earth at A. Twin S therefore follows a trajectory similar to P2 in the sketches above.

• Twin E stays on Earth. He follows the inertial trajectory P � in the sketches above.

We just proved above:

hAge of Twin S at Ai D ��ŒP2�C �D < ��ŒP ��C �D D hAge of Twin E at Ai

This is the famous ⁂ Twin“paradox” : Twin S aged less than Twin E.

6 | Why there is no paradox:

• If you don’t see why the above result should be paradoxical:

Good! Move along. Nothing to see here! ,

• Why one could conclude that the above result is paradoxical (= logically inconsistent):

– From the view of Twin E, Twin S speeds around quickly, thus time-dilation tells him
thatTwin S should age slower. And indeed, when Twin S returns, he actually didn’t
age as much.

– Now, you conclude, due to the relativity principle SR , we could also take the perspective
ofTwin S (i.e., our system of reference is now attached to the spaceship). ThenTwin S
would conclude that time-dilation makesTwin E (who now, together with earth, speeds
around quickly) age more slowly. But this does not match up with the above result that,
when both twins meet again at A, Twin S is the younger one! Paradox!

The resultion is quite straightforwad:

The invocation of the relativity principle SR in the last point is not admissible! Remember
that SR only makes claims about the equivalence of inertial systems. Now have a look at the
trajectory P2 of the spaceship again: it is clearly accelerated and cannot be inertial. And
that there is at least a period where the spaceship (and Twin S) is accelerating is a neccessity
forTwin S to return toTwin E (at least in flat spacetimes, but not so in curved ones [51])!
This implies that the reunion of both twins at A requires at least one of them to not stay in
an inertial system. This breaks the symmetry between the two twins and explains why the
result can be (and is) asymmetric.

• ¡! For historical (and anthropocentric) reasons, the “twin paradox” is called a “paradox.”
We stick to this term because we have to – and not because it is appropriate name. The term
“paradox” suggests an intrinsic inconsistency of relativity. As we explained above: This
is not the case. All “paradoxes” in relativity are a consequence of unjustified, seemingly
“intuitive” reasoning. The root cause is almost always an inappropriate, vague notion of
“absolute simultaneity” that cannot be operationalized.
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• An overview on different geometric approaches to rationalize the phenomenon can be found
in Ref. [52].

Below are two widely used spacetime diagrams of an idealized version whereTwin S changes
inertial systems only once from SD to SA halfway through the journey atR. You can think of
this as an instantenous acceleration at the kink. Note, however, that the acceleration itself
is dynamically irrelevant for the arguments; it is only important that the inertial frames in
which Twin S departs and returns are not the same:

– In the left diagram the slices of simultaneity in the two systems SD and SA are drawn. As
predicted by time-dilation (andmandated by SR ),Twin S observes the clocks ofTwinE
to run slower during his “inertial periods”, i.e., while he stays in a single inertial system.
However, the moment Twin S“jumps” from SD to SA atR, his notion of simultaneity
changes instantaneously: In SD ,R andRD are simultaneous; in SA, however,R and
RA are simultaneous. Due to this jump, the record of Twin S contains now a temporal
gap for events on earth (highlighted interval). It is this “missing” time interval that
overcompensates the slower running clocks on earth (as observed from SD and SA) and
makesTwin S conclude thatTwin E ages faster (in agreement with the actual outcome
of the experiment).

If you wonder what happened to the (missing) observations of events in the triangle
RARRD : there is a nice explanation in Schutz [5]. (The bottom line is that Twin S
constructs a bad coordinate system by stopping the recording of events in system SD
when he reachesR.)

– In the right diagram, we draw light signals (“pings”) of an earth-bound clock next to
Twin E sent to Twin S. Twin S receives these signals and measures their period. This
idealizes howTwin S sees (not observes!) the clocks ticking on earth (and, by proxy, how
fastTwin E ages). It is important to understand the difference between this “seeing”
and our operational definition of observing (using the contraption called an ← inertial
system, as used in the left diagram). As demonstrated by the diagram, Twin S first sees
the clock on earth ticking slower; but when he turns around atR, the clocks on earth
(apparantly) speed up significantly. In the end, this speedup overcompensates for the
slowdown during the first part of the journey so thatTwin S again arrives at the (correct)
conclusion that Twin E ages faster. Note that the speedup of the earth-bound clock
seen by Twin S during the second half of his journey does not contradict time-dilation
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because seeing is not observing. This is similar to the ↑ Penrose-Terrell effect in that a
genuine relativistic effect (here: time-dilation) is distorted by an additional “imaging
effect” due to the finite speed of light.

• In our careful derivation above, we not only showed that Twin S ages less than Twin E; we
also showed that this conclusion is independent of the inertial observer! Thus we know that
there will be no dispute about the different ages between different inertial observers.

• The Hafele-Keating experiment [47, 48] and the muon decay experiments [45], mentioned
previously in the context of time-dilation, are experimental confirmations of the twin“para-
dox.” So our theoretical prediction above (that Twin S ages less than Twin E) is experimen-
tally confirmed. End of discussion.

• Our derivation of the accumulated proper time along trajectories in spacetime is both mathe-
matically sound and experimentally confirmed. This qualifies special relativity as a
successfull theory of physics. Operationally there is nothing to complain about: the theory
does its job to produce quantiative predictions of real phenomena. So why do so many people
(physicists included) – despite the various efforts to visualize the phenomenon – have this
nagging feeling of dissatisfaction that they cannot get rid of? The reason, so I would argue, is
the human brain and its proclivity to inject concepts of absolute simulateneity into its model
building. This qualifies the historical overemphasis of the twin “paradox” as a meta problem:
The question to study is not how to“solve” the twin“paradox” (as we showed above, there
is nothing to solve); the question to study is why so many peoply thought (and still think)
that there is a problem in the first place. This meta problem is an actual problem to study; but
it falls into the domain of cognitive science, and not physics!

7 | Two lessons to be learned from this:

You can outlive your inertial-system-dwelling peers

by changing inertial systems (= accelerating) at least once.

• ¡! You“live longer” when speeding around than your twin on earth, i.e., when you return,
your twin might be 80 and have reached the end of his lifespan while you are still in your
fourties. This is a real, observable effect, not an illusion of sorts. However, “living longer”
does not mean that you somehow have “more time to spend” than your twin because all
physical phenomena in your spaceship experience the same effect. It is not your metaboslism
that slows down wrt. other physical phenomena around you, it is time itself. Put differently:
If you and your twin both try to read as many books as possible during your lifetimes (say one
per month), both of you will have read roughly the same amount of books when either of you
dies (say at the age of 80).

• The mere fact that our universe really allows for this (at least in theory) makes it much more
interesting than its boring alternative: a Galilean universe.

and

Phenomena like length contraction and the twin “paradox” are physically real.

Their “paradoxical” flavor is a phenomenon of human cognition, not physics.

This is why we put “paradox” always in quotes in the context of relativity.
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3. Mathematical Tools I: Tensor Calculus

In this chapter we introduce tensor calculus (↑ Ricci calculus) for general coordinate transformations '
(which will be useful both in special relativity and general relativity). The coordinate
transformations ' relevant for special relativity are Lorentz transformations (and therefore linear)
which simplifies expressions often significantly (→ Chapter 4). However, this special feature of coordinate
transformations in special relativity is not crucial for the discussions in this chapter.

Goal: Construct Lorentz covariant (form invariant) equations
(for mechanics, electrodynamics, quantum mechanics)

Question: How to do this systematically?

Note that (we suspect that) Maxwell equations are Lorentz covariant. Clearly this is not obvious and
requires some work to prove; we say that the Lorentz covariance is not manifest: it is there, but it is hard
to see. Conversely, without additional tools that make Lorentz covariance more obvious, it is borderline
impossible to construct Lorentz covariant equations from scratch (which we must do for mechanics and
quantum mechanics!).

We are therefore looking for a “toolkit” that provides us with elementary “building blocks” and a set of
rules that can be used to construct Lorentz covariant equations. This toolbox is known as tensor calculus
or ↑ Ricci calculus; the “building blocks” are tensor fields and the rules for their combination are given by
index contractions, covariant derivatives, etc. The rules are such that the expressions (equations) you can
build with tensor fields are guaranteed to be Lorentz covariant. This implies in particular that if you can
rewrite any given set of equations (like the Maxwell equations) in terms of these rules, you automatically
show that the equations were Lorentz covariant all along. We then say that the Lorentz covariance is
manifest: one glance at the equation is enough to check it.

Later, in general relativity, our goal will be to construct equations that are invariant under
arbitrary (differentiable) coordinate transformations (not just global Lorentz transformations). Luckily, the
formalism we introduce in this chapter is powerful enough to allow for the construction of such → general
covariant equations as well. This is why we keep the formalism in this chapter as general as possible, and
specialize it to special relativity in the next Chapter 4. The discussion below is therefore already a
preparation for general relativity; it is based on Schröder [1] and complemented by Carroll [53].

3.1. Manifolds, charts and coordinate transformations

1 | D-dimensional Manifold

= Topological space that locally “looks like”D-dimensional Euclidean space RD :
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• ¡! In relativity, the manifold of interest is the set of coincidence classes E; it makes up
theD D 4-dimensional manifold we call spacetime.

• A space that “locally looks like RD” is formalized as a ↑ topological space that is locally
↑ homeomorphic to Euclidean space RD . The structure defined in this way is then called a
↑ topological manifold.

2 | Differentiable Manifolds:

We want to formalize this idea and introduce additional structure to the manifold so that we can
differentiate functions on it:

i | ⁂ Coordinate system / Chart .U; u/:

u W U �M ! u.U / � RD (3.1a)

u�1
W u.U / � RD ! U �M (3.1b)

U �M : open subset ofM ; u and u�1 are continuous and u ı u�1 D 1.

U DM is allowed. This is the situation we assumed so far in special relativity:
Our inertial coordinate systems cover all of spacetimeM D E .

ii | ^ Two charts .U; u/ and .V; v/ and let U \ V ¤ 0:

' WD v ı u�1
W u.U \ V / ! v.U \ V / (3.2a)

'�1
WD u ı v�1

W v.U \ V / ! u.U \ V / (3.2b)

': ⁂ Coordinate transformation / Transition map

U DM D V andU \V DM is allowed. This is the situation we assume so far in special
relativity where .U D E; u/ and .V D E; v/ correspond to the coordinate systems of
two different inertial systems. The coordinate transformation ' would then be a Lorentz
transformation (defined on U \ V D E).

iii | ⁂ Atlas := Family of charts .Ui ; ui /i2I such thatM D
S
i2I Ui

This definition of an atlas formalizes the notion of an atlas in real life (of the book variety):
It contains many charts that, taken together, cover the complete manifold (typically earth).
The different charts (on different pages of the book) all overlap on their edges such that you
can draw any route on earth without gaps.

All ', '�1 differentiable!M : ⁂ Differentiable Manifold
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• ' and '�1 are maps from RD to itself. It is therefore clear what“differentiable”means.

• In mathematics one is of course more precise about the degree of differentiability of
the transition functions, and subsequently assigns this degree to the manifold. For
example, if all coordinate transformations are infinitely often differentiable (= smooth),
the manifold is called a ↑ smooth manifold. We are sloppy in this regard: For us all
functions are differentiable as often as we need them to be.

In relativity we will only be concerned with differentiable manifolds.

3 | Example:

! In general, a manifold cannot be covered by a single chart (Earth, mathematically S2, needs at
least two charts). In special relativity this is not a problem: There we assume that spacetime
is a flat (pseudo-)Euclidean space E ' R4 and the coordinates given by our inertial systems cover
all of spacetime. Later, in general relativity, this will not necessarily be the case.

3.2. Scalars

4 | ⁂ Scalar (field) := Function � WM ! R=C

• If � maps to R (C), we call � a real (complex) scalar field.

• ¡! � is a geometric object because it only depends on the manifold itself. It does not rely on
charts/coordinates and does not depend on a particular set of charts you might choose to
parametrize the manifold. The notion of a mathematical object to be “geometric in nature”
or “independent of the choice of coordinates” is absolutely crucial for the understanding of
general relativity. The reason why these “geometric objects” are so important for
physics is the following insight that took physicists (including Einstein) a long time to fully
comprehend and implement mathematically:

Coordinates (charts) do not represent physical entities.

They are (useful) “mathematical auxiliary structures.”

• One reason why it is so hard for us to grasp and implement the “physical irrelevance” of
coordinates is, so I believe, that the first (and often only) coordinates we encounter in school
are Cartesian coordinates. They are particularly intuitive because they are simply the distances
of a point to some coordinate axes. Distances are a geometric property and physically relevant
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(you can measure them with rods); they are not the invention of mathematicians. This makes
students draw the (wrong) conclusion that coordinates in general have intrinsic physical
meaning. The problem is that coordinates are inventions of mathematicians; they do not
share the ontological status of physical quantities like lengths etc. To undo thismisconception
is key to understand general relativity (→ much later).

• Since bothM and R=C are ↑ topological spaces, it makes sense to ask whether (or require
that) � is continuous. It does not make sense to ask whether � is differentiable (and what is
derivative is) because, in general,M does neither come with a notion of “distance” between
two points inM nor can you add or subtract points (M does not have to be a ↓ metric space
and/or a ↓ linear space). So an expression like @p�.p/ does not make sense (→ below)!

5 | We just declared that coordinates are “not physical.” The problem is that without coordinates it
is really hard (at least for physicists) to do actual calculations with the geometric objects we are
interested in (for example: compute derivatives). In addition, comparing theoretical predictions
with experimental observations typically requires some sort of coordinate representation. Our
← inertial systems, for example, are elaboratemeasurement devices that produce a specific coordinate
representation of the observed events.

This is why we always assume in the following that we have one (or more) charts that allow us to
parametrize a (part of the) manifold, and then express the geometric quantities as functions of
these coordinates. This means for the scalar field:

^ Two overlapping charts u and v:

ˆ.x/ WD �.u�1.x// x 2 u.U \ V / (3.3a)

N̂ . Nx/ WD �.v�1. Nx// Nx 2 v.U \ V / (3.3b)

ˆ and N̂ are functions on (subsets of ) RD; in contrast to � which is a function on the manifoldM .
In an abuse of notation, some authors do not make this distinction and write � and N� instead.
ı
�!

N̂ . Nx/ D ˆ.x/ for Nx D '.x/ with ' D v ı u�1 : (3.4)

Note that N̂ . Nx/ def
D �.p/

def
D ˆ.x/ with u�1.x/ D p D v�1. Nx/.

• In relativity we typically work in a particular chart (coordinate system). Thus we write
our fields as functions of coordinates (and not points on the manifold); e.g., when working
with scalars, we typically work withˆ (and not �).

• ¡! The special transformation of a field Eq. (3.4) (given as function of coordinates) tells us
that it actually encodes a geometric, chart-independent function � (given as function of
points on the manifold). This idea will be prevalent throughout this chapter and is the basis
of our modern formulation of relativity: We work with functions that depend on specific
coordinates (and therefore change when we transition to another chart); however, these
functions satisfy certain transformation laws [like Eq. (3.4)] that guarantee that they actually
encode geometric, chart-independent objects (which is what physics is about).

• As a function of coordinates, scalar fields are those fields the values of which do not change
under coordinate transformations. A typical example would be the temperature as a function
of position: When you move your coordinate system, the temperature of a particular point in
space still is the same (only your coordinates of this particular point have changed!). This is
exactly what Eq. (3.4) demands.
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Note that being a scalar (field) does not simply mean“being a number.” The ´-component of
the electric field strengthE´.x/, for example, assigns a number to every point x; however, it
does not transform like Eq. (3.4) under coordinate transformations. (Do you see why? What
happens toE´ if you rotate your coordinate system?)

• In the literature, you will find the notation N̂ D ˆ to characterize scalars. This does not mean
N̂ .x/ D ˆ.x/ for all x 2 RD (which characterizes form-invariance or functional equivalence),
but rather N̂ . Nx/ D ˆ.x/ (which characterizes scalar fields). Note that with x D '�1. Nx/ it
follows N̂ . Nx/ D ˆ.'�1. Nx// such that the function N̂ is typically not functionally equivalent
toˆ. This ambiguity is the price we have to pay if we want to express geometric objects in
terms of coordinates.

• Sinceˆ W RD ! R, it is well-defined what “differentiability” of ˆmeans. So expressions
like @ˆ.x/

@xk make sense now (if ˆ is differentiable). One then defines that � is differentiable
onM iff ˆ is differentiable for all charts of an atlas ofM .

3.3. Covariant and contravariant vector fields

Are scalar fields the only geometric objects that can be defined on a manifold? The answer is no, there
are many more! And these objects are not just toys for mathematicians: they are necessary to represent
physical quantities like the electromagnetic field. Unfortunately, the definition of these quantities is not
so straightforward as for scalars. We will not be mathematically precise in our discussion; however, it is
important to understand the conceptual ideas:

6 | ⁂ Tangent space TpM at p 2M

= Vector space of directional derivative operators with evaluation at p 2M (=derivations)

These operators can be applied to differentiable functions on the manifold (i.e., scalar fields).

• The tangent space TpM is the mathematical formalization of the intuitive concept of the
plane R2 that you can attach tangentially at any point p of a two-dimensional manifold. The
problem with this picture is that it only works if you embed the manifoldM into a higher-
dimensional Euclidean space. Mathematically, such an approach is not satisfying because it
presupposes additional structure to characterize the manifold (which, as it turns out, is not
needed). Physically, the approach is also problematic: The manifold we are interested in is
all of spacetime E . But E is all there is, it is (to the best of our knowledge) not embedded
into anything. It is therefore crucial that we can work with manifolds “stand alone”, without
assuming any embedding into a higher-dimensional space. The price we have to pay is that
tangent vectors must be defined, rather abstractly, as directional derivative operators.
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• There is a different tangent spaceTpM at every pointp 2M ; these vector spaces all have the
same dimensionD (like the manifold) and are therefore all isomorphic. However, without
additional structure, there is no natural connection (isomorphism) between these different
vector spaces at different points. The disjoint union of all tangent spaces is called ↑ tangent
bundle TM .

• Mathematically, the vectors in the tangent space can be defined as equivalence classes of
smooth curves through p with the same derivative (with respect to their parametrization)
at p. This equivalence class corresponds to a particular directional derivative that one can
apply to smooth functions on the manifold at p. We do not need this abstract“bootstrapping
procedure” for TpM in the following.

^ Chart .U; u/ with coordinates x D .x0; x1; : : : ; xD/

!⁂ Coordinate basis f@i � @
@xi g for TpM

Recall that partial derivatives are special kinds of directional derivatives (namely in the direction
where you keep all but one coordinate fixed). You can therefore think of @i as the tangent vector at
p 2M that points into the xi -direction mapped by u�1 onto the manifold.
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↓ Lecture 7 [28.11.23]

7 | Since TpM is a vector space for each point p of the manifoldM , we can define fields onM that
assign to each point p a tangent vector:

⁂ Vector field: A.p/ D
PD
iD1A

i .x/@i with x D u.p/

At every point p 2M the vector field yields a tangent vector A.p/ D
P
i A

i .u.p//@i 2 TpM .

8 | ^ Coordinate transformation Nx D '.x/ , x D '�1. Nx/

! Chain rule:

@

@ Nxi„ƒ‚…
N@i

D

DX
kD1

@xk

@ Nxi
@

@xk„ƒ‚…
@k

(3.5)

!For x D u.p/ and Nx D v.p/ this is a basis change on the tangent spaceTpM from one coordinate
basis f@ig to another coordinate basis fN@ig via the (invertible) matrix @x

k

@ Nxi :

9 | ^ Vector field A and expand it in different coordinate bases:X
i

Ai .x/@i D A.p/ D
X
i

NAi . Nx/N@i (3.6)

with x D u.p/ and Nx D v.p/.

• ¡! The vector field A is a geometric object, just as the scalar field � was. That it does not
depend on the chosen chart is the statement of this equation.

• You learned this (with different notation and without the x=p-dependency) in your first
course on linear algebra: Given a vector space V , a vector Ev 2 V , and a basis fEeig with
V D span feig, you can encode the vector in a basis-dependent set of numbers vi called
components via linear combination: Ev D

P
i vi Eei . The same vector can be encoded by different

components v0
i in a different basis fEe0

ig: Ev D
P
i Nv

0
i Ee

0
i . In our terminology, the vector Ev is a

“geometric object” that does not depend on your choice of basis; only its components do. In
this context, the gist of the story is that Ev represents something physical (like the velocity of
a particle). The components vi do so only indirectly because they depend on your choice of
the basis fEeig – and this choice does not bear any physical meaning.

Eq. (3.6)!

A D
X
i

Ai .x/@i
Š
D

X
i

NAi . Nx/N@i
Eq. (3.5)
D

X
k

"X
i

@xk

@ Nxi
NAi . Nx/

#
„ ƒ‚ …

Š
DAk.x/

@k (3.7)
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This motivates the following definition (we replace x $ Nx and the indices i $ k):

10 | ^ D-tuple fAi .x/g of fields (in some chart with coordinates x):

⁂ Contravariant vector field fAi .x/g W, NAi . Nx/ D

DX
kD1

@ Nxi

@xk
Ak.x/ (3.8)

Contravariant vector (field)! Superscript indices!

This is a convention which relates syntax and semantics and is at the heart of tensor calculus. The
idea is that whenever you are given a collection of fields Ai .x/, you immediately know that they
transform like Eq. (3.8) under coordinate transformations. (Unfortunately, there are exceptions to
this rule, e.g., the → Christoffel symbols.)

• ¡! Not everyD-tuple of fields transforms as Eq. (3.8). To deserve the name“contraviarant
vector (field),” (and superscript indices) one has to check this transformation law explicitly!

• The rationale of Eq. (3.8) is the same as that of Eq. (3.4): Whenever we find a family of fields
that transform under coordinate transformations as Eq. (3.8), we immediately know that
together they encode a geometric, chart-independent object on the manifold that can be used
to describe a physical quantity.

11 | (Counter)Examples:

• ^ Only linear coordinate transformations: Nx D '.x/ D ƒx

^ Coordinate functions X i .x/ WD xi as fields:

NX i . Nx/„ƒ‚…
Nxi

D

DX
kD1

ƒik X
k.x/„ƒ‚…
xk

D

DX
kD1

@ Nxi

@xk„ƒ‚…
ƒi

k

Xk.x/ (3.9)

! Coordinate functions are contravariant vectors for linear transition maps.

This is useful in special relativity because there we only consider global Lorentz
transformations (which are linear).

• ^ D scalar fields ˆi .x/ (i D 1; : : : ;D):

For general Nx D '.x/: N̂ i . Nx/ D ˆi .x/ ¤

DX
kD1

@ Nxi

@xk„ƒ‚…
¤ıi

k

ˆk.x/ (3.10)

! fˆi .x/g are not components of a contravariant vector field.

– You see: not every collection ofD fields is a vector!

– ¡! ıi
k
is the Kronecker symbol: ıi

k
D 1 for i D k and ıi

k
D 0 for i ¤ k. The notation

ıik is not used in tensor calculus (→ later).

12 | Reminder: ↓ Dual spaces
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i | Remember: Linear algebra

Consider the vector space V D RD and a column vector Ev D .v1; : : : ; vD/T 2 V (a 1 �D-
matrix). Let EwT D .w1; : : : ; wD/ be a row vector (aD � 1-matrix). We can then perform a
matrix multiplication between the vectors and interpret it as a linear map EwT acting on the
vector Ev and producing a number:

EwT W Ev 2 V 7! EwT � Ev D
�
w1 : : : wD

�
�

0B@v1:::
vD

1CA DX
i

wivi 2 R : (3.11)

Inmathematical parlance EwT is a linear functional on the vector spaceV . All linear functionals
of this form make up another vector space V � called the ↓ dual space of V . You can think
of V � as the vector space of allD-dimensional row vectors and V as the vector space of all
D-dimensional column vectors. The elements of the dual space are referred to as a ↓ covectors.

ii | Remember: Quantum mechanics

In quantum mechanics, the state of a physical system is described by ↓ state vectors in some
Hilbert space H (which is a special kind of vector space). Vectors in this space are written as
↓ kets: j‰i 2 H . You can produce a ↓ bra h‰j D j‰i� by applying the complex transpose
operator. As in the example above, the bra h‰j is a covector from the dual space H �; indeed,
it acts as a linear functional on state vectors via the inner product of the Hilbert space:

h‰jjˆi WD h‰jˆi 2 C : (3.12)

This is the gist of the famous ↓ Dirac bra-ket notation.

iii | Hopefully these examples convinced you that the dual space is just as important and useful
as the vector space itself.

!Dual space of the tangent space TpM ?

Given a coordinate basis f@ig 2 TpM of a vector space, there is a standard way to define a
basis of of the dual space T �

pM :

↓ Dual basis fdxig with

dxi .@j / WD ıij D
@xi

@xj
(3.13)

! fdxig is a basis of the ⁂ Cotangent space T �
pM

T �
pM is the dual space of TpM ; it is common to write T �

pM and not .TpM/�.

13 | Since T �
pM is just another vector space for each point p of the manifoldM , we can again define

fields onM that map into this space:

⁂ Covector field: B.p/ D
PD
iD1Bi .x/ dx

i with x D u.p/

14 | Just like the coordinate basis, the dual coordinate basis depends on the chart and changes under
coordinate transformations:

^ Coordinate transformation Nx D '.x/:

d Nxi D
DX
kD1

@ Nxi

@xk
dxk (3.14)
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• Check that this is the correct transformation for the dual coordinate basis:

d Nxi .N@j / D

"X
k

@ Nxi

@xk
dxk

# X
l

@xl

@ Nxj
@l

!

D

X
k;l

@ Nxi

@xk
@xl

@ Nxj
dxk.@l /„ ƒ‚ …

ık
l

D

X
k

@ Nxi

@xk
@xk

@ Nxj„ ƒ‚ …
@ Nxi

@ Nxj

D ıij , (3.15)

• You might recognize Eq. (3.14): This is simply the rule to compute the ↓ total differential
of the function Nx D '.x/. This is no coincidence and explains why we use the differential
notation dxi for the dual vectors: The objects dxi that we physicists like to illustrate as
“infinitesimal shifts” in xi are actually linear functionals (↑ 1-forms).

15 | Now we can play the same game on T �
pM as before on TpM :

^ Covector field B and expand it in different dual coordinate bases:X
i

Bi .x/dxi D B.p/ D
X
i

NBi . Nx/d Nxi (3.16)

with x D u.p/ and Nx D v.p/.

¡! The covector field B is another geometric object, just as the vector field A was. That it does not
depend on the chosen chart is the statement of this equation.

Eq. (3.16)!

B D
X
i

Bi .x/ dxi
Š
D

X
i

NBi . Nx/ d Nxi
Eq. (3.14)
D

X
k

"X
i

@ Nxi

@xk
NBi . Nx/

#
„ ƒ‚ …

Š
DBk.x/

dxk (3.17)

This motivates the following definition (we replace x $ Nx and the indices i $ k):

16 | ^ D-tuple fBi .x/g of fields (in some chart with coordinates x):

⁂ Covariant vector field fBi .x/g W, NBi . Nx/ D

DX
kD1

@xk

@ Nxi
Bk.x/ (3.18)

Covariant vector (field)! Subscript indices!

The rationale of Eq. (3.18) is the same as that of Eq. (3.8): Whenever we find a family of fields
that transform under coordinate transformations as Eq. (3.18), we immediately know that together
they encode a geometric, chart-independent object on the manifold that can be used to describe a
physical quantity. To indicate that this object is a covariant vector field, we use subscript indices.

17 | Example:

First, let us introduce an even shorter notation for partial derivatives: ˆ;i � @iˆ

Following our index convention, the lower index in these expressions is only warranted if the field
transforms as a covariant vector field according to Eq. (3.18). Let us check this:

N̂
;i . Nx/ D N@i N̂ . Nx/

Eq. (3.4)
Eq. (3.5)
D

DX
kD1

@xk

@ Nxi
@ˆ.x/

@xk
D

DX
kD1

@xk

@ Nxi
ˆ;k.x/ (3.19)
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! The gradient of a scalar is a covariant vector field.

18 | What happens if we apply a covector field on a vector field at each point p 2M ?

�.p/ WD B.p/A.p/ D
X
i;j

Bi .x/A
j .x/ dxi .@j /„ ƒ‚ …

ıi
j

D

X
i

Ai .x/Bi .x/ DW ˆ.x/ (3.20)

! ˆ.x/ must be a scalar!

This is a good point to introduce a new (and very convenient) notation:

⁂ Einstein sum convention:

DX
iD1

Ai .x/Bi .x/ � Ai .x/Bi .x/„ ƒ‚ …
⁂ Einstein summation

⁂ Contraction

D Al.x/Bl.x/ (3.21)

The Einstein sum convention or Einstein summation is a syntactic convention according to which a
sum is automatically implied (but not written) whenever two indices show up twice in an expression
and one is up (contravariant) and one down (covariant). Note that such indices are “dummy
indices” in the sense that you can rename them to whatever you want (as long as you do not use
the same letter for other indices already!). The sum over one co- and one contravariant index is
called a contraction.

With this new notation it is straightforward to check thatˆ transforms according to Eq. (3.4) by
using the transformations Eq. (3.8) and Eq. (3.18):

N̂ . Nx/ D NAi . Nx/ NBi . Nx/ D

�
@ Nxi

@xk
Ak.x/

�"
@xl

@ Nxi
Bl .x/

#
(3.22a)

D
@ Nxi

@xk
@xl

@ Nxi„ ƒ‚ …
Chain rule ! ıl

k

Ak.x/Bl .x/ D A
l .x/Bl .x/ D ˆ.x/ (3.22b)

The intermediate expression contains three sums over the colored indices (which we don’t write)!

! The contraction of a contra- and a covariant vector field yields a scalar field.

19 | Note on nomenclature:

• If you compare Eq. (3.18) with Eq. (3.5) you find that the components Bi of a covector field
transform like the basis vectors @i of the tangent space. We say the components covary (“vary
together”) with the basis. This is why they are called covariant.

• A comparison of Eq. (3.8) and Eq. (3.14) shows that the components Ai of a vector field
transform like the basis dxi of the cotangent space – which is the inverse (“opposite”)
transformation as for the basis of the tangent space @i . Thus we say the components Ai

contravary (“vary opposite to”) the basis @i . This is why they are called contravariant.

3.4. Higher-rank tensors

You learned in your linear algebra course that two vector spaces V andW can be used to construct a new
vector space V ˝W called the ↓ tensor product. This allows us to generalize the notion of contra- and
covariant vector fields to tensor fields, all of which are geometric, chart-independent objects defined on the
manifold that are needed to describe physical quantities:
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20 | An ⁂ (absolute) .p; q/-tensor (field) T of rank r D p C q

T
i1i2:::ip

j1j2:::jq
� T

i1i2:::ip
j1j2:::jq

.x/ or T IJ � T
I
J .x/ ; (3.23)

with ↓ multi-indices I D .i1 : : : ip/ and J D .j1 : : : jq/,

transforms like the tensor product of p contravariant and q covariant vector fields:

D NT I
J
. Nx/‚ …„ ƒ

NT
i1:::ip

j1:::jq
. Nx/ D

�
@ Nxi1

@xm1
� � �

@ Nxip

@xmp

�
„ ƒ‚ …

DW @ NxI

@xM

�
@xn1

@ Nxj1
� � �
@xnq

@ Nxjq

�
„ ƒ‚ …

DW @xN

@ NxJ

T
m1:::mp

n1:::nq
.x/„ ƒ‚ …

DTM
N
.x/

(3.24)

There are r D p C q sums in this transformation rule (Einstein summation!).

• ¡! It is important that we do not write contra- and covariant indices above each other like so:
T ij (at least not with additional knowledge about the tensor). This will become important
below.

• Henceforth we always encode tensor fields by their chart-dependent components. The actual
tensor field is of course chart-independent and maps each point p 2M to an element of the
tensor product

TpM ˝ � � � ˝ TpM„ ƒ‚ …
p factors

˝T �
pM ˝ � � � ˝ T

�
pM„ ƒ‚ …

q factors

: (3.25)

like so

T .p/ D
X
I;J

T
i1:::ip

j1:::jq
.x/ @i1˝ � � � ˝ @ip˝ dxj1˝ � � � ˝ dxjq : (3.26)

• Note that while tensors (more precisely: tensor components) are indicated by upper and
lower indices (corresponding to their rank), not every object that is conventionally written
with upper and lower indices does encode a tensor. For example, the transformation matrices
@ Nxi

@xm , which describe a basis change on T �
pM , do not encode a tensor field.

21 | Examples:

Scalar ˆ.x/ ! .0; 0/-tensor

Contravariant vector Ai .x/ ! .1; 0/-tensor

Covariant vector Bi .x/ ! .0; 1/-tensor

Tensor product T ij .x/ WD Ai .x/Bj .x/ ! .1; 1/-tensor (Check this!)

22 | Properties:

• Equality:

A D B W, 8i1:::ip 8j1:::jq
W A

i1:::ip
j1:::jq

D B
i1:::ip

j1:::jq
(3.27)

• Symmetry:

T (anti-)symmetric in k and l W, T :::k:::l:::::: D .�/ T
:::l:::k:::

::: (3.28)
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Every contra- or covariant rank-2 tensor can be decomposed into a sum of symmetric and
antisymmetric tensors:

Tij D
1

2
.Tij C Tj i /„ ƒ‚ …

DWT.ij /

C
1

2
.Tij � Tj i /„ ƒ‚ …

DWTŒij �

D T.ij / C TŒij � : (3.29)

23 | Constructing tensors:

New tensors can be constructed from known tensors as follows (Proofs: → Problemset 4):

• Sum of .p; q/-tensorsA andB yields .p; q/-tensor C :

C
i1:::ip

j1:::jq
WD A

i1:::ip
j1:::jq

C B
i1:::ip

j1:::jq
(3.30a)

or C IJ WD A
I
J C B

I
J (3.30b)

• Product of .p; q/-tensorA and scalarˆ yields .p; q/-tensor C :

C IJ WD ˆA
I
J (3.31)

• Tensor product of .p; q/-tensorA and .r; s/-tensorB yields .p C r; q C s/-tensor C :

C IKJL WD A
I
J � B

K
L (3.32)

• Contractions:

Summing over a pair of contra- and covariant indices yields a tensor of rank .p � 1; q � 1):

QA
i1:::�:::ip

j1:::�:::jq
WD A

i1:::k:::ip
j1:::k:::jq

(3.33)

The � indicates that the index summed over on the right side is missing in the list.

Proof: → Problemset 4

A special case of a contraction (in combination with a tensor product) is the scalar obtained
from a contra- and a covariant vector field above:

ˆ D C ii D A
iBi : (3.34)

• Quotient theorem:

AB D C tensor for all tensors B ) A is tensor (3.35)

Here, AB denotes (potentially multiple) contractions between indices of A and B (but not
within A and B).

– As an example, rewrite an arbitrary contravariant vector Ai as Ai D ıijA
j with Kro-

necker symbol ıij . The above theorem then implies that ıij transforms as a .1; 1/-tensor
(verify this using the definition!). Hence we actually should write ıij instead of ıij .
However, because the Kronecker symbol is symmetric in its indices, this simplified
notation is allowed (→ later).
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– Special case:

AikB
k
D Ci covector for all vectors Bk ) Aik is .0; 2/-tensor (3.36)

Proof: → Problemset 4

24 | Relative tensors:

i | Relative tensor are a generalization of the (absolute) tensors defined above. This generaliza-
tion is useful because most of the rules for computing with tensors discussed so far carry
over to relative tensors.

A ⁂ relative tensor of weightw 2 Z picks up an additional power w of the ↓ Jacobian
determinant under coordinate transformations:

NRIJ . Nx/ D det
�
@x

@ Nx

�w @ NxI

@xM
@xN

@ NxJ
RMN .x/ with weight w 2 Z (3.37)

and Jacobian determinant

det
�
@x

@ Nx

�
WD

X
�2SD

.�1/�
DY
iD1

@xi

@ Nx�j
: (3.38)

Here SD is the group of permutations � onD elements.

Since Nx D '.x/ is invertible, x D '�1. Nx/, it is @ Nx
@x
D

�
@x
@ Nx

��1

and therefore det
�
@ Nx
@x

�
D

det
�
@x
@ Nx

��1

.

ii | Examples:

• (Absolute) tensors � Relative tensors of weight w D 0

• Volume form: Relative tensor of weight w D �1:

dDNx D dDx det
�
@ Nx

@x

�
D dDx det

�
@x

@ Nx

��1

(3.39)

Remember the rule for integration by substitution with multiple variables!

• ⁂ Tensor density L.x/ WD Relative tensor of weight w D C1!

S D

Z
dDxL.x/„ ƒ‚ …

Absolute tensor

D

Z
dDNx NL. Nx/ (3.40)

In this example, we assume that L.x/ is a scalar tensor density such that its integral is a
(absolute) scalar quantity.

In ↑ relativistic field theories (like electrodynamics), the Lagrangian density L.x/ is a
scalar tensor density such that the ↓ action S becomes a scalar.

• Let i1; i2; : : : ; iD 2 f1; 2; : : : ;Dg and define the ⁂ Levi-Civita symbol as

"I � "i1i2:::iD WD

8̂<̂
:
C1 I even permutation of 1; 2; : : : ;D
�1 I odd permutation of 1; 2; : : : ;D
0 (at least) two indices equal

(3.41)
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An even (odd) permutation of 1; 2; : : : ;D is constructed by an even (odd) number of
transpositions (= exchanges of only two indices).
ı
�!

N"I D "I $ det
�
@x

@ Nx

�C1 @ NxI

@xJ
"J (3.42)

! "I D "i1i2:::iD is a .D; 0/-tensor density

– ¡! N"I D "I is true by definition: " is a symbol defined by Eq. (3.41); this definition
is independent of the coordinate system. In Eq. (3.42) we compare this trivial
transformation with that of a (relative) tensor and conclude that it is equivalent to
the statement that "I transforms as a .D; 0/-tensor density with weightw D C1.
This knowledge is helpful in tensor calculus to construct covariant expressions that
contain Levi-Civita symbols (→ below).

– To show this, note that the Levi-Civita symbol can be used to compute determi-
nants:

det
�
@ Nx

@x

�
D

X
�2SD

.�1/�
DY
iD1

@ Nxi

@x�j
D

@ Nx1

@xj1
� � �

@ NxD

@xjD
"j1:::jD : (3.43)

Details: → Problemset 4

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → MATHEMATICAL TOOLS I: TENSOR CALCULUS

94
PAGE

↓ Lecture 8 [05.12.23]

3.5. The metric tensor

A differentiable manifoldM does not automatically allow us to measure the length of curves, the angles
of intersecting lines, or the area/volume of subsets of the manifold; to do so, we need a metric onM
(which is an additional piece of information). While the continuity structure (an atlas) that comes with
M determines its topology, the metric determines its geometry (= shape). The same manifoldM can be
equipped with different metrics; this corresponds to different geometries of the same topology (a potato
and an egg both have the topology of a sphere, nonetheless they are geometrically distinct).

A differentiablemanifold togetherwith a (pseudo-)metric is called↑ (pseudo-)Riemannian manifold. In spe-
cial relativity and general relativity, spacetime is modeled by such (pseudo-)Riemannian
manifolds where the metric is used to represent spatial and temporal distances between events.

25 | Motivation:

On linear spaces V , it is convenient to define an ↓ inner product (like in quantum mechanics where
you consider Hilbert spaces and use their inner product to compute probabilities and transition
amplitudes).

Recall the definition of a (real) inner product:

h�j�i W V � V ! R with… (3.44a)

Symmetry: hxjyi D hyjxi (3.44b)

(Bi)linearity: hax C byj´i D ahxj´i C bhyj´i (3.44c)

Positive-definiteness: x ¤ 0 ) hxjxi > 0 (3.44d)

Once you have an inner product, you get a norm, and subsequently a metric for free:

hxjyi„ƒ‚…
Inner product

) kxk WD
p
hxjxi„ ƒ‚ …

Norm

) d.x; y/ WD kx � yk„ ƒ‚ …
Metric

(3.45)

Thus an inner product is a rather versatile structure and nice to have!

Problem: We cannot define a inner product on the manifold directly becauseM is not a linear space.

However: We can introduce an inner product on each of its tangent spaces TpM !!

26 | ⁂ Riemannian (Pseudo-)Metric ds2 := Symmetric, non-degenerate .0; 2/-tensor field:

ds2 W M 3 p 7!
�
ds2p W TpM � TpM ! R

�„ ƒ‚ …
Bilinear & symmetric & non-degenerate

ds2p bilinear ) ds2p 2 T
�
pM ˝ T

�
pM

) ds2p D
DX

i;jD1

gij .x/ dxi ˝ dxj � gij .x/ dxidxj

with gij D gj i (symmetry) and g D det.gij / ¤ 0 (non-degeneracy).

(3.46a)

(3.46b)
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• The tensor product is non-commutative: dxi ˝ dxj ¤ dxj ˝ dxi . However, you can always
decompose a tensor product as

dxi ˝ dxj D
1

2
.dxi ˝ dxj C dxj ˝ dxi /„ ƒ‚ …

DWdxi _dxj

C
1

2
.dxi ˝ dxj � dxj ˝ dxi /„ ƒ‚ …

DWdxi ^dxj

(3.47)

with the symmetrized tensor product dxi _ dxj and the anti-symmetrized tensor product
dxi ^ dxj (↑ wedge product).

Since gij is assumed to be symmetric, only the symmetric component survives:

gij .x/dxi ˝ dxj D gij .x/dxi _ dxj � gij .x/dxidxj (3.48)

This means that when writing dxidxj in the above formula, you can be sloppy and either
mean dxi ˝ dxj or, equivalently, dxi _ dxj . You will find both conventions in the literature.
I will use dxidxj � dxi _ dxj so that dxidxj D dxjdxi .

• It would be more appropriate to write g D gijdxidxj for the metric .0; 2/-tensor; it is
conventional, however, to reserve g for the determinant det.gij / so that we are stuck with
ds2 for the metric. Note that the d in ds2 does not refer to an ↑ exterior derivative, it is purely
symbolical.

• To define a proper ↓ inner product on TpM , we should demand ↓ positive-definiteness instead
of non-degeneracy. This, however, is often (for example in relativity) too restrictive; as
it turns out, non-degeneracy is all we need for an isomorphism between TpM and T �

pM

(“pulling indices up and down”, → below). This is why negative eigenvalues of gij are fine for
many purposes, and motivates the concept of a → signature:

27 | Signature:

Since gij .x/ D gj i .x/ and det.gij .x// ¤ 0

! gij .x/ has r positive and s negative real eigenvalues for all p 2M

Since det.gij .x// ¤ 0, these numbers must be the same for all p 2M .

! .r; s/: ⁂ Signature of the metric ds2

This classification does not depend on the coordinate basis (↑ Sylvester’s law of inertia).

• .r > 0; s D 0/

! ds2: Riemannian metric! .M; ds2/: ⁂ Riemannian manifold

I.e., gij has only positive eigenvalues for all p 2M and is therefore ↓ positive-definite. This
produces a true, positive-definite inner product on TpM .

• .r > 0; s > 0/

! ds2: pseudo-Riemannian metric! .M; ds2/: ⁂ pseudo-Riemannian manifold

I.e., gij has both positive and negative eigenvalues and is therefore ↓ indefinite.

– .r > 0; s D 1/ or .r D 1; s > 0/:

! ds2: Lorentzian metric! .M; ds2/: ⁂ Lorentzian manifold

In relativity we are only interested in metric tensors with one positive and three
negative eigenvalues (equivalently: three positive and one negative eigenvalue). Math-
ematically speaking, spacetime is then a four-dimensional Lorentzian manifold and a
special case of a pseudo-Riemannian manifold.
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28 | Example: (Details: → Problemset 4)

i | ^ D D 2 Euclidean space E2 � .R2; ds2E /

The Euclidean metric in Cartesian coordinates x1 D x and x2 D y reads:

ds2E WD dx2 C dy2 D gij .x/ dxidxj with .gij / D

�
1 0

0 1

�
„ ƒ‚ …
Signature
.2;0/

: (3.49)

This is consistent with the notion of dx and dy as infinitesimal shifts in coordinates and ds2

as the infinitesimal distance (squared) that corresponds to this shift:

ii | We can now transition to a new chart, namely polar coordinates Nx1 D r and Nx2 D � . The
induced basis change on the cotangent space is given by the total differential of the coordinate
functions Eq. (3.14):

'�1
W

(
x D r cos.�/

y D r sin.�/

Eq. (3.14)
)

dx D cos.�/ dr � r sin.�/ d�

dy D sin.�/ dr C r cos.�/ d�
(3.50)

iii | We find the components of the metric tensor field in the new basis fd Nx1 D dr; d Nx2 D d�g:

ds2 $ dr2 C r2d�2 D Ngij . Nx/ d Nxid Nxj with . Ngij / D

�
1 0

0 r2

�
„ ƒ‚ …
Signature
.2;0/

: (3.51)

This expression is again compatible with infinitesimal shifts in the (new) coordinates r and � :

• The Euclidean planeE2 is therefore an example for a Riemannian manifold with metric
signature .2; 0/; its distinctive feature is that it is flat.
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• Note that here we compute the same infinitesimal length in different coordinates (with
the same result)! We did not change the metric, only the coordinates and thereby the
coordinate basis in which we express the metric tensor. This is flat Euclidean space in
↑ curvilinear coordinates. By contrast, later in general relativity we will study
curved (non-flat, non-Euclidean) metric tensors, i.e., we will modify the geometry of
space(time) itself.

29 | Since the metric ds2 is a .0; 2/-tensor field:

Ngij . Nx/d Nxid Nxj D ds2 D gij .x/dxidxj (3.52)

Eq. (3.14)
ı
�!

Ngij . Nx/ D
@xl

@ Nxi
@xm

@ Nxj
glm.x/ (3.53)

The metric (components) transforms as any other .0; 2/ tensor. Nothing special!

Side note:

Let g WD det.gij / and Ng WD det. Ngij /
Eq. (3.53)
�����!p
j Ngj D

ˇ̌̌̌
det

�
@x

@ Nx

�ˇ̌̌̌p
jgj (3.54)

!
p
jgj is a pseudo scalar tensor density of weight w D C1. The “pseudo” indicates that the

absolute value of the Jacobian determinant shows up, cf. Eq. (3.37).

^ g < 0
Eq. (3.39)
�����! dDx

p
�g is a scalar (→ later)!

30 | Length of curves onM :

One immediate benefit of having a Riemannian manifold is that we can now compute the length of
curves .t/ onM (parametrized by t 2 Œa; b� and given in some chart):

LŒ� �

Z


ds WD
Z b

a

s
gij ..t//

d i .t/
dt

dj .t/
dt

dt

�

Z b

a

k P.t/k.t/ dt

(3.55)

(3.56)

¡! If ds2 is a true pseudo metric (i.e., gij has at least one negative eigenvalue), one must make sure
that the chosen curve  does not produce negative values under the square root. In relativity
these will be ↑ time-like curves.

Example:

Let  be the circle with radiusR in the Euclidean planeE2. A possible parametrization in Cartesian
coordinates (with origin in the center of the circle) is Exy.t/ D .xt ; yt / D .R cos.t/; R sin.t//
with 0 � t < 2� so that one finds for the circumference:

L D

Z


p
dx2 C dy2 D

Z 2�

0

q
Px2t C Py

2
t dt $ 2�R (3.57)
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The same length can of course be calculated with the parametrization Er� .t/ D .rt ; �t / D .R; t/
and 0 � t < 2� in polar coordinates:

L D

Z


p
dr2 C r2d�2 D

Z 2�

0

q
Pr2t C r

2
t
P�2t dt $ 2�R (3.58)

Details: → Problemset 4

31 | Besides computing lengths of curves (and other geometric quantities, → later), there is another
benefit of having a metric tensor:

Pulling indices down:

QT
i1 : : :� : : : ip � : : : �
� : : : i : : :� j1 : : : jq

WD gikT
i1 : : : k : : : ip � : : : �
� : : :� : : :� j1 : : : jq

(3.59)

! QT is a tensor of type .p � 1; q C 1/

• In Eq. (3.59) we indicate “empty” slots for indices by � to emphasize that in each index
“column” an index can either be up (contravariant) or down (covariant). It is conventional to
omit the �-markers. Note that this explains why you never should write two indices directly
above each other (except for special cases, → below).

Furthermore, since g is fixed, it makes sense to label QT again by T (note that the difference
between the original tensor and the new one is manifest in the different index patterns!):

QT
i1 : : :� : : : ip � : : : �
� : : : i : : :� j1 : : : jq

7! T
i1 : : : : : : ip

i j1 : : : jq
(3.60)

Example:

Ai kj l WD gjmA
imk

l (3.61)

• This convention matches perfectly with the computation of an inner product (which is
determined by the metric tensor g) of two contravariant vectors:

hA;Bi
def
D gijA

iBj
def
D AiBi„ƒ‚…

Scalar

(3.62)

32 | Pulling indices up:

We would like to have a .2; 0/-tensor gij with the property

ıkj T
j
D T k

Š
D gkiTi

def
D gkigijT

j : (3.63)

gij allows us to revert the pulling-down of indices defined by the metric gij . Note that gij is a
different tensor than gij , we could call it Qgij ; however, it is conventional to denote it with the same
label due to the following close relationship with g:

gkigij
Š
D ıkj (3.64)

This is an implicit equation for gki !
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! gij is the inverse matrix of gij
(Which always exists because ds2 is non-degenerate: det.gij / ¤ 0.)

! In general:

QT
i1 : : : ip � : : : j : : : �
� : : :� j1 : : :� : : : jq

WD gjkT
i1 : : : ip � : : :� : : : �
� : : :� j1 : : : k : : : jq

(3.65)

! QT is a tensor of type .p C 1; q � 1/

• Again we relabel QT to T and omit the �-markers:

QT
i1 : : : ip � : : : j : : : �
� : : :� j1 : : :� : : : jq

7! T
i1 : : : ip j

j1 : : : : : : jq
(3.66)

• Example:

Aijkl WD glmAijk m (3.67)

• With these new definitions, we can now raise and lower contractions:

AiBi D A
iı
j
i Bj D A

igikg
kjBj D A

igikB
k
D AkB

k
D AiB

i (3.68)

• What happens if you pull the indices of the Kronecker symbol up or down?

ıij WD gjkıik D g
ij and ıij WD gikı

k
j D gij (3.69)

¡! ıij � gij and ıij � gij denote the metric and its inverse!

!We never use the notation ıij and ıij to prevent confusion!

• Note that in general

gjkT ik D T
ij
¤ T j i D gjkT i

k : (3.70)

This means that the “column” in which the index is located is important, and notations like
T i
k
are ill defined (if you pull k up by gjk , do you get T ij or T j i ?). However, if the tensor is

symmetric, T ij D T j i , this does not matter and you can get away with the sloppy notation T i
k
.

This explains why writing ıi
k
for the Kronecker symbol is fine: gj i D gjkıi

k
is symmetric.

33 | Mathematical side note:

“Pulling indices up and down” is mathematically the application of an ↓ isomorphism between TpM
and T �

pM :

g.�; �/ W TpM 3 A 7! g.A; �/ 2 T �
pM (3.71)

This has nothing to do with differential geometry or manifolds in particular; it is a general feature
of non-degenerate bilinear forms on vector spaces. In differential geometry, this canonical iso-
morphism between the tangent bundle TM and the cotangent bundle T �M is know as ↑ musical
isomorphism.

For example, you are using the same kind of isomorphism all the time in quantum mechanics,
namely whenever you“dagger” a ket j‰i to obtain a bra h‰j:

.�/� W H 3 j‰i 7! h‰j � j‰i� 2 H � with h‰jjˆi
Š
D h‰jˆiH for all jˆi 2 H . (3.72)
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Note how the bra bra h‰j associated to the ket j‰i is defined via the inner product h�j�iH (and
therefore metric) of the Hilbert space (↑ Riesz representation theorem)!

This leads to a nice dictionary between concepts in tensor calculus (and therefore relativity)
and the bra-ket formalism of quantum mechanics:

Relativity (fixed p 2M ) Quantummechanics
Inner product space TpM H

Basis f@ig fjiig

Vector A D Ai@i j‰i D ‰i jii

Dual space T �
pM H �

Dual basis fdxig fhi jg

… dxi .@j / D ıij hi jj i D ıij

Covector B D Bidxi h‰j D ‰�
i hi j

Inner product g.A1; A2/ D gijA
i
1A

j
2 h‰jˆi

Tensor A D Aij @i ˝ @j j‰i ˝ jˆi � j‰ijˆi

… B D Bijdxi ˝ dxj h‰j ˝ hˆj � h‰jhˆj

Operator T D T ij @i ˝ dxj jˆi ˝ h‰j � jˆih‰j

Trace T ii TrŒjˆih‰j�
Scalar BA D BiA

i D gijB
iAj h‰jjˆi D h‰jˆi

Pulling indices down Ai D gijA
j h‰j D j‰i�

Pulling indices up Ai D gijAj j‰i D h‰j�

3.6. Differentiation of tensor fields

34 | Remember: @iˆ is covariant vector if ˆ is scalar. However:

^ Contravariant vector Ai :

NAi ;k �
@ NAi

@ Nxk
D
@xm

@ Nxk

@

@xm

"
@ Nxi

@xl
Al

#
D

@2 Nxi

@xm@xl

@xm

@ Nxk
Al„ ƒ‚ …

¤ 0 (in general)/

C
@xm

@ Nxk

@ Nxi

@xl

@Al

@xm„ ƒ‚ …
.1; 1/-tensor,

(3.73)

Here we used the transformation of NAi [Eq. (3.8)] and N@k [Eq. (3.5)] and the product rule.

! In general: @ NAi

@ Nxk is not a tensor!

35 | How to define a derivative of tensor fields that again transforms as a tensor?

To solve this problem, we first need a new field:

!⁂ Christoffel symbols (of the second kind):

� ikl WD
1

2
gim

�
gmk;l C gml;k � gkl;m

�
(3.74)

• The Christoffel symbols are symmetric in the lower two indices: � i
kl
D � i

lk

• ¡! Despite the index notation, the Christoffel symbols are not tensors:

N� ikl $
@ Nxi

@xm
@xn

@ Nxk

@xp

@ Nxl
�mnp �

@xn

@ Nxk

@xp

@ Nxl

@2 Nxi

@xn@xp„ ƒ‚ …
No tensor!

(3.75)
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This is why they are called“symbols” and not “tensors”!

• There are also Christoffel symbols of the first kind:

�ikl WD gij�
j

kl
D
1

2

�
gik;l C gil;k � gkl;i

�
(3.76)

• Mathematically, the Christoffel symbols are the coefficients (in some basis) of the ↑ Levi-
Civita connection which is determined by the metric tensor gij (→ later).

36 | ^ Contravariant vector NAi and contract it with N� i
kl

:

N� ikl
NAl D

@ Nxi

@xm
@xn

@ Nxk
�mnp

�
@xp

@ Nxl
NAl
�

„ ƒ‚ …
Ap„ ƒ‚ …

.1; 1/-tensor,

�
@xn

@ Nxk

@2 Nxi

@xn@xp

�
@xp

@ Nxl
NAl
�

„ ƒ‚ …
Ap„ ƒ‚ …

Problematic term in Eq. (3.73)

(3.77)

Idea: Add Eq. (3.73) and Eq. (3.77) to cancel the problematic term:

NAi ;k C
N� ikp

NAp D
@xm

@ Nxk

@ Nxi

@xl

h
Al;m C �

l
mpA

p
i

„ ƒ‚ …
.1; 1/-tensor,,

(3.78)

37 | This motivates the definition of the ⁂ Covariant derivative:

Scalar: ˆ
Ik WD ˆ;k

Contravariant vector: Ai
Ik WD A

i
;k C �

i
klA

l

Covariant vector: Bi Ik WD Bi ;k � �
l
ikBl

(3.79a)

(3.79b)

(3.79c)

• With this definition, Ai
Ik

is a .1; 1/-tensor and B
i Ik

is a .0; 2/-tensor!

• With this definition, the product rule is valid for the covariant derivative:

.AiBi /Ik D .A
iBi /;k $ Ai

IkBi C A
iBi Ik (3.80)

• The construction of higher-rank tensors by tensoring contra- and covariant vectors Eq. (3.32)
and the definitions of the covariant derivative above Eq. (3.79) can be used to construct
covariant derivatives of arbitrary tensor fields. For example:

T ikIl WD T
i
k;l C �

i
ml T

m
k � �

m
kl T

i
m (3.81)

• With this generalization, we can apply the covariant derivative multiple times. For example:

Ai
IkIl �

�
Ai

Ik

�
Il

(3.82)

• The covariant derivative is not commutative in general:

Ai
IkIl � A

i
IlIk ¤ 0 (3.83)

! Riemann curvature tensor! general relativity (→ later)

(This is not the case for the “normal” derivative: Ai
;k;l
D Ai

;l;k
.)
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38 | Conclusion:

If you can formulate an equation that describes a physical theory in terms of tensors, it can always
be brought into the form

T IJ .x/ D 0 : (3.84)

(This equation is meant to hold for all values of indices I and J and all coordinate values x.)

Here is an example:

The (inhomogeneous) Maxwell equations on an arbitrary (potentially curved) spacetime read:

F ��I� C
4�

c
J�„ ƒ‚ …

DWT�.x/

D 0 (3.85)

with current density J� and field strength tensor F �� D g��g��.A�I� � A�I�/.

How does Eq. (3.84) look like in any other coordinate system Nx D '.x/?

Easy:

NT IJ . Nx/ D
@ NxI

@xM
@xN

@ NxJ
TMN .x/„ ƒ‚ …

D0

D 0 , NT IJ . Nx/ D 0 : (3.86)

This means:

Tensor equations are automatically form-invariant under arbitrary coordinate

transformations; we say they exhibit ⁂ (manifest) general covariance.

The“manifest”means that checking general covariance is just a matter of checking whether the
equation“looks right”, i.e., whether it is built from tensors following the rules discussed in this
chapter. If a property of an equation is manifest, you don’t have to do calculations to verify it!

In the next chapter, we take a step back and specialize the allowed coordinate transformations to
the Lorentz transformations of special relativity. We can then use the form-invariance of
equations built from“Lorentz tensors” to construct Lorentz covariant equations from scratch –
which was our original goal!
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↓ Lecture 9 [12.12.23]

4. Formulation onMinkowski Space

In this section we briefly reformulate what we already learned about special relativity in terms of
tensor calculus. We use this notation in subsequent chapters to make classical and quantum mechanics
relativistic, and reformulate electrodynamics in a form where its Lorentz covariance is manifest. It also
allows a smooth transition into general relativity.

The formulation of special relativity on a unified, four-dimensional spacetime manifold goes back
to Hermann Minkowski, Albert Einstein’s former professors of mathematics at ETH. Minkowski writes
in the notes of his lecture “Raum und Zeit” delivered 1908 in Cologne [54]:

Die Anschauungen über Raum und Zeit, die ich Ihnen entwickeln möchte, sind auf experimentell-
physikalischem Boden erwachsen. Darin liegt ihre Stärke. Ihre Tendenz ist eine radikale. Von
Stund’ an sollen Raum für sich und Zeit für sich völlig zu Schatten herabsinken und nur noch eine
Art Union der beiden soll Selbständigkeit bewahren.

Einstein, a physicist all through, didn’t appreciate this mathematical reformulation of his theory at first.
According to Sommerfeld, he (Einstein) commented:

Seit die Mathematiker über die Relativitätstheorie hergefallen sind, verstehe ich sie selbst nicht
mehr.

Einstein later changed his views and acknowledged that withoutMinkowski’s introduction of spacetime as
a four-dimensional manifold, the development of general relativity would have been impossible.

For a historical account on the role of Minkowski, and his relationship (or absence thereof ) to Einstein,
see Ref. [55].

4.1. Minkowski space

1 | Manifold:

M D hSpacetime of events / coincidence classes Ei ' R4 (4.1)

It is a well founded, but nonetheless empirical assumption that the spacetime manifold of events
has the topology of R4. Note that at this point we do not impose restrictions on the geometry of
spacetime, e.g., whether it is flat or curved; this follows below when we settle on a metric.

2 | Charts:

In special relativity, we restrict the coordinate systems to the ones that correspond to
inertial observers / inertial coordinate systems:

.E; K/ $ Inertial (coordinate) systems K 2 I (4.2)
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The coordinates are the ones obtained by an ↑ inertial observer:

K W E 3 E 7! K.E/ WD ŒE�K D x

with x� D .x0; x1; x2; x3/T D .ct; x; y; ´/T D .ct; Ex/T

(4.3)

(4.4)

• ¡! Henceforth, Greek indices �; �; : : : run over 0; 1; 2; 3 where � D 0 denotes the time
component and � D 1; 2; 3 denote the spatial components. Roman indices i; j; : : : run only
over the spatial components 1; 2; 3.

• ¡! We multiply the time t with the speed of light to measure times and distances in the same
units.

• Since we assumed that our inertial systems cover all of spacetime, the domains on which the
coordinate functions are defined are the complete manifold.

• The notation above is very suggestive: You can think of our inertial systems, namely the
calibrated latticework of clocks and rods, as physical manifestations of the coordinate map of
the corresponding chart. That is, an inertial system is a measurement device, or function,
which assigns to every eventE 2 E the coordinate tuple x D K.E/ D .ct; Ex/K 2 E.

3 | Transition maps:

i | We worked hard in Section 1.4 to derive and select the correct coordinate transformations
between different inertial systems. The most general ones have the form of…

Inhomogenous Lorentz transformations

Poincaré transformations

)
W Nx D '.x/ D ƒx C a (4.5)

with a 2 R4 arbitrary and ƒ 2 R4�4 a ↑ Lorentz transformation.

For the special case a D 0 2 R4 we found:

Homogeneous Lorentz transformations: Nx D '.x/ D ƒx (4.6)

ii | Since these transformations are affine, we find immediately:

@ Nx�

@x�
D ƒ�� and

@x�

@ Nx�
D .ƒ�1/�� � ƒ

�
� (4.7)

Recall that the derivative of a linear (affine) map is simply the matrix which defines the map.

¡! We use the tensor-inspired notationƒ�� for the matrix elements of ƒ to allow for well-
defined contractions with the metric (→ later). Inƒ�� , the upper index � denotes the rows,
the lower index � the columns of the matrix. The notationƒ �

� for the components of the
inverse transformation matrixƒ�1 is purely conventional at this point; it will turn out to be
consistent with pulling indices up and down with the Minkowski metric (→ below).

This allows us to rewrite the coordinate transformation Eq. (4.5) in tensor notation:

Nx� D ƒ��x
�
C a� (4.8)
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¡! The matrix-vector productƒx is now given by the Einstein summation (index contraction)
highlighted blue. We will stick to this notation whenever possible. Since we are now in the
world of tensor calculus, it is strongly discouraged to think of and write rank-2 tensors as
“matrices”and contractions asmatrix-vector productsƒx (even thoughƒ does not represent
the components of a tensor). It is less error-prone (and simpler) to perform computations
using the index notation introduced in Chapter 3.

iii | Writing down the most general homogeneous Lorentz transformation is very complicated
(and unnecessary). Here we provide the two special Lorentz transformations (boosts) dis-
cussed earlier in the new matrix notation, and an example for a spatial rotation about the
´-axis:

• Lorentz boost in x-direction K
vx
�! NK (ˇx D vx=c):

Eq. (1.77)! ƒ�� D Œƒvx
��� D

0BB@
 �ˇx 0 0

�ˇx  0 0

0 0 1 0

0 0 0 1

1CCA
��

(4.9)

• Lorentz boost in Ov-direction K
Ev
�! NK (v D jEvj and Q WD  � 1):

Eq. (1.75)! ƒ�� D ŒƒEv�
�
� D0BB@

 �ˇx �ˇy �ˇ´

�ˇx 1C Qvx
2=v2 Qvxvy=v

2 Qvxv´=v
2

�ˇy Qvxvy=v
2 1C Qvy

2=v2 Qvyv´=v
2

�ˇ´ Qvxv´=v
2 Qvyv´=v

2 1C Qv´
2=v2

1CCA
��

(4.10)

• Spatial rotation K
R´.�/;E0
�����! NK by � in xy-plane:

ƒ�� D ŒR´.�/�
�
� D

0BB@
1 0 0 0

0 cos � � sin � 0

0 sin � cos � 0

0 0 0 1

1CCA
��

(4.11)

4 | Metric tensor:

i | We elevate the spacetime manifoldM to a pseudo-Riemannian (and Lorentzian) manifold by
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introducing the following pseudo-Riemannian metric tensor (given in inertial coordinates):

⁂ Minkowski metric ds2

8̂<̂
:
W D .cdt /2 � .dEx/2

D .dx0/2 � .dx1/2 � .dx2/2 � .dx3/2

D ��� dx�dx�

with metric components ��� D �
��
D

0BB@
C1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCA
��„ ƒ‚ …

Signature .1; 3/ � .C;�;�;�/

:

(4.12a)

(4.12b)

• The components ��� of this metric tensor in Eq. (4.12b) are the same for all inertial
coordinate systems [→ Eq. (4.21) below].

• Recall that ��� is the matrix inverse of ��� .

!We call the spacetime manifold equipped with this metric…

⁂ Minkowski space: R1;3 � .E ' R4; ds2/ (4.13)

• Wewill always use ��� to denote the components of theMinkowskimetric (in an inertial
coordinate chart) to distinguish it from a generic metric gij .

• Note that, informally speaking, ds2 this is the infinitesimal form of the ← invariant
spacetime interval Eq. (1.83) we introduced earlier (→ below).

• Minkowski space is therefore an example of a ← Lorentzian manifold. By fixing a metric,
we fixed the geometry of spacetime. As we will see in our discussion of general
relativity, the distinctive feature of Minkowski space is that it is flat (it has no
curvature). It will turn out that, in reality, this assumption is only valid to some degree:
The tenet of general relativity is that the deviations of spacetime from flat
Minkowski space are what we expercience as gravity!

ii | With the metric we can measure “lengths” of trajectories on spacetime:

^ Time-like trajectory  W s 7! x�.s/ for s 2 Œsa; sb� in R1;3!

LŒ�
3.55
D

Z sb

sa

r
���

dx�.s/
ds

dx�.s/
ds

ds (4.14a)

4.12b
D

Z sb

sa

q
Œ Px0.s/�2 � Œ Px1.s/�2 � Œ Px2.s/�2 � Œ Px3.s/�2 ds (4.14b)

Choose parametrization s WD x0=c � t (4.14c)

D

Z tb

ta

q
c2 � Ev2.t/„ ƒ‚ …

>0 (time-like)

dt (4.14d)

2.25
D c��Œ� (4.14e)

Thus the“length”LŒ� of time-like curves in R1;3 is the ← proper time��Œ� along the curve
defined in Eq. (2.25) (multiplied by c); this explains why the Minkowski metric ds2 is the
right choice for special relativity.
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4.2. Four vectors and tensors

5 | Tensors are defined as in Chapter 3, with the restriction toD D 4 and that only homogeneous
Lorentz transformations Eq. (4.7) are considered as transition maps. To emphasize this, we
introduce a new nomenclature:

Tensor calculus special relativity

Contravariant vector Ai Contraviarant ⁂ Lorentz vector / 4-vector A�

Covariant vector Bi Covariant ⁂ Lorentz vector / 4-vector B�

(Mixed) tensor T ij (Mixed) ⁂ Lorentz tensor / 4-tensor T ��

Scalar ˆ ⁂ Lorentz scalar ˆ

Then a generic .p; q/ tensor transforms under the coordinate transformation Eq. (4.7) as:

NT
�1:::�p

�1:::�q
. Nx/ D

�
ƒ�1

�1
: : : ƒ

�p
�p

� �
ƒ �1
�1

: : : ƒ
�q

�q

�
T
�1:::�p

�1:::�q
.x/ (4.15)

6 | With the Minkowski metric, we can reformulate our classification for 4-vectors [recall Eq. (1.85)]:

X� time-like

X� light-like

X� space-like

9>=>; W, X2 D X�X� D .X
0/2 � . EX/2

8̂<̂
:
> 0

D 0

< 0

(4.16)

A light-like 4-vector is also called ⁂ null.

¡! We use this classification scheme also for generic Lorentz vectors that are not coordinate differ-
ences between a pair of events (→ below). Since the pseudo-normX�X� D X

2 is a Lorentz scalar,
this classification is independent of the inertial system.

7 | Coordinate functions:

It is a particular feature of linear coordinate transformations (here: homogeneous Lorentz transfor-
mations) that the coordinate functions themselves transform as contravariant vector fields:

^ Coordinate field X�.x/ WD x�!

NX�. Nx/„ƒ‚…
Nx�

D ƒ�� X
�.x/„ƒ‚…
x�

D
@ Nx�

@x�„ƒ‚…
ƒ

�
�

X�.x/ (4.17)

Wemake the identificationX�.x/ � x� and don’t writeX�.x/ henceforth.

Consequently, we can construct ⁂ covariant coordinates (a covariant vector field) via the metric by
pulling the index down:

x� WD ���x
�
D .x0;�x1;�x2;�x3/ D .ct;�Ex/ (4.18)

¡! To pull the index of a contravariant vector down, you multiply the spatial components by �1.
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8 | ^ Coordinates of two events x�A and x�B ! �x� WD x
�
B � x

�
A Lorentz vector

�x2 � �x��x� (4.19a)

def
D ����x

��x� (4.19b)

D .�x0/2 � .�x1/2 � .�x2/2 � .�x3/2 (4.19c)

def
D �s2 (4.19d)

Remember [Eq. (1.84)]: �s2 D �Ns2 for arbitrary Lorentz transformations

!

��� �x
��x�„ ƒ‚ …

�s2

D ��� � Nx
�� Nx�„ ƒ‚ …

�Ns2

D
�
���ƒ

�
�ƒ

�
�

�
�x��x� (4.20)

Since this is true for all events�x�
ı
�!

ƒ��ƒ
�
���� D ��� (4.21)

Concluding Eq. (4.21) from Eq. (4.20) is non-trivial because we consider “norms” ��� �x��x�

and not “inner products” ��� �x��y� . However, for symmetric, real matrices A and B, it is
true that if ExTA Ex D ExTB Ex for all real vectors Ex, then A D B. This is so because A � B is a
symmetric matrix that can be diagonalized by an orthogonal matrix and ExT .A�B/Ex D 0. The last
condition implies that all eigenvalues of A �B are zero and therefore A �B D 0. Alternatively
you can use the ↓ polarization identity to show that the invariance of the Minkowski (pseudo) norm
implies the invariance of the Minkowski (pseudo) inner product.

We say:

Lorentz transformations are ↓ isometries of Minkowski space. (4.22)

With det.���/ ¤ 0, a corollary of Eq. (4.21) is:

det
�
ƒ��

�
D ˙1 (4.23)

If you want to write Eq. (4.21) in the old matrix notation, make the identifcationsƒ�� D ƒ�� and
��� D ��� . Here, subscripts of bold symbols denote the entries of matrices as usual (first index:
row; second index: column). Equations that contain matrices (bold symbols) do not comply with
the syntax of tensor calculus (which is why you should avoid them!).

Eq. (4.21) then reads in matrix notation:

ƒT
�����ƒ�� D ��� , ƒT �ƒ D � (4.24)

Here we defined the transposed matrix as ƒT
�� WD ƒ��, i.e., the matrix where rows and columns

are swapped. Eq. (4.24) immediately implies det.ƒT / det.�/ det.ƒ/ D det.�/; using det.�/ ¤ 0
and det.ƒT / D det.ƒ/, we find det.ƒ/ D ˙1.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → FORMULATION ON MINKOWSKI SPACE

109
PAGE

9 | Eq. (4.21)!

ƒ��
�
ƒ������

��
�
D ı�� (4.25)

We can therefore conclude that:

ƒ �
� WD ����

��ƒ�� D .ƒ
�1/�� (4.26)

Note that this is consistent with our definition in Eq. (4.7).

In the literature (e.g. Schröder [1]) the concept of a “transposed” transformation is introduced.
We refer to it as“pseudo-adjoint” transformation instead and label it by �. It is defined analogous to
proper adjoints on proper inner product spaces:

���ƒ
�
�„ ƒ‚ …

DWƒ��

x�y�
def
D hy;ƒxi

Š
D hƒ�y; xi

def
D ���.ƒ

�/��„ ƒ‚ …
DW.ƒ�/��

x�y� : (4.27)

This yields as reasonable definition for the pseudo-adjoint:

.ƒ�/�� WD ƒ�� ) .ƒ�/�� D ƒ
�
�

Eq. (4.26)
D .ƒ�1/�� : (4.28)

One can then define a correspondingmatrixƒ� such that .ƒ�/
�
� D ƒ�

�� and use .ƒ�1/
�
� D ƒ�1

��

to rewrite the above equation as

ƒ�
D ƒ�1 : (4.29)

Recall that the pseudo-adjoint is implicitly defined via the inner product. At no point did we claim
that the pseudo-adjoint matrix is given by the transposed matrix ƒT (which is defined by swapping
rows and columns)! To find a relation to the latter, we can rewrite Eq. (4.26) in matrix language:

ƒ�1
�� D ���ƒ���

�1
�� D .�ƒ�/�� D .�ƒT �/�� : (4.30)

Here we used that ��1 D � D �T and that MT
ab
WDMba for any matrix M . So finally:

ƒ�
D ƒ�1

D �ƒT � : (4.31)

The take homemessage is that the transpose of a Lorentz transformation (given by swapping columns
and rows) is not its inverse (there are additional minuses sprinkled in by the metric)! By contrast,
the pseudo-adjoint (defined via the pseudo-inner product) is identical to the inverse.

Warning: In the literature you will find the notation T instead of � (e.g. Schröder [1]). Then one
finds the (correct) relation .ƒT /�� D ƒ

�
� D .ƒ

�1/
�
� . The problem is that this notation suggests

that .ƒT /��
�
D ƒT

�� and therefore ƒ�1 �
D ƒT . As shown above, both equations are wrong!

10 | Covariant derivative:

i | Since in inertial coordinate systems the Minkowski metric is given by ��� , it follows immedi-
ately for the Christoffel symbols Eq. (3.74):

� ikl D
1

2
�im.�mk;l„ƒ‚…

0

C �ml;k„ƒ‚…
0

� �kl;m„ƒ‚…
0

/ D 0 (4.32)

¡! If you would transform into curvilinear (non-inertial) coordinates, the Christoffel symbols
would not vanish – even on flat Minkowski space (→ Problemset 5). That simple partial
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derivatives produce Lorentz tensors is therefore a special feature of Minkowski space in
inertial coordinates.
Eq. (3.79)
�����!

Lorentz Scalar: ˆI� WD ˆ;� D @�ˆ

Contravariant Lorentz vector: A
�

I� WD A
�
;� D @�A

�

Covariant Lorentz vector: B�I� WD B�;� D @�B�

(4.33a)

(4.33b)

(4.33c)

ii | ⁂ 4-Gradient:

This allows us to think of the differential operator @� itself as a covariant Lorentz vector and
motivates the introduction of its contravariant components:

@� D
@

@x�
D .1

c
@t ;CEr/

T

@� WD ���@� D
@

@x�
D .1

c
@t ;�Er/

(4.34a)

(4.34b)

Using Eq. (3.5), the transformation laws match that of co- and contravariant Lorentz vectors,
respectively:

N@� D
@

@ Nx�
D ƒ �

�

@

@x�
D ƒ �

� @�

N@� D
@

@ Nx�
D ƒ��

@

@x�
D ƒ��@

� :

(4.35a)

(4.35b)

¡! The covariant 4-gradient (index down) is the partial derivative wrt. the contravariant coor-
dinates (index up) and vice versa.

iii | These transformation properties immediately suggest two Lorentz scalars that can be con-
structed from 4-gradients (A� D .A0; EA/):

⁂ 4-divergence: @A WD @�A
�
D @�A� D

1
c
@tA

0
C Er � EA

⁂ 4-Laplacian: � � @2 WD @�@� D
�
1
c
@t
�2
� Er

2

(4.36a)

(4.36b)

The 4-Laplacian � is also known as ↓ d’Alembert operator.

Examples:

• In electrodynamics (→ later) the gauge potential transforms as a contravariant Lorentz
vector A� D .1

c
'; EA/.

The ↓ Lorenz gauge is defined as @�A� D 0; it is Lorentz invariant since the 4-
divergence is a Lorentz scalar: N@� NA�. Nx/ D @�A�.x/.

Note: The Lorenz gauge is named after ↑ Ludvig Lorenz; by contrast, the Lorentz
transformation is named after ↑ Hendrik Lorentz. Thus: The Lorenz gauge (no“t”) is
Lorentz invariant.
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• In vacuum (and in Lorenz gauge), the gauge field of electrodynamics satisfies the wave
equation

@2A� D
h�
1
c
@t
�2
� Er

2
i
A� D 0 : (4.37)

Since @2 is a Lorentz scalar andA� a Lorentz vector, @2A� transforms as a contraviarant
Lorentz vector and the equation is manifestly Lorentz covariant:

@2A�.x/ D 0 , N@2 NA�. Nx/ D 0 : (4.38)

• If we have a scalar field ˆ, we can construct a manifestly Lorentz covariant wave
equation:

.@2 Cm2/ˆ.x/ D 0 , .N@2 Cm2/ N̂ . Nx/ D 0 : (4.39)

The parameterm is arbitrary and plays the role of a mass (spectral gap) of the excitations.
This equation is known as ↑ Klein-Gordon equation and describes, for example, the
classical equation of motion of the Higgs field (without interactions).

11 | Relative tensors!⁂ Lorentz pseudo tensor:

Since det.ƒ/ D ˙1, the classification of tensors simplifies:

Tensor: NTMN . Nx/ D ƒMRƒ
P

N T RP .x/

Pseudo tensor: NTMN . Nx/ D det.ƒ/ ƒMRƒ
P

N T RP .x/

(4.40a)

(4.40b)

Here we use again a multi-index notation:M D �1; : : : ; �p etc. Recall that det.ƒ/ D ˙1; pseudo
tensors therefore pick up an additional minus sign under parity or time inversion (→ later).

! Relative tensors of odd weightw are pseudo tensors under Lorentz transformations.

Example:

The Levi-Civita symbol is a Lorentz pseudo tensor [recall Eq. (3.42)]:

N"���� D "���� D det.ƒ/ƒ��0ƒ
�
�0ƒ

�
�0ƒ

�
� 0 "

�0�0�0� 0

: (4.41)

This means that if you contract a Levi-Civita symbol with an actual .0; 4/ Lorentz tensor like
F��F�� (the tensor product of two electromagnetic field trength tensors), you obtain a pseudo
(Lorentz) scalar:

N̂ . Nx/ WD N"���� NF�� NF�� $ det.ƒ/ "����F��F�� D det.ƒ/ˆ.x/ : (4.42)

Since this is a quadratic (pseudo) scalar quantity, you might try to add it to the Lagrangian of
Maxwell theory (� 2 R):

QL D �1
4
F ��F�� C �"

����F��F�� : (4.43)

(This Lagrangian is now only invariant under Lorentz transformations with det.ƒ/ D C1.)

The new term is called ↑ � -term. One can show that it is a total derivative and therefore does
not affect the classical equations of motion (Maxwell’s equations). However, for non-abelian
generalizations of electrodynamics like ↑ quantum chromodynamics (↑ Yang-Mills theories), it does
affect the theory (↑ Strong CP-problem [56]).

Note that we did not use the metric tensor ��� to construct the term "����F��F�� (as compared
toF ��F�� where we need it to pull two indices up); this makes the � -term an example of a so called
↑ topological term (↑ topological field theory): the term doesn’t “see” the geometry of spacetime! In
condensed matter physics, the term plays a role in the description of ↑ topological insulators [57].
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12 | In the next chapter we want to construct a relativistic version of classical mechanics (using the
framework of tensors calculus to make the equations Lorentz covariant). As a preparation, we can
already define two 4-vectors with physical interpreation:

i | 4-velocity:

Question: What is a reasonable definition for a relativistic (= Lorentz covariant) velocity?

^ Particle trajectory x�.�/ parametrized by �:

x�.�/ D

�
ct.�/

Ex.�/

�
)

dx�

d�
D

0@dct
d�
dEx
d�

1A (4.44)

First try: � D t (coordinate time)!

dx�

dt
D

�
c
dEx
dt

�
D

�
c

Ev.t/

�
(4.45)

with coordinate velocity Ev.t/.

Problem:
dx�

dt is not a contravariant Lorentz vector because dt ¤ dNt is not a Lorentz scalar. That is:

d Nx�

dNt
¤ ƒ��

dx�

dt
(4.46)

! Eq. (4.45) is useless to construct Lorentz covariant equations!

Idea: The ← Proper time � is a Lorentz scalar [Eq. (2.24)]: d� D d N�

! Set � D � :

⁂ 4-velocity: u� WD
dx�

d�
D

 
c dt
d�
dEx
d�

!
D v

�
c

Ev

�
(4.47)

Here we used dt
d� D v.t/ [recall Eq. (2.23)].

By construction, the 4-velocity is a contravariant Lorentz vector: Nu� D ƒ��u� .

^ Pseudo-norm:

u2 D ���u
�u� D .u0/2 � .Eu/2 $ c2 > 0 (4.48)

! Time-like 4-vector

In Minkowski space, u� is the tangent at x� of the world line x�.�/.

ii | 4-acceleration:

Following the same line of arguments above, the 4-acceleration is then defined as the deriva-
tive of the 4-velocity wrt. the proper time:

⁂ 4-acceleration:

b� WD
du�

d�
D

 
c
dv.t/

d�
dŒv.t/ Ev.t/�

d�

!
$

0@ 4v
Ev�Ea
c

2v EaC 
4
v

Ev�Ea
c2 Ev

1A (4.49)
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Here Ea WD dEv.t/
dt is the coordinate acceleration or 3-acceleration.

It is now easy to show that b2 D b�b� < 0 is a space-like Lorentz vector and that

d.u�u�/
d�

D
d.c2/
d�
D 0 ) u�b� D 0 ; (4.50)

i.e., the 4-acceleration is always “orthogonal” (in terms of the Minkowski metric) to the
4-velocity.

4.3. The complete Lorentz group

Details: → Problemset 5

1 | The Lorentz group is a matrix group defined as the homogenous isometry group of the Minkowski
metric �:

⁂ Lorentz group: O.1; 3/ WD
n

ƒ 2 R4�4
ˇ̌̌
ƒT �ƒ D �

o
(4.51)

with identification ƒ�� D ƒ�� and ��� D ��� .

• As shown previously [Eq. (4.21) and Eq. (4.24)], the matrix constraint in Eq. (4.51) is equiva-
lent to the property

��� x
�y�

def
D �.x; y/

Š
D �.ƒx;ƒy/

def
D
�
���ƒ

�
�ƒ

�
�

�
x�y� (4.52)

for all 4-vectors x; y. Namely, the transformationsƒ do not change the inner product (and
thereby length) of arbitrary vectors; maps with this feature are called ↑ isometries.

• If you replace the Minkowski metric ��� D diag .C1;�1;�1;�1/ by the Euclidean metric
ı�� D diag .C1;C1;C1;C1/, the homogeneous isometry constraint becomes ƒTƒ D 1

since ı D 1 is the identity matrix; this constraint characterizes orthogonal matrices. The
homogenous isometry group of aD D 4 Euclidean space is therefore O.4/: the group of
four-dimensional rotations and reflections.

2 | Continuous Lorentz transformations:

i | Mathematical fact: O.1; 3/ is a ↑ Lie group (= a group that is also a differentiable manifold)

To be precise: O.1; 3/ is a 6-dimensional (→ below) ↑ non-compact ↓ non-abelian disconnected
(→ below) real matrix Lie group with components that are not ↑ simply connected.

! In a neighborhood of 1, elements of Lie groups can be written as exponentials:

ƒ D exp.X/ with X 2 o.1; 3/ (4.53)

where o.1; 3/ denotes the ↑ Lie algebra (= vector space with a Lie bracket):

o.1; 3/ D
n

X 2 R4�4
ˇ̌̌
exp.tX/ 2 O.1; 3/ for all t 2 R

o
: (4.54)
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ii | The isometry constraint on the group elements can be translated into the Lie algebra:

ƒT �ƒ D �
Eq. (4.53)
(HHHH) XT

D ��X� (4.55)

!Most general form of X :

X D

0BB@
0 a b c

a 0 �d �e

b d 0 �f

c e f 0

1CCA with a; : : : ; f 2 R (4.56)

Proof: → Problemset 5

!

• dim.o.1; 3// D 6

This is why O.1; 3/ is a 6-dimensional Lie group.

• TrŒX � D 0 ) detƒ D detŒexp.X/� D exp.TrŒX �/ D 1

! All Lorentz transformations connected to the identity have positive determinant.
Recall that we found previously detƒ D ˙1, so we should not expect to find all
elements of O.1; 3/ in this way.

iii | Generators = Basis of o.1; 3/ [58]:

We use the shorthandC (�) forC1 (�1).

Lx D

0B@0 0 0 0
0 0 0 0
0 0 0 �
0 0 C 0

1CA ; Ly D

0B@0 0 0 0
0 0 0 C
0 0 0 0
0 � 0 0

1CA ; L´ D

0B@0 0 0 0
0 0 � 0
0 C 0 0
0 0 0 0

1CA

Kx D

0B@ 0 C 0 0
C 0 0 0
0 0 0 0
0 0 0 0

1CA ; Ky D

0B@ 0 0 C 0
0 0 0 0
C 0 0 0
0 0 0 0

1CA ; K´ D

0B@ 0 0 0 C
0 0 0 0
0 0 0 0
C 0 0 0

1CA

(4.57a)

(4.57b)

Interpretation:

exp .'Lx/ $

0BB@
1 0 0 0

0 1 0 0

0 0 cos' � sin'
0 0 sin' cos'

1CCA D ƒRx.'/ ! Rotation around x-axis (4.58a)

exp .��Kx/ $

0BB@
cosh � � sinh � 0 0
� sinh � cosh � 0 0

0 0 1 0

0 0 0 1

1CCA D ƒvx
! Boost in x-direction (4.58b)

with ← rapidity tanh � D vx

c
2 .�1; 1/ (→ Problemset 3) and rotation angle ' 2 Œ0; 2�/.

!

Lx;Ly ;L´ W Generators of rotations

Kx;Ky ;K´ W Generators of boosts

(4.59a)

(4.59b)
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An arbitrary element of O.1; 3/ that is connected to the identity can then be written as

ƒ D exp
�P

i 'iLi �
P
i �iKi

�
with i 2 fx; y; ´g : (4.60)

In particular [58]:

Pure boost: ƒEv � ƒE�
D exp

�
�E� � EK

�
(4.61a)

Pure rotation: ƒRE'
D exp

�
E' � EL

�
(4.61b)

with rotation angle ' D jE'j, rotation axis O' D E'=', and rapidity vector

E� � E�.Ev/ WD Ov tanh�1
�v
c

�
: (4.62)

¡! The rapidity vector E� is not given by the rapidities tanh�1 vi

c
of the components vi of Ev.

iv | Lie algebra:

The Lie bracket (= commutator) on the Lie algebra determines the multiplicative structure of
the Lie group via the ↓ Baker-Campbell-Hausdorff formula:

exp.X/ � exp.Y / D exp
�

X C Y C
1

2
ŒX ;Y �C : : :

�
: (4.63)

! The Lie algebra o.1; 3/ determines the (local) group structure of O.1; 3/:

Eq. (4.57)
ı
�! �

Li ; Lj
�
D "ijkLk�

Li ; Kj
�
D "ijkKk�

Ki ; Kj
�
D �"ijkLk

(4.64a)

(4.64b)

(4.64c)

Some comments and implications:

• ¡! Because of Eq. (4.64) [and Eq. (4.63)], you cannot simply combine exponentials:

exp
�
�E� � EK

�
� exp

�
E' � EL

�
¤ exp

�
E' � EL � E� � EK

�
; (4.65a)

exp
�
�E� � EK

�
� exp

�
�E� 0
� EK

�
¤ exp

�
�.E� C E� 0/ � EK

�
; (4.65b)

exp
�
E' � EL

�
� exp

�
E'0
� EL
�
¤ exp

�
. E' C E'0/ � EL

�
: (4.65c)

This is why the concatenation of Lorentz transformations is quite complicated in general.

• Eq. (4.64a) is written in physics often as ŒLi ; Lj � D i„"ijkLk with angular momentum
operatorsLk . In this notation, they generate rotationsU E! D exp. i

„
E! EL/. The additional

phase i in the commutation relation matches a corresponding factor in an alternative
definition of the generators EL. (Recall that the Li in Eq. (4.57) are anti-Hermitian
whereas in physics we often prefer Hermitian operators.)

• Eq. (4.64a) shows that o.3/ WD span
˚
Lx ; Ly ; L´

	
forms a subalgebra of o.1; 3/. On

the group level, this means that the group of spatial rotations SO.3/ is a subgroup of
the full Lorentz group O.1; 3/.
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By contrast, Eq. (4.64c) shows that the boost generators fKx ; Ky ; K´g do not form a
subalgebra, but mix with rotations. This implies that there is no “subgroup of pure
boosts” in O.1; 3/. In particular:

ƒEvƒEu D ƒEu˚EvƒR.Eu;Ev/ (4.66)

with the ← Thomas-Wigner rotation R.Eu; Ev/ 2 SO.3/ [recall Section 2.3].

• There is a more compact, 4-vector-inspired notation for the 6 generators in Eq. (4.57),
namely [59]: �

J ˛ˇ
��
�
�

�
J ˛ˇ

�
��
WD �˛�ıˇ� � �

ˇ�ı˛� : (4.67)

Inspection shows that (→ Problemset 5)

Lx D J 23 D �J 32 ; Kx D J 01 D �J 10 ; (4.68a)

Ly D J 31 D �J 13 ; Ky D J 02 D �J 20 ; (4.68b)

L´ D J 12 D �J 21 ; K´ D J 03 D �J 30 : (4.68c)

The three equations of the Lie algebra Eq. (4.64) can then be condensed into a single
equation [59]:

ŒJ�� ;J �� � D ���J�� � ���J �� � ���J�� C ���J �� : (4.69)

This form is useful to construct other representations of the Lorentz group, especially
in relativistic quantum mechanics (→ Dirac equation).

v | It is a useful mathematical fact that every continuous Lorentz transformation of the form
Eq. (4.60) can be decomposed uniquely as follows:

ƒ D ƒEvƒR D ƒRƒ Ew

with parameters:

vi

c
D �

ƒi0

ƒ00
;
wi

c
D �

ƒ0i

ƒ00
and Rij D ƒij �

ƒi0ƒ0j

1Cƒ00

(4.70a)

(4.70b)

ƒEv and ƒR are defined in Eq. (4.61a) [or Eq. (1.75)] and Eq. (4.61b) [or Eq. (1.40)].

The proof can be found in Ref. [60]. This decomposition, sometimes referred to as⁂ rotation-
boost decomposition, relates to the mathematical concept of ↑ Cartan decompositions [61].

If we use the multiplicative law ƒRƒEvƒR�1 D ƒREv [recall Eq. (1.43a)] and chooseR such
thatREv D .vx ; 0; 0/T , we can also find a decomposition of the form

ƒ D ƒR1
ƒvx

ƒR2
(4.71)

with appropriately chosen rotationsR1; R2 2 SO.3/ and a boost in x-direction by vx .

3 | Discrete generators:
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It is easy to verify that the following two matrices also belong to O.1; 3/:

⁂ Parity:

P W .t; Ex/ 7! .t;�Ex/
) P�� � P�� WD

0BB@
C1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCA
��

⁂ Time reversal:

T W .t; Ex/ 7! .�t; Ex/
) T �� � T�� WD

0BB@
�1 0 0 0

0 C1 0 0

0 0 C1 0

0 0 0 C1

1CCA
��

(4.72)

(4.73)

In contrast to the continuous group elements above: det.P / D det.T / D �1

! P and T are not generated by boosts or rotations!

4 | Structure of the Lorentz group:

Combining the discrete transformationP andT with the continuous transformationsƒ D exp.X/
yields the complete group O.1; 3/. Let us study its structure:

i | det.ƒ/ D ˙1!

O.1; 3/ D LC„ƒ‚…
det.ƒ/DC1

[ L�„ƒ‚…
det.ƒ/D�1

(4.74)

All Lorentz transformations that are continuously connected to 1 are in LC. One can
transition between LC and L� by applying either T or P .

ii | In addition, we find:

1 D �00
4.21
D
�
ƒ00

�2
�

3X
kD1

�
ƒk0

�2
�
�
ƒ00

�2
(4.75)

Thusƒ00 ¤ 0 and sign.ƒ00/ D ˙1 can be used to characterize Lorentz transformations.
Note that sign.P 00 / D C1 but sign.T

0
0 / D �1 and sign..PT /00/ D �1.

iii | Neither det.ƒ/ D ˙1 nor sign.ƒ00/ D ˙1 can be changed by continuously deforming a
Lorentz transformation.

! Four disconnected components of O.1; 3/:

L
"

C
W det.ƒ/ D C1 and sign.ƒ00/ D C1 (1 2 L"

C) (4.76a)

L"
� W det.ƒ/ D �1 and sign.ƒ00/ D C1 (P 2 L"

�) (4.76b)

L
#

C
W det.ƒ/ D C1 and sign.ƒ00/ D �1 (PT 2 L#

C) (4.76c)

L#
� W det.ƒ/ D �1 and sign.ƒ00/ D �1 (T 2 L#

�) (4.76d)
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Graphically:

�P

L"
�

�1

L
"

C

T

�T

L#
�

P �PT

L
#

C

T

P
proper orthochronous

Lorentz Group
(restricted LG)

L
"

C D SOC.1; 3/

orthochorous LG

proper LG
LC D SO.1; 3/

orthochronous LG
L" D OC.1; 3/

L"

L0
LC

L
"=#
˙

8̂̂̂<̂
ˆ̂:
" no time inversion (signƒ00 D C1)
# time inversion (signƒ00 D �1)
C detƒ D C1 (proper)
� detƒ D �1 (improper)

iv | Subgroups: We can define the following four subgroups of O.1; 3/:

⁂ Proper LG: SO.1; 3/ �LC WD L
"

C
[ L

#

C

⁂ Orthochronous LG: OC.1; 3/ � L"
WD L

"

C
[ L"

�

⁂ Proper orthochronous LG: SOC.1; 3/ WD L
"

C

⁂ Orthchorous LG: L0 WD L
"

C
[ L#

�

(4.77a)

(4.77b)

(4.77c)

(4.77d)

Note that subgroups must contain the identity 1!

In Greek, “chrónos” (χρόνος) means “time” and“chóros” (χώρος) means “space”.

According to modern physics, Einstein’s principle of relativity SR reads formally:

All fundamental theories of nature must be invariant

under the proper orthochronous Lorentz group SOC.1; 3/.

• This does not prevent specific theories to have additional symmetries. ↑ Quantum
electrodynamics (QED), for example, is invariant under the full Lorentz groupO.1; 3/.
This means that phenomena of electromagnetism – and its interaction with charged
particles – are also symmetric under time inversion T and parity P .

So far, observations suggest that, besides the electromagnetic force, also gravity and
the strong force are symmetric under P and T . (Interestingly, there is no formal reason
why the strong force should not break P and T ; the fact that it does not violate these
symmetries is called the ↑ strong CP problem).

• However, today we know that there are terms in the standard model of particle physics
that violate bothP and T . For example, the weak interaction (responsible for radioactive
ˇ-decay) violates parity P strongly (↑ Wu experiment). This means that you can use
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experiments that depend on the weak interaction to tell the difference between our
world and its mirror image (or a right-handed and a left-handed coordinate system).
There are also weak terms (concerning quarks) that violate time reversal T (↑ CP

violation). As a consequence, the standard model as a whole is only invariant under the
proper orthochronous Lorentz group SOC.1; 3/.

This explains why we can only require symmetry under SOC.1; 3/, and not the full
Lorentz group O.1; 3/: We already know by experiments that the latter is not a funda-
mental symmetry of nature!

• The fact that there are processes that violate parity symmetryP contradicts our everyday
experience: If you run an experiment using equipment found in a school physics lab
and put a mirror next to it, there is no way to decide whether you are watching the
experiment directly or via the mirror (i.e., parity inverted). The reason is that the
physics we experience in everyday life is goverened by electrodynamics and gravity,
both of which are invariant under P . To unveil that nature secretly violates P , you
must perform an experiment that involves the weak interaction (that is: a particle
physics experiment). This is what Chien-Shiung Wu did in her now famous ↑ Wu
experiment. At the time, the result (that P is not a symmetry of nature) was unexpected
and groundbreaking.

So if you are surprised that P is not a symmetry of nature, you are not alone. Here is
howWolfang Pauli reacted to the result of the Wu experiment [62]:

At one point, Temmer found himself in the presence of eminence grise Wolfgang
Pauli, who asked for the latest news from the United States. Temmer told him that
parity was no longer to be assumed conserved. “That’s total nonsense” averred the
great man. Temmer: “I assure you the experiment says it is not.” Pauli (curtly):
“Then it must be repeated!”

4.4. ‡ Why is spacetime 3+1 dimensional?

Given the discussions in Chapter 3 and Chapter 4 it is clear that the mathematical formalism allows for
straightforward generalizations to higher- (or lower-) dimensional spacetime manifolds with arbitrary
signatures; these suggest spacetimes with various numbers of spatial and temporal dimensions.

It is therefore natural to ask:

Is there anything special about our 3C 1-dimensional world?

What follows is not a proof that spacetime must be 3 C 1 dimensional. Our goal is to argue that all
spacetimes, except ours with three space and one time dimension, face severe problems that, most likely,
would not allow for complex life.

The following discussion is based on Tegmark [40, 63].

1 | ^ Pseudo-Riemannian manifold of signature .t; s/ with metric

gij D diag.C1; : : : ;C1„ ƒ‚ …
t

;�1; : : : ;�1„ ƒ‚ …
s

/ (4.78)

• This is the generalization of Minkowski space to a (flat) spacetime manifold with, naïvely, t
time and s space-dimensions.

• Most of our discussions in this chapter can be transferred to this more general setting.
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2 | ^ ↑ Klein-Gordon equation for signature .t; s/:

�
@2 Cm2

�
ˆ D

tX
iD1

@2ˆ

@xi
2„ ƒ‚ …

t � Time (?)

�

sCtX
iDtC1

@2ˆ

@xi
2„ ƒ‚ …

s� Space (?)

Cm2ˆ D 0 (4.79)

• Recall that @2 D gij @i@j where gij is given by (the inverse of ) Eq. (4.78).

• The Klein-Gordon equation (KGE) is the simplest covariant field equation. It describes the
time evolution of a scalar field of massm. It is ubiquitous in relativistic physics (especially in
↑ quantum field theory).

• For example, the components of the electromagnetic field in vacuum are described by the
KGE form D 0 and .t; s/ D .1; 3/ (which is then referred to as ↓ wave equation):

@2Ei D
1
c2 @

2
tEi � r

2Ei D 0 ; (4.80a)

@2Bi D
1
c2 @

2
tBi � r

2Bi D 0 : (4.80b)

This motivates in Eq. (4.79) the (tentative) identification of the coordinates with positive
sign as “time coordinates”, and the ones with a negative sign as “space coordinates”:

The difference between time and space is just a sign!

In the following, we use the KGE as a proxy for more general relativistic field equations.

! Possible combinations of t time and s space dimensions:

3 | Partial differential equations (PDE):

The general KGE in Eq. (4.79) is an example of a partial differential equation (PDE). The theory of
PDEs has been thoroughly developed by mathematicians and a lot is known about their solvability.
The problem of solving a PDE, given some boundary/initial conditions, is known as ↑ Cauchy
problem:

• ⁂ Well-posed (Cauchy) problem: Given some boundary/initial data, there exists a unique
solution to the PDE that satisfies these conditions, and this solution is robust. Here “robust”
means that if you slightly modify the boundary/initial conditions, the solution also changes
only slightly. Put differently: The solutions are not chaotic and you can use them to extrapolate
reliably from boundary/initial states with finite errorbars. This is a crucial feature to use
PDEs for predictions in the real world.

• ⁂ Ill-posed (Cauchy) problem: Given some boundary/initial data, there either exist multiple
solutions to the PDE that satisfy these conditions, or the unique solution is not robust. In
both cases, the PDE cannot be used for predictions in the real world.
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i | ^ .t D 0; s/ or .t; s D 0/! Eq. (4.79) = ↑ Elliptic PDE

This corresponds to spacetimes that are ← Riemannian manifolds.

Elliptic PDEs have well-posed boundary problems:

!One cannot use Eq. (4.79) to make predictions/

!No coordinate in Eq. (4.79) qualifies as a “time coordinate”.

!

ii | ^ .t � 2; s � 2/ or .t � 2; s � 2/! Eq. (4.79) = ↑ Ultrahyperbolic PDE

This corresponds to spacetimes that are generic ← pseudo-Riemannian manifolds.

A similar but more involved chain of arguments holds also for ultrahyperbolic PDEs [40, 63].

!One cannot use Eq. (4.79) to make predictions/

!

iii | .t D 1; s � 1/ or .t � 1; s D 1/! Eq. (4.79) = ↑ Hyperbolic PDE

This corresponds to spacetimes that are ← Lorentzian manifolds.

Hyperbolic PDEs have well-posed initial value problems:
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!We can use Eq. (4.79) to make predictions,

4 | Stability:

• ^ Newtonian Gravity in s � 4 spatial dimensions:

! ↓ Two-body problem has no stable orbits (only scattering and attraction solutions).

!No stable planetary systems possible/

• ^ Hydrogen atom in s � 4 spatial dimensions:

! Schrödinger equation has no bound states.

!No stable atoms possible/

The opposite cases with t � 4 and s D 1 are equivalent if one interprets space as time and vice
versa (which is necessary to use hyperbolic PDEs to predict “the future”, → below).

!

5 | Simplicity:

general relativity in s � 2 spatial dimensions! No gravity (→ later)!

!No stars, no planets, no orbits/

The opposite cases with t � 2 and s D 1 are equivalent if one interprets space as time and vice
versa (which is necessary to use hyperbolic PDEs to predict “the future”, → below).

!
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6 | Tachyon world:

¡! In the literature both Lorentzian signatures .1; 3/ and .3; 1/ are used to formulate special rel-
ativity. Formulations in signature .3; 1/ have nothing to do with the Tachyon sector discussed
here since they compensate for the global minus in their equations. For example, the KGE in
signature .�;C;C;C; / reads .�@2Cm2/ˆ D 0which is equivalent to the KGE .@2Cm2/ˆ D 0
in signature .C;�;�;�/. The point here is that we do not add this additional minus:

Eq. (4.79)
.1;3/ 7! .3;1/
���������!
Time$ Space

.�@2 Cm2/ˆ D 0 , .@2�m2/ˆ D 0 (4.81)

In more detail:

For t D 3 and s D 1 the KGE reads

@2ˆ

@.x1/
2
C

@2ˆ

@.x2/
2
C

@2ˆ

@.x3/
2„ ƒ‚ …

3� Time (?)

�
@2ˆ

@.x4/
2„ ƒ‚ …

1� Space (?)

Cm2ˆ D 0 : (4.82)

But because this an hyperbolic PDE, the Cauchy problem is only well-posed with initial conditions
on a hypersurface spanned by fx1; x2; x3g. Put differently: The PDE allows predictions only in
x4-direction! Thus we should interpret x4 as time and fx1; x2; x3g as space:

@2ˆ

@.x1/
2
C

@2ˆ

@.x2/
2
C

@2ˆ

@.x3/
2„ ƒ‚ …

3� Space (!)

�
1

c2
@2ˆ

@t2„ƒ‚…
1� Time (!)

Cm2ˆ D 0 (4.83)

with ct � x4. But this KGE is equivalent to�
1

c2
@2t � r

2
�m2

�
ˆ D .@2 �m2/ˆ D 0 : (4.84)

Thus the“transposed” situation .t � 1; s D 1/ is equivalent to the situation .t D 1; s � 1/ with
negative square-masses in the equations. Fields with negative square-mass (equivalently: imaginary
mass) are called ↑ tachyonic fields or ↑ tachyons for short.

! All massive particles are ↑ tachyons [64]

¡! Tachyonic fields are not science fiction; they do exist (→ below) but, contrary to the features
assigned to them in science fiction, do not allow for faster-than-light propagation of information.

! Tachyon fields herald vacuum instabilities [65] /

The spontaneous symmetry breaking of the ↑ Higgs mechanism is an example of this phenomenon:
The Higgs field has a negative square-mass which is responsible for the“Mexican hat potential.”
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The consequence is spontaneous symmetry breaking, which, in this context, can be reframed as
“tachyon condensation.” On the new, symmetry broken vacuum, excitations are not tachyons with
negative square-mass but Higgs bosons with positive square-mass.

!

7 | These arguments support the following hypothesis:

Only a spacetime with 1 time and 3 space dimensions supports observers like us.

What does this line of arguments explain? Well, if youwould randomly construct universes by dicing
the number of space and time dimensions, only the ones with one time and three space dimensions
have the chance to develop complex observers like us (who then wonder why their universe is
3C 1-dimensional). Thus the arguments above are important for “ensemble interpretations” of
reality, like certain ↑ multiverse hypotheses or superstring theories (which can predict a plethora of
different spacetime dimensions) [40, 66].
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↓ Lecture 10 [19.12.23]

5. Relativistic Mechanics

Equipped with the machinery of Chapter 4, we can finally construct a relativistic (Lorentz covariant)
version of classical mechanics.

5.1. The relativistic point particle

1 | ^ Point particle in R1;3 with trajectory x�.�/:

2 | It is reasonable to define the relativistic momentum of a massive particle as follows:

⁂ 4-momentum W p� WD mu� D m
dx�

d�
D

�
mvc

mv Ev

�
�

�
p0

Ep

�
with (rest) mass m and ⁂ 3-momentum Ep.

(5.1)

(5.2)

• ¡! The mass m is the good old (inertial) mass we would assign to the particle in classical
mechanics; it is a measure of the particles resistance to changes in its state of motion. You
can determine it by applying a (weak) force to the particle at rest and observing its initial
acceleration: m D F=a. This mass is an intrinsic property of the particle and does not
depend on velocity. It is sometimes called rest mass, but we will simply call it mass.

• Since the 4-velocity u� is a Lorentz vector, the 4-momentum is also a Lorentz vector; i.e.,
under a Lorentz transformationƒ the 4-momentum transforms as Np� D ƒ��p� .

• We will later rederive the expression for the 4-momentum as the conserved ↓ Noether charge
for translations in spacetime.

3 | The spatial part of the momentum (the 3-momentum Ep) is related to the velocity as follows:

Ep D mv Ev D
mEvq
1 � v2

c2„ ƒ‚ …
relativity

ˇ�1
���! mEv„ƒ‚…

Newtonian
mechanics

(5.3)
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• ¡! In special relativity the kinetic momentum is no longer proportional to the velocity.
In particular for v ! c the momentum of a massive particle diverges.

• The non-relativistic limit (v � c ) ˇ � 1 ) v � 1) is consistent with the Newtonian
(non-relativistic!) relation Ep D mEv for the kinetic momentum; the 3-momentum Ep is
therefore the proper relativistic version of the momentum in Newtonian mechanics.

• This explains why the above definition for the 4-momentum is reasonable – and why the
massmmust be identified with the mass used in Newtonian mechanics.

• At this point it is unclear how to interpret the time-component p0 D mvc of p� (→ below).

4 | Eq. (5.1)
Eq. (4.48)
������!

p2 D p�p� D .p
0/2 � Ep2

def
D m2u2

4.48
D m2c2 > 0 (5.4)

! The mass m is a Lorentz scalar: m2 D p2=c2

• The 4-momentum is a time-like 4-vector for massive particles.

• This means that the massm can be measured/computed in every inertial system by mea-
suring/computing the 4-momentum p� and its pseudo-norm p2. The numerical result will
always be the same, namelym2c2.

5 | Equation of motion (EOM):

i | We want an EOM that…

• …is manifestly Lorentz covariant! Lorentz tensor equation

• …reduces to Newton’s equation of motion

mEa D
d Ep
dt
D EF with Ep D mEv (5.5)

in the non-relativistic limit (correspondence principle).

ii | Suggestion:

mb� D
dp�

d�
D K� �

�
K0

EK

�
with ⁂ 4-force K� : (5.6)

Because this is a equation built from Lorentz vectors, it is form-invariant (Lorentz covariant)
by construction:

mb� D K� , mƒ��b
�
D ƒ��K

�
, m Nb� D NK� (5.7)

This is of course only so if the 4-force transforms like a Lorentz vector.

iii | ^ Instantaneous rest frame (IRF) K0:

a | At any time there is an inertial coordinate systemK0 in which the (potentially accel-
erated) particle is at rest at this very moment (if the particle is accelerating, it is also
accelerating in this frame).

mb
�
0

4.49
D

�
0

mEa0

�
Š
D

�
0

EF0

�
D K

�
0 (5.8)
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This follows from the correspondence principle: In the IRF the particle is in the non-
relativistic, Newtonian limit. Thus its coordiante acceleration Ea0 must be given by
Newton’s equation of motion: mEa0 D EF0.

with

• ⁂ Proper acceleration Ea0

The proper acceleration is the coordinate accelaration (3-acceleration) that you can
measure (e.g., with an accelerometer) in the IRFK0 of the particle.

It follows immediately that the norm of the proper acceleration is a Lorentz scalar:

b2 D b�b� D �jEa0j
2 < 0 (5.9)

• ⁂ Proper force EF0

The proper force is the Newtonian force (3-force) you can measure (e.g., with a
spring balance) in the IRFK0 of the particle.

b | We demand that this equation is Lorentz covariant, i.e., that b�0 andK�0 transform as
contravariant Lorentz 4-vectors. We can then use a Lorentz boost to transform back
into the lab frame in which the particle has coordinate velocity Ev:

Eq. (1.75)
�����!

4-acceleration: b� D .ƒ�Ev/
�
� b

�
0

1.75
D

0@ v
Ea0�Ev
c

Ea0 C
v�1

v2 .Ea0 � Ev/Ev

1A (5.10a)

4-force: K� D .ƒ�Ev/
�
� K

�
0

1.75
D

0@ v
EF0�Ev
c

EF0 C
v�1

v2 . EF0 � Ev/Ev

1A (5.10b)

We will use these expressions later!

iv | On the other hand, we can return to Eq. (5.6) and study the 4-forceK� in more detail:

a | ^ Spatial components of Eq. (5.6):

d Ep
d�
D v.t/

d Ep
dt
D EK ,

d Ep
dt
D
EK

v
DW EF , EK D v EF (5.11)

with ⁂ 3-force EF .

Here d Ep
dt denotes the change in momentummeasured in coordinate time; it makes sense

identify this quantity with the relativistic analog of the Newtonian force.

b | What is the time componentK0 of the 4-force? ^

0
4.50
D mb�u�

5.6
D K�u� D K

0u0 � EK � Eu
4.47
D v.K

0c � EK � Ev/ (5.12)

!

K0 D
EK � v

c

5.11
D
v

c
EF � Ev (5.13)
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c | In summary, the 4-force in terms of the 3-force and the 3-velocity reads

4-force: K� D

0@v EF �Ev
c

v EF

1A (5.14)

Example:

In our discussion of electrodynamics (→ Chapter 6) we will find the following expression
for the 3-force acting on a charged particle in an electromagnetic field:

EF D q EE C
q

c
Ev � EB (5.15)

This is the conventional ↓ Lorentz force.

This example demonstrates that the 3-force EF is indeed the proper relativistic analog of
Newtonian forces. Note, however, that it is only the component of the 4-force and thus
does not transform nicely under Lorentz transformations.

d | Spatial part of Eq. (5.6)
Eq. (5.14)
�����!

EF D
d Ep
dt
D

d
dt

�
mv Ev

�
D hChange in 3-momentumi (5.16)

The Newtonian equation EF D d Ep
dt therefore remains valid in special relativity

for the 3-force EF and the 3-momentum Ep. By contrast, Ep D mv Ev is different from the
Newtonian relation Ep D mEv between momentum and velocity.

e | Temporal part of Eq. (5.6)
Eq. (5.14)
�����!

dp0

d�
D v

dp0

dt
D v

EF � Ev

c
)

d.cp0/
dt

D EF � Ev (5.17)

! EF � Ev: Work performed by EF on particle

! E D cp0: Total energy of particle

Note that we can actually only concludeE D cp0Cconst from the differential equation
above. Wewill later see that the constantmust be set to zero becausep0 is the conserved
Noether charge that derives from time translations.

The time component of the EOM Eq. (5.6) can therefore be written as:

EF � Ev D
dE
dt
D

d
dt

�
mvc

2
�
D hChange in energyi (5.18)

We will discuss the expression for the energy in Section 5.2 below.

6 | Above we expressed the 4-force in terms of the proper force EF0 and in terms of the 3-force EF .
Equating the two expressions yields a relation between the 3-force EF0 measured in the IRF and the
3-force EF measured in the lab frame:
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Eq. (5.10b) & Eq. (5.14)!

3-force EF as function of proper force EF0 and velocity Ev:

EF D
EF0

v
C

�
1 �

1

v

�
EF0 � Ev

v2
Ev (5.19)

Recall that the proper force is the Newtonian force you would measure with a spring scale in the
IRS of the particle. In contrast to Newtonian mechanics, the force EF measured from a frame in
relative motion is different from EF0. In the non-relativistic limit v � 1 we find EF � EF0 and this
distinction becomes irrelevant (as assumed by Newtonian mechanics).

7 | Asimilar comparison yields a relation between the 3-acceleration in the IRF (the proper acceleration)
and the 3-acceleration in the rest frame:

Eq. (5.10a) & Eq. (4.49)!

3-acceleration Ea as function of proper acceleration Ea0 and velocity Ev:

Ea $
1

2v

�
Ea0 �

�
1 �

1

v

�
Ev � Ea0

v2
Ev

�
(5.20)

This is again in sharp contrast to Newtonian mechanics where, as a consequence of absolute time,
acceleration does not depend on the velocity of the reference frame. In the non-relativistic limit for
v � 1 we find Ea � Ea0, consistent with Newtonian mechanics.

8 | Sanity check:

If we integrate the equation of motion Eq. (5.16), we find:Z T

0

EF dt D
mEvTq
1 �

v2
T

c2

� const : (5.21)

For a finite 3-force j EF j <1 and finite time T <1, and non-zero massm ¤ 0, it follows for the
final velocity EvT :

mjEvT jq
1 �

v2
T

c2

<1 ) jEvT j < c : (5.22)

Thus the dynamics does not allowmassive particles to reach the speed of light, nomatter how strong
the force or how long the acceleration! This is in direct contradiction to Newtonian mechanics and
by now experimentally well-confirmed (→ below).

5.2. Momentum, Energy, and Mass

9 | To summarize, the 4-momentum of a massive particle can be written as:

p� D mu� D

�
p0

Ep

�
D

�
E=c

Ep

�
D

�
vmc

vmEv

�
(5.23)
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10 | The relativistic energy of a massive particle is then (as a function of 3-velocity):

⁂ Relativistic energy W E D cp0 D vmc
2
D

mc2q
1 � v2

c2

(5.24)

With

m2c2
5.4
D p2 D .p0/2 � . Ep/2 D E2=c2 � Ep2 (5.25)

we find the alternative expression as a function of 3-momentum:

⁂ Energy-momentum relation: E D

q
Ep2c2 Cm2c4 (5.26)

• This expression is also valid in the massless casem D 0 (→ below).

• Eq. (5.25) has actually two solutions: E D ˙
p
Ep2c2 Cm2c4. In relativistic mechanics (and

relativistic single-particle quantum mechanics), we can ignore the negative energy solution
and consider only time-like 4-momenta p� that point into the future light-cone. In quantum
field theory, where interacting particles can be destroyed and produced, these negative energy
solutions necessitate the introduction of ↑ antiparticles (like the positron).

• For fixed massm, Eq. (5.25) determines a 3-dimensional hypersurface in the 4-dimensional
“energy-momentum space” spanned by 4-momenta p� D .p0; Ep/ 2 R4. For m ¤ 0

this hypersurface is a hyperboloid of two sheets E D ˙
p
Ep2c2 Cm2c4 (form D 0 it is a

cone: E D ˙cj Epj). This hypersurface is called ⁂ mass shell. If a 4-momentum satisfies
the energy-momentum relation (with either sign) we say that it is “on-shell”; if not, it is
“off-shell”. In quantum field theory, real particles that can be measured are always on-shell;
intermediate “virtual particles” in scattering processes can be off-shell.

11 | Rest energy:

i | ^ Rest frame K0 of the particle where Ep D 0:

p
�
0 D

�
p00
E0

�
D

�
E0=c

E0

�
(5.27)

For these considerations, it does not matter whether the particle is accelerating and this is
an IRF, or whether the particle is in inertial motion and has a fixed rest frame. Formally,
since p2 D m2c2 > 0 is a time-like Lorentz vector, there is always an inertial frame in which
p0 ¤ 0 and Ep D 0.

!

⁂ Rest energy W E0 D mc
2 (5.28)

This is Einstein’s famous principle of equivalence of (inertial) mass and (rest) energy.

• ¡! The total energyE is the time-component of a 4-vector: p� D .E=c; Ep/T ; thus it makes
sense to refer to the rest energy E0 – which is the component of this 4-vector in the rest
frameK0, i.e., the particular frame where Ep D E0.
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• ¡! By contrast, the mass is a Lorentz scalar, namely p2 D m2c2; hence it is the same in
all inertial systems and it does not make sense to refer to the rest mass m0 as this term
suggests that there is a “non-rest mass” (which there isn’t).

• Einstein first derived the mass-energy equivalence in his Annus Mirabilis paper Ist die
Trägheit eines Körpers von seinem Energieinhalt abhängig? [11]. In the paper, the equation
is not given verbatim but encoded in the following statement:

Gibt ein Körper die EnergieL in Form von Strahlung ab, so verkleinert sich seine
Masse umL=V 2.

Einstein concludes:

Die Masse eines Körpers ist ein Maß für dessen Energieinhalt; […]. Es ist nicht
ausgeschlossen, daß bei Körpern, deren Energie in hohem Maße veränderlich ist
(z.B. bei den Radiumsalzen), eine Prüfung der Theorie gelingen wird.

Einstein further elaborates on the relativistic energy relation and its implications in [67].
He provides self-contained step-by-step derivation in Ref. [68]. Additional insight was
provided over the years with alterantive derivations by various authors [69–71].

The derivation by Feigenbaum and Mermin in [71] is particularly insightful as it follows
Einsteins original derivation in [11] closely without invoking electrodynamics. They
also demonstrate that the heart of relativistic mechanics is actually Eq. (5.24) (where
mc2 appears as a coefficient), and not Eq. (5.28) (which is conventional).

→ Note 1: Some comments onE0 D mc2

Eq. (5.28) is arguably the most famous equation in physics. The popularization of
scientific concepts is often accompanied by simplifications and distortions. This is also
the case forE0 D mc2:

• E0 D mc2 is often written as E D mc2. This is either wrong or misleading
(depending on the interpretation of the symbols); in any case, it is not consistent
with modern conventions in relativity (→ below).

• E0 D mc
2 is by no means Einstein’s most important equation. This is why it is

not refered to as “Einstein equation;” this honor goes to

R�� �
1

2
Rg�� Cƒg�� D ��T�� (5.29)

which are also known as the → Einstein field equations; these form the basis of
general relativity and are empirically of much greater value thanEq. (5.28).
Luckily, the Einstein field equations look daunting and are not nearly as accessible
as E0 D mc2; hence they weren’t seized (and multilated) by pop culture like
E0 D mc

2 was.

• How statements are phrased determines our conceptualization of the world. The
often heard phrase

“E0 D mc2 says that mass can be converted into energy”

makes me think of “mass” as a sort of coal that can be lighted and then produces
energy (maybe in form of light and heat or an atomic explosion). I am quite
convinced that there are many who got “conceptually derailed” by statements
like this, and hence think of Einstein’s revelation as modern-day equivalent of an
early human realizing, perhaps by witnessing a lightning strike, that wood can be
kindled to produce heat. This is completely off the mark.
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E0 D mc
2 says that rest energy and inertial mass are equivalent; not that they can

be“converted” into each other. It means that the Lorentz symmetry of spacetime
necessitates that our concepts of “energy” (as a quantity that can make things
change in time) and“inertial mass” (as a quantity that measures how hard it is
to make the state of motion of an object change in time) are like two sides of the
same coin. Note that we did not arrive at the equation by studying the microscopic
dynamics and interactions of matter (like we do in quantum mechanics, and
especially quantum field theory); the equivalence of rest energy and mass is a
consequence of the symmetries of spacetime alone. One can takeE0 D mc2 thus
as a hint at the unanswered questions “What is time?” and “What is inertia?”
because energy is the generator of time translations (think of the time-evolution
operator in quantum mechanics) and mass quantifies the phenomenon of inertia.

To drive the point home, here a few examples:

– An atom in an excited electronic state is heavier than the same atom in the
ground state.

– A battery gets lighter when being discharged.

– A chunk of metal is heavier when it is hot.

– If you put an atomic bomb into an opaque, completely sealed “super box”
that survives the explosion, the weight of the box does not change when the
bomb goes off. This makes it clear that mass is not “converted” into energy.

– If the box is made out of “super glass” that lets only photons escape, the box
gets lighter byEphot=c

2 if the photons carry away the energyEphot.

• For these reasons, E0 D mc2 is not a magical blueprint to build atomic bombs.
The equation is only relevant in this context because it provides a nice “shortcut”
to compute the energies that the fission (splitting) of isotopes can yield (or cost,
depending on the isotopes). Because one couldmeasure the restmasses of isotopes
rather easily (using mass spectrometry [72]) – but had almost no clue how to
describe the inner workings (and therefore binding energies) of said nulei – the
equation allowed for a straightforward survey of the periodic table to identify
suitable isotopes that would yield energy under fission. E0 D mc2 is not the
reason why atomic weapons work, and these weapons are not so powerful“because
they convert mass into energy.” This is pure nonsense. If you discharge the
battery of your phone, it also looses mass – because rest energy and mass are
equivalent: E0 D mc2! And yes, this mass difference is much smaller than the
mass difference accompanied by a nuclear explosion. But this is not the reason;
the reason is that the strength of electromagnetic interactions – which govern
chemical processes (like discharging your battery) – is dwarfed by the strength of
the strong interaction (and its residual, the nuclear force) – which governs nuclear
reactions.

In a nutshell:

When studying reaction processes (of any sort), the change of restmass predicted
byE0 D mc2 is an ↑ epiphenomenon. The mass change is not causal; it cannot be,
because it is a consequence of the symmetries of spacetime, and not of the inner
workings of matter.

ii | Unfortunately, the notation and interpretation of special relativity has changed since
its inception. In former times it was conventional to introduce the concept of a

⁂ Relativistic mass: mr WD vm D
mq
1 � v2

c2

(5.30)
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which depends on velocity. With this definition, the relativistic relation between 3-velocity
and 3-momentum reads Ep D mr Ev and parallels the Newtonian relation Ep D mEv. The
relativistic energy relation then readsE D mrc2.

The concept of a velocity-dependent, relativistic mass is avoided in most modern treatments
of relativity (and in this script). While this is mostly a matter of concepts and semantics,
there are good reasons why the concept of a velocity dependent mass is less useful than it
might seem (→ below).

Here a few comments on various notations that you might encounter:

E0 D mc
2 Correct ,

�����
E D mc2 Only makes sense if m D mr (which we don’t use).

������
E0 D m0c

2 Why m0? There is only m!

������
E D m0c

2 Energy is frame-dependent. Do you mean E0? Otherwise: Wrong!

For more details and explanations see Refs. [73–75].

iii | ! Take home message:

There is only one mass: the rest mass m (which we call mass).

Thus mass does not depend on velocity.

This convention is used by almost all modern textbooks on relativity.

Unfortunately the old conventions (using relativistic, velocity-dependent masses) are still
used by school books and popular science books.

iv | Aside: Why introducing velocity depended masses leads nowhere.

If you are still inclined to think in terms of a velocity-dependent, relativistic massmr , here is
a compelling argument why this is a useless and artificial concept that needs to die:

The 3-component of the relativistic equation of motion Eq. (5.16) reads

EF D
d
dt

�
mv Ev

�
D mv EaCm

3
v

Ev � Ea

c2
Ev (5.31)

with two extreme cases:

Ev k Ea ) EF $ m3v Ea (5.32a)

Ev ? Ea ) EF D mv Ea (5.32b)

If you insist on introducing a “mass” as the proportionality factor between 3-force and 3-
acceleration to quantify the inertial response of an object at finite velocity, you are not only
forced (,) to make this mass velocity dependent, you also need two masses:

“Longitudinal mass”: mk WD m
3
v (5.33)

“Transverse mass”: m? WD mv (5.34)

The above result demonstrates that the concept of a mass as a measure for inertia is not very
useful in special relativity. More precisely, the result shows that the quantititesmk

andm? are relational properties between an object and an observer (they depend on the state
of motion of the observer); they are not intrinisic properties of the object itself. Only the
restmassm qualifies as such an intrinisc property. The velocity dependence ofmk andm? is
not an intrinisc feature of matter, it is a feature of spacetime.
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This is why in modern textbooks there is only one massm (the rest mass) which does not
depend on v, and one has to accept that the Newtonian relation Ep D mEv is no longer valid.
The concepts of “longitudinal mass” and“transverse mass” (and velocity dependent mass,
for that matter) are therefore no longer used in modern literature.
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↓ Lecture 11 [09.01.24]

12 | ^ Non-relativistic limit:

E D
mc2q
1 � v2

c2

� mc2„ƒ‚…
Rest

energy

C
1

2
mv2„ƒ‚…

Newtonian
kinetic
energy

C O
�
ˇ4
�

(5.35)

This shows again that the correspondence principle is satisfied: For small velocities compared to c,
the kinetic energy of Newtonian mechanics is (up to a constant shift given by the rest energy) a
good proxy for the true energy of the particle.

13 | The kinetic energy is: Ekin D E �E0 D E �mc
2

! The velocity of a relativistic particle as a function of its kinetic energy is:

ˇ2 D
�v
c

�2
D 1 �

�
mc2

Ekin Cmc2

�2
ˇ�1
���!

2Ekin

mc2
(5.36)

Note that in the non-relativistic limit it isEkin � mc2.

This velocity dependence has been confirmed experimentally to high precision; for example with
accelerated electrons [34] (see Refs. [34, 35] for more technical details):

! The relativistic energy relation Eq. (5.24) is correct,,

14 | Massless particles:

So far we considered only particles with non-vanishing mass m ¤ 0. The definition of the
momentum Eq. (5.1) and the relativistic energy Eq. (5.24) cannot be directly applied to particles
without mass. However:

i | ^ Eq. (5.26) with m! 0:

E D j Epjc (linear dispersion) (5.37)

^ Eq. (5.4) with m! 0:

p2 D 0 (light-like) ) p� D

�
j Epj

Ep

�
(5.38)
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¡! We take this as the definition of the 4-momentum for massless particles (it is the only
definition that is consistent with p� D mu� in the limit of vanishing mass). Note that there
is no finite 4-velocity u� associated to massless particles.

ii | The fact that p� becomes light-like for massless particles already suggests that they move
with the speed of light. We can verify this:

E D vmc
2

Ep D vmEv

)
) E D j Epj

c2

v

m!0
�����!
Eq. (5.37)

j Epj c (5.39)

This limit is only consistent if v ! c form! 0:

All particles with vanishing mass move with the speed of light. (5.40)

• Examples: Photons, Gravitons (if they exist)

• Massless particles do not have a rest frame.

You would need a boost with v D c to reach such a frame; but such boosts are not
defined (because the Lorentz factor diverges in this limit).

• ¡! The relativistic energy E D vmc2 holds only for massive particles. For massless
particles it does not followE D 0 but ratherE D j Epjc ¤ 0. So photons do have energy
and momentum, but no mass (neither rest- nor any other type of mass). You are also not
allowed to use the“forbidden” equationE D mrc2 and declaremr D E=c2 D j Epj=c
as the “dynamic mass” of the photon because (1) we argued above that this concept is
not as useful as it sounds, and (2) you only renamed momentum, so what’s the point.
And if you are afraid that later – in general relativity– our photons will not be
deflected by stars or sucked into black holes because they“have no mass”: I assure you,
they will; they have energy and momentum, that’s enough.

• This demonstrates why the“speed of light” is sort of a misnomer in this context, and
we should have stuck to our vmax (but then all our equations would look different from
the literature). Then it would be conceptually clear that every particle with vanishing
rest mass “runs into” the universal speed limit vmax.

5.3. Action principle and conserved quantities

In this section we study amore formal (andmore versatile) approach to describe the dynamics of relativistic
systems, namely in terms of the Lagrangian and the action. We do this for the free particle (no force!) and
consider electromagnetic forces in the next Chapter 6.

1 | Action of free massive particle:

i | ^ Trajectory  parametrized by
x� D x�.�/ with � 2 Œ�a; �b� and x�.�a/ D a�, x�.�b/ D b�

Remember the characteristic property of the trajectory of a free particle (Section 2.4):
The proper time (= Minkowski distance) is maximized along the trajectory!

! Action: SŒ� WD ˛

Z


ds D ˛
Z �b

�a

p
��� Px� Px� d� (5.41)
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with Px� � dx�

d� .

The prefactor ˛ is undetermined so far (→ next step).

¡!Theparameter�has nophysical interpretation in this formulation as this action is reparametriza-
tion invariant (→ Section 5.4).

ii | Correspondence principle! ˛ D �mc

To determine the parameter ˛, consider the non-relativistic limit of the Lagrangian in coor-
dinate time parametrization � D t :

QL D ˛

q
c2 � PEx2 D ˛c

q
1 � v2

c2

ˇ�1
���! L � ˛c �

˛v2

2c„ƒ‚…
Š

D 1
2mv

2

(5.42)

The non-relativistic limit yields – up to a constant that doesn’t change the equations of
motion – the Lagrangian with Newtonian kinetic energy if we set ˛ D �mc.

iii | Lagrangian:

L.x�; Px�/ D �mc
p
��� Px� Px� D �mc

p
Px� Px� (5.43)

• ¡! This Lagrangian is only valid for massive particles.

• The Lagrangian Eq. (5.43) is fully specified as is; there is no need to fix a specific
parametrization. In this form, the Lagrangian [more precisely: the action Eq. (5.41)]
has a gauge symmetry: the parametrization � is arbitrary (→ Section 5.4).

• On the contrary, if you fix a parametrization (= fix a gauge), e.g., by identifying � with
the coordinate time � D t � x0=c (“static gauge”) or the proper time � D � (“proper
time gauge”), you obtain different (but physically equivalent) Lagrangians which have
no longer a gauge symmetry:

�
Š
D t , c�

Š
D x0 ) QLt .Ex;

PEx/ D �mc2
q
1 � PEx2=c2 ; (5.44a)

�
Š
D � , Px� Px�

Š
D c2 ) QL� .x

�; Px�/ D �mc2 : (5.44b)

We denote gauge-fixed Lagrangians by QL and the gauge-invariant Lagrangian Eq. (5.43)
byL. In the following we often work with the latter and choose specific parametrizations
at the end of our calculations to express results in known quantities.

2 | Euler-Lagrange equations:

ıS
Š
D 0 )

d
d�

@L

@ Px�
�

@L

@x�„ƒ‚…
D0

D 0 )
d
d�
�mc Px�p
Px� Px�

D 0 (5.45)

These are 4 differential equations (� D 0; 1; 2; 3)!

! Equations of motion in the “proper time gauge” � D � [where Px� Px� D u2 D c2]:

m
du�

d�
D

dp�

d�
D 0 (5.46)

This is Eq. (5.6) for vanishing 4-force,
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3 | ^ Action in “static gauge” � D t D x0=c:

SŒ�
�D x0

c
� QSt ŒEx.t/�D

Z tb

ta

QLt .Ex;
PEx/ dt D �mc2

Z tb

ta

r
1 �

PEx2

c2 dt (5.47)

i | Canonical momenta (Ev D PEx):

Ep D
@ QLt

@Ev
D

mEvq
1 � v2

c2

(5.48)

This is the expression for the relativistic 3-momentumEq. (5.3) we found before, now derived
as the canonical momentum of a Lagrangian.

ii | Hamiltonian:

QHt D Ep � Ev � QLt $
mc2q
1 � v2

c2

D cp0
5.26
D c

q
Ep2 Cm2c2 (5.49)

This is just the relativistic energy Eq. (5.24) we found before, now derived from a Lagrangian.

• ^ Non-relativistic limit:

QHt D mc
2

s
1C

Ep2

m2c2

Ep2

2m
�mc2

� mc2„ƒ‚…
Rest

energy

C
Ep2

2m„ƒ‚…
Newtonian
kinetic
energy

(5.50)

• ¡! Contrary to the action Eq. (5.47), this Hamiltonian also makes sense for massless
particles:

QHt
mD0
D j Epjc (5.51)

4 | Noether’s (first) theorem:

Details: → Problemset 6

x� cyclic! Spacetime translations x� C ı"� are continuous symmetries of S

These transformations correspond to the inhomogeneous part of Poincaré transformations: Nx� D
x� C a�. Every relativistic theory must have this symmetry; for field theories one obtains then
four conserved currents: → Energy momentum tensor.

↓ Noether’s theorem! ↓ Conserved Noether charges Q�: (set � D t as the coordinate time)

Q� �

�
Time translation ) EnergyE=c

Space translations ) Momentum Ep

�

D �
@L

@ Px�
D

mc Px�
p
c2 � Ev2

D

0@ 1
c

mc2p
1�ˇ2

�
mEvp
1�ˇ2

1A D p�
(5.52)

(5.53)
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• Because x� are cyclic coordinates, we can obtain the Noether charges directly from the
Lagrangian as @L

@ Px� ; the additional minus is conventional to connect to our definition of the
4-momentum.

• ¡! This shows that our definition of the 4-momentum is consistent, and the identification of
its time-component p0 as the total energy was correct: By definition, energy is the Noether
charge that corresponds to translation invariance in time. Similarly, momentum is the charge
for translation invariance in space.

5 | Noether charges for homogeneous Lorentz transformations?

Any relativistic theory is also invariant under (proper orthochronous) Lorentz transformations,
Nx� D ƒ

�
�x
�; for these there must exist additional conserved Noether charges:

Infinitesimal Lorentz transformations x� C ı"��x� are continuous symmetries of S

The infinitesimal transformation is antisymmetric: ı"�� D �ı"
�
� , → Problemset 5.

ı
�! Conserved Noether charges:

⁂ Angular momentum (tensor): L�� D x�p� � x�p� (5.54)

This is an example of an antisymmetric .2; 0/ Lorentz tensor.

Proof: → Problemset 6

i | ^ Spatial components:

L23 D x2p3 � x3p2 D l1

L31 D x3p1 � x1p3 D l2

L12 D x1p2 � x2p1 D l3

9>=>; with 3-angular momentum El D Ex � Ep. (5.55)

! 3-angular momentum El is not (part of a) Lorentz vector but of a .2; 0/ tensor!

It is not surprising that invariance under spatial rotations SO.3/ � O.1; 3/ implies angular
momentum conservation.

ii | ^ Mixed components:

L10 D x1vmc � ctp
1
D cn1

L20 D x2vmc � ctp
2
D cn2

L30 D x3vmc � ctp
3
D cn3

(5.56)

with ⁂ dynamic mass moment

En WD mv
�
Ex � t Ev

�
D
E

c2
Ex � t Ep D const : (5.57)

This is the relativistic version of the ↓ center-of-mass theorem.

The center of mass (COM) is now the center of energy (COE). Since En (andE) is conserved,
we can set t D 0 to find En D E=c2 Ex0, which is the initial center of energy of the system
(timesE=c2).

For many particles this is slightly less trivial: One finds analogously the conserved quantity

EN D
X
i

Eni D
X
i

�
Ei

c2
Exi � t Epi

�
D const : (5.58)
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Division by the total (also conserved) energyE D
P
i Ei yields

EXCOE.t/ WD

P
i Ei ExiP
i Ei

D t
c2 EP

E
C const � t EVCOE C const (5.59)

with the total 3-momentum EP D
P
i Epi . Thus the⁂ center of energy EXCOE moves in a straight

line with constant velocity EVCOE. Note that the center of energy becomes the Newtonian
center of mass in the non-relativistic limit whereEi � Ei;0 D mic2.

6 | ^ Multiple particles (covariantly coupled by fields):

The above arguments can be directly generalized to many (non-interacting) particles. This im-
mediately yields the sum of the 4-momenta of these particles as conserved quantity. Interactions
between the particles must be covariantly mediated by fields – which also carry 4-momentum
(→ Chapter 6):

Conserved Noether charge:

⁂ Total 4-momentum: P� WD
X
i

p
�
i C p

�
Fields (5.60)

with

• p
�
i the 4-momentum of particle i , and

• p
�
Fields the total 4-momentum of the fields mediating the interations.

7 | ^ Scattering process:

Long before and after the interactions play a role we can approximate the system by non-interacting
particles and set p�Fields D 0!

X
i

p
�
in;i D

X
j

p
�
out;j (5.61)

! Conservation of energy (� D 0) and momentum (� D 1; 2; 3)

• In relativity, conservation of total energy and total momentum is combined into the
conservation of 4-momentum.

• We will denote the 4-momenta of massive particles (solid lines) with p� and the 4-momenta
of massless particles with q� (wiggly lines).
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Examples:

i | Particle decay: ^ Radioactive Nucleus! Nucleus 1 & Nucleus 2

! Energy-momentum conservation:

p�„ƒ‚…
in

D p
�
1 C p

�
2„ ƒ‚ …

out

(5.62)

^ Center-of-mass frame where Ep D Ep1 C Ep2 D 0
ı
�!

mc2 D m1c
2
CEkin;1 Cm2c

2
CEkin;2 (5.63)

! Decay only possible if

m � m1 Cm2 (5.64)

If Ekin;1 ¤ 0 orEkin;2 ¤ 0, it ism ¤ m1 Cm2.

! The rest mass of composite objects is not additive.

Composite objects also contain binding energy (potential energy) which contributes to the
rest mass of the object.
ı
�!

Ekin;1 D
.m �m1/

2c2 �m22c
2

2m
(5.65)

In the COM frame, the kinetic energy of the two decay products is constant and depends
only on the masses of the particles. So if you find a non-trivial energy distribution for the
products of a decay process, there must at least three particles be produced (of which you
might not be able to detect all). This is how the neutrino was predicted by Pauli from the
decay of the neutron: n! p C e� C N�e .

ii | Particle creation:

Note that a single massless (light-like) particle (like a photon) cannot decay into two massive
(time-like) particles because .p1 C p2/2 D q2 D 0 cannot be solved if p2i D m

2
i c
2 > 0.

Indeed (we set c D 1): With the ↓ Cauchy-Schwarz inequality we find

m1m2 C Ep1 � Ep2 �

q
m21 C Ep

2
1

q
m22 C Ep

2
2 D p

0
1p

0
2 (5.66a)

) 0 < m1m2 � p1 � p2 (5.66b)

so that for arbitrarym1 andm2 (particle creation: q� D p
�
1 C p

�
2 )

.p1 C p2/
2
D m21 Cm

2
2 C 2p1 � p2 > 0 ) Time-like (5.67)

Furthermore, form1 D m2 (scattering: p
�
1 � p

�
2 D q

�):

.p1 � p2/
2
D m21 Cm

2
2 � 2p1 � p2 (5.68a)

� m21 Cm
2
2 � 2m1m2

m1Dm2
D 0

p1¤p2

HHHH) Space-like (5.68b)

(For the Cauchy-Schwarz inequality, equality holds iff the two vectors are linearly dependent;
form1 D m2 this is only possible if p1 D p2, i.e., in the trivial case of no scattering.)
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Eq. (5.67) shows that two particles (of arbitrary masses) can never annihilate into a single
photon, and, vice versa, a single photon can never create a pair of massive particles. This is
reason why we need an additional (heavy) nucleus for the creation of a particle & antiparticle
pair from a photon.

By contrast, Eq. (5.68) tells us that a single massive particle cannot emit or absorb a single
photon if it cannot change its mass (i.e., has no different energy states). This is true for free
elementary particles like electrons (an electron cannot be excited, it always has the same
mass). Thus a free electron cannot emit a single photon. If the massive particle in question
has different internal energy states (and therefore the twomassesm1 andm2 can be different),
this argument does not hold. This is why atoms can spontaneously emit or absorb single
photons.

^ Photon (+Nucleus)! Electron & Positron (+Nucleus)

! Energy-momentum conservation:

P
�
in � q

�
C p�„ ƒ‚ …
in

D p
�
1 C p

�
2 C Qp

�„ ƒ‚ …
out

� P
�
out

(5.69)

With the massM of the nucleus and the momentum/energy jEqj D E=c of the incoming
photon, we find�

E CMc
2

c

�2
�

�
E

c

�2
„ ƒ‚ …

Rest frame of nucleus

D P 2in
Š
D P 2out D

�
ENuc CEe� CEeC

c

�2
„ ƒ‚ …

COM frame of system

(5.70)

where the right hand side was evaluated in the COM frame with EPout D E0 and the left hand
side in the rest frame of the nucleus (which is allowed sinceP 2 D P�P� is a Lorentz scalar).

Please appreciate the subtlety of this evaluation: The 4-momentum conservation Eq. (5.69)
is Lorentz covariant. Therefore you cannot evaluate the left hand side P�in in one inertial
system and the right hand side P�out in another. However, in any inertial system Eq. (5.69)
implies P 2in D P

2
out where left and right hand side are now Lorentz invariant; hence you can

evaluate the two sides in different inertial systems.
ı
�! Threshold for particle creation:

E;min D 2m
2
ec
2
�
1C

me

M

�
> 2mec

2 (5.71)

The threshold follows for vanishing kinetic energy of the products in the COM frame.

The threshold energy is larger than twice the rest energy of the electron 2mec2 (the positron
has the same mass as the electron) because the scattering products necessarily aquire kinetic
energy in the initial rest frame of the nucleus (to carry the momentum of the photon).

iii | Annihilation: ^ Electron & Positron! Photon & Photon
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! Energy-momentum conservation:

P
�
in � p

�
1 C p

�
2„ ƒ‚ …

in

D q
�
1 C q

�
2„ ƒ‚ …

out

� P
�
out (5.72)

^ COM frame:

P
�
in D

�
Ee�=c

Ep

�
C

�
EeC=c

� Ep

�
D

�
jEqj

Eq

�
C

�
jEqj

�Eq

�
D P

�
out (5.73)

Using that electron and positron have the samemassme, we find for the energy of the emitted
photons:

E D c

q
Ep2 Cm2ec

2 (5.74)

Note that the individual rest massess of particles in scattering processess are not conserved:
p21 D p22 D m2ec

2 > 0 for the incoming electron and the positron, but q21 D q22 D 0 for
the outgoing photons. The rest mass of the composite system remains the same, though. In
particular, the two photons together have the same rest mass as the electron-positron system
before: P 2out D P

2
in D 4. Ep

2 Cm2ec
2/ > 0.

! The rest masses of individual particles are not conserved.

iv | Compton scattering: ^ Electon & Photon! Electron & Photon

Details: → Problemset 6

Compton scattering is an example of ↓ elastic scattering where the total kinetic energy is
conserved and the rest energies of in- and outgoing particles remains the same.

! Energy-momentum conservation:

q
�
1 C p

�
1„ ƒ‚ …

in

D q
�
2 C p

�
2„ ƒ‚ …

out

(5.75)

With q21 D q
2
2 D 0 and p

2
1 D p

2
2 D m

2
ec
2 one finds:

E1E2=c
2.1 � cos �/„ ƒ‚ …

Rest frame of e�

$ q1 � q2 D p � .q1 � q2/„ ƒ‚ …
Lorentz invariant

$ mec.E1=c �E2=c/„ ƒ‚ …
Rest frame of e�

(5.76a)

)
1

E2
�

1

E1
D

1

mec2
.1 � cos �/ (5.76b)

Here the left and right hand sides are evaluated in the rest frame of the electron: p�1 D
.mec; E0/

T ; � is the angle between incoming and outgoing photon (scattering angle):
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With the photon energyEi D hc=�i we find the change in wavelength due to scattering:

�� D �2 � �1 D
h

mec„ƒ‚…
�e

.1 � cos �/

with ⁂ Compton wavelength �e of the electron.

(5.77)

• With Compton scattering one can measure the Compton wavelength of the electron
and thereby determine the Planck constant h.

• Because the Compton wavelength is the natural length scale associated to a massive
quantum particle, it appears in many field equations of relativistic quantum mechanics
(Klein-Gordon equation, Dirac equation,…).

5.4. ‡ Reparametrization invariance

The action of the free relativistic particle Eq. (5.41) has the peculiar property of “reparametrization
invariance”, a feature that plays an important role in general relativity, and is also crucial for the
quantization of the relativistic string in string theory (↑ Nambu-Goto action).

1 | ^ Trajectory  parametrized by x�.�/ for � 2 Œ�a; �b�.

^ Diffeomorphism ' W Œ�a; �b�! Œ�a; �b� with �a=b D '.�a=b/ and write Q� D '.�/.

Diffeomorphism = Bijective map where both the map and its inverse are continuously differentiable.

! Define new trajectory Q via Qx�. Q�/ WD x�.'�1. Q�// D x�.�/ with Q� 2 Œ�a; �b�.

Qx�. Q�/ is a reparametrization of x�.�/: Qx� andx� are different functions on Œ�a; �b� that parametrize
the same trajectory in spacetime R1;3.
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! Action of new trajectory:

SŒ Q�
def
D �mc

Z �b

�a

q
PQx�.�/ PQx�.�/ d� (5.78a)

Rename the dummy variable: �! Q�

D �mc

Z �b

�a

q
PQx�. Q�/ PQx�. Q�/ d Q� (5.78b)

Use Qx�. Q�/ D x�.�/ and the chain rule

D �mc

Z �b

�a

s
Px�.�/

d�

d Q�
Px�.�/

d�

d Q�
d Q� (5.78c)

Substitution in the integral: Q� D '.�/

D �mc

Z �b

�a

q
Px�.�/ Px�.�/ d� (5.78d)

def
D SŒ� (5.78e)

! S is invariant under diffeomorphisms on parameter space.

!⁂ Reparametrization invariance (RI)

2 | Infinitesimal generators:

i | Consider infinitesimal deformations ".�/ of the parametrization (i.e., j".�/j � 1 for all �):

Q� D '.�/ � �C ".�/ (5.79)

With this we find:

x�.�/
def
D Qx�. Q�/ D Qx�.�C ".�// D Qx�.�/C ".�/@� Qx

�.�/CO."2/ (5.80)

ii | The infinitesimal variation of the trajectory is:

ı"x
�
WD Qx�.�/ � x�.�/ (5.81a)

D �".�/@�x
�.�/CO."2/ (5.81b)

� G"x
�
CO."2/ (5.81c)

Note that we can replace Qx� by x� in linear order of ".

!⁂ Generators of one-dimensional diffeomorphisms:

G" D �".�/@� for arbitrary (infinitesimal) ".�/. (5.82)

iii | We can expand ".�/ into a Taylor series ".�/ D
P
n
"n

nŠ
�n to write

G" D
X
n

"n

nŠ

�
��n@�

�
�

X
n

"n

nŠ
Gn : (5.83)

! Basis of generators that generate infinitesimal reparametrizations is given by

Gn D ��
n@� for n 2 N0. (5.84)
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! RI = Infinite-dimensional continuous symmetry group

Note that in particular ".�/ can be chosen such that it is non-zero only for a compact subin-
terval of Œ�a; �b�, i.e., reparametrization invariance is a local symmetry (local in parameter
space).

! RI is a gauge symmetry

3 | Conserved quantities:

You know from your course on classical mechanics that Noether’s theorem assigns a conserved
quantity to each continuous symmetry of an action. What are these quantities for the infinitely
many symmetry transformationsG" associated to RI?

i | ^ Variation of the Lagrangian L D �mc
p
Px� Px� under G":

ı"L D
@L

@ Px�
ı" Px

� (5.85a)

Use ı" Px� WD PQx� � Px� D @�.ı"x�/:

5.81
D �

mc Px�
p
Px� Px�

@�
�
�".�/ Px�

�
(5.85b)

D
mc
p
Px� Px�

�
Px� P".�/ Px

�
C Px�".�/ Rx

�
�

(5.85c)

D mc
p
Px� Px� P".�/Cmc".�/@�

p
Px� Px� (5.85d)

D
d
d�

h
mc".�/

p
Px� Px�

i
„ ƒ‚ …

DWK".�; Px�/

D
dK"
d�

(5.85e)

! ı"L is a total derivative! G" is a continuous symmetry of S

Note that in Eq. (5.78) we assumed �a=b D '.�a=b/ which corresponds to ".�a=b/ D 0 D
K".�a=b; Px

�/ such the boundary terms vanish and the action is completely invariant.

ii | ↓ Noether’s (first) theorem!

For each continuous symmetry ı"x� D G"x� there is a conserved Noether charge:

Q"
�
D ı"x

� @L

@ Px�
�K"

5.85e
D ".�/mc

Px� Px�
p
Px� Px�

� ".�/mc
p
Px� Px� D 0 (5.86)

! The Noether charge corresponding to G" vanishes identically!

“Vanishing identically”means thatQ".�; x�; Px�/ � 0 for all functions x�.�/, and not just
those that satisfy the equations of motion.

• Naïvely, we expected infinitely many conserved quantities from the infinitely many symmetry
generatorsGn. We found them, but quite surprisingly, they turned out to be trivially zero.
This is a general feature of local or gauge symmetries; here we use the reparametrization
invariance of the relativistic free particle only as an example.

• So while the conserved charges of local symmetries are trivial, such symmetries have other
non-trivial implications: they enforce constraints on the equations of motion, so that they are
no longer independent. Mathematically, this is described by ↑ Noether’s second theorem.

4 | We can illustrate the implications of Noether’s second theorem for the relativistic free particle:
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i | The Lagrangian

L D �mc
p
Px� Px� (5.87)

leads to the conjugate momenta

p� D
@L

@ Px�
D �

mc Px�p
Px� Px�

(5.88)

which satisfy the identity

p2 D p�p� D m
2c2 (5.89)

• Eq. (5.89) is an identity, i.e., it holds for arbitrary trajectories x�.�/. In particular,
x�.�/ does not need to satisfy the equations of motion for Eq. (5.89) to be valid. In
Hamiltonian mechanics, such constraints are called ⁂ primary constraints. So our four
canonical momenta p� are not independent!

• Eq. (5.89) is equivalent to:

dp2

d�
D 0 ,

�
dp�

d�

�
p� D 0 (5.90)

ii | ^ Euler-Lagrange equations:

d
d�

@L

@ Px�
�
@L

@x�
D

d
d�

@L

@ Px�
D

dp�
d�
D 0 (5.91)

! Four differential equations (� D 0; 1; 2; 3) for four undetermined functions x�.�/.

However: Eq. (5.91) not independent:

p�
d
d�

@L

@ Px�
D p�

dp�

d�
5.90
D 0 (5.92)

• Eq. (5.92) is again an identity, i.e., valid for all functions x�, and not only those that
satisfy the equations of motion.

• As a consequence, the system of equations of motion Eq. (5.91) effectively looses one
of the four equations, and is therefore underdetermined.

Put differently, if you specify a spacetime position x�.� D 0/ and its first deriva-
tive Px�.� D 0/ (note that the Euler-Lagrange equations are second-order differential
equations), the equations of motion do not determine a unique solution x�.�/. Math-
ematically speaking, the initial value problem is ill-posed. This is the characteristic
property of a gauge theory.

• This makes sense in the light of reparametrization invariance: If x�.�/ solves the
equations of motion, you can construct a new solution Qx�.�/ D x�.'.�// where ' is
some diffeomorphism that is the identity except for a compact subinterval somewhere
in the interior of Œ�a; �b�. In particular, Qx�.�/ D x�.�/ in the neighborhood of �a,
such that the two solutions cannot be distinguished by their initial value and derivative.
Note how important the locality of the symmetry is for this argument to hold!

• This is a special case of ↑ Noether’s second theorem [76, 77].
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iii | The fact that our theory is a gauge theory has another, at first glance surprising, consequence:

H D p� Px
�
� L D �

mc Px� Px
�p

Px� Px�
Cmc

p
Px� Px� D 0 (5.93)

! The (canonical) Hamiltonian vanishes identically

• ¡! This does not mean that there is no time-evolution in our system. The Hamiltonian
Eq. (5.93) describes the“parameter evolution” in � – which, as we have seen, can be
modified arbitrarily by gauge transformations; � has therefore no physical significance.

This phenomenon will become important for the interpretation of the Einstein field
equations in general relativity.

• If one fixes a gauge, the Hamiltonian that describes evolution in this parameter is non-
zero in general. E.g., for the“static gauge” � D t D x0=c one finds the Hamiltonian
Eq. (5.49) which coincides with the relativistic energy of the particle.
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↓ Lecture 12 [16.01.24]

6. Relativistic Field Theories I:
Electrodynamics

6.1. A primer on classical field theories

We start with a general discussion of classical field theories on Minkowski space; Maxwell’s electrody-
namics is the prime example for such theories (→ next section).

Details: Chapter 1 of my QFT script [20]

6.1.1. Remember: Classical mechanics of “points”

With“points” we mean a discrete set of degrees of freedom.

1 | ^ Degrees of freedom qi labeled by i D 1; : : : ; N

2 | Lagrangian L.fqig; f Pqig; t / D T � V
We write q for fqig D fq1; : : : ; qN g. T is the kinetic, V the potential energy.

3 | Action SŒq� D
R
dt L.q.t/; Pq.t/; t/ 2 R

This is a functional of trajectories q D q.t/.

4 | Hamilton’s principle of least action:

ıSŒq�

ıq

Š
D 0 , ıS D

Z
dtıL Š

D 0 (6.1)

ı denotes functional derivatives/variations.

5 | Euler-Lagrange equations (i D 1; : : : ; N ):

@L

@qi
�

d
dt
@L

@ Pqi
D 0 (6.2)

6.1.2. Analogous: Lagrangian Field Theory

Now we consider a continuous set of degrees of freedom:

6 | ^ One or more fields �.x/ on spacetime x 2 R1;3 with derivatives @��.x/
If there are multiple fields we label them by indices: �k.x/.
In the following we suppress these indices for the sake of simplicity.

7 | ⁂ Lagrangian density L.�; @�; x/

Most general form: L.f�kg; f@��kg; fx
�g/. (No explicit x�-dependence in the following!)

! Lagrangian L D
R
Space d

3x L.�; @�/

(We omit the “density” in the following.)
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8 | Action:

SŒ�� D

Z
dtL D

Z
dt d3x L.�; @�/ D

1

c

Z
Spacetime

d4x L.�; @�/ (6.3)

SŒ�� is a functional of “field trajectories” in R1;3.

9 | Action principle:

The classical field evolutions of the system extremize the action:

ıSŒ��
Š
D 0 (6.4)

This variation can be evaluated along the same lines as for the classical mechanics of points:

0
Š
D ıSŒ�� D

Z
d4x ıL (6.5a)

D

Z
d4x

�
@L

@�
ı� C

@L

@.@��/
ı.@��/

�
(6.5b)

Add zero and use ı.@��/ D @�.ı�/

D

Z
d4x

�
@L

@�
ı� � @�

�
@L

@.@��/

�
ı� C @�

�
@L

@.@��/
ı�

��
(6.5c)

Gauss theorem

D

Z
Boundary

d��
@L

@.@��/
ı�„ƒ‚…
D0

C

Z
d4x

�
@L

@�
� @�

�
@L

@.@��/

��
„ ƒ‚ …

D0

ı� (6.5d)

• Note that � is fixed on the boundary and therefore ı� D 0.

• The second term vanishes because the integral must vanish for arbitrary variations ı�.

10 | Euler-Lagrange equations (one for each field):

@L

@�
� @�

�
@L

@.@��/

�
D 0 (6.6)

• Note the Einstein summation over repeated indices.

• These equations are manifestly Lorentz covariant if L is a Lorentz scalar; such field theories
are called ⁂ relativistic field theories.

• If there are multiple fields �k , there is one Euler-Lagrange equation per field (it is straight-
forward to generalize the derivation above).

11 | Hamiltonian formalism:

Just like for the mechanics of points, we can define:

� WD
@L

@ P�
⁂ Momentum density conjugate to � (6.7)

Like �.x/, the momentum is a field: �.x/. Here it is P�.x/ � @0�.x/.

!

H .�; �;r�/ WD � P� �L.�; @�/ ⁂ Hamiltonian density (6.8)
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• Here P� is to be expressed as a function of the conjugate momentum via Eq. (6.7).

• The argument @� of L is short for f@��g or fr�; P�g.

!

H WD

Z
d3xH ⁂ Hamiltonian (6.9)

For given fields �.x/ and �.x/,H is a (potentially constant) function of time. By contrast, the
Hamiltonian density H is a function of space Ex and time t .

6.2. Electrodynamics: Covariant formulation and Lagrange function

We nowwant to reformulateMaxwell’s electrodyamics in this formalism, i.e., we want to find a Lagrangian
density (and an associated action) such that the Euler-Lagrange equations are the Maxwell equations.

1 | Remember:

i | ↓ Maxwell equations (in cgs units):

Magnetic Gauss’s law: r � EB D 0

Maxwell-Faraday law: r � EE C 1
c
@t EB D 0

Electric Gauss’s law: r � EE D 4��

Ampère’s law: r � EB � 1
c
@t EE D

4�
c
Ej

(6.10a)

(6.10b)

(6.10c)

(6.10d)

with charge density �.x/ and current density Ej .x/ that satisfy the ⁂ continuity
equation

@t�Cr � Ej D 0 : (6.11)

This follows from the two inhomogeneous Maxwell equations Eqs. (6.10c) and (6.10d). Note
that here � and Ej are external fields and not dynamic degrees of freedom. The statement
is therefore that only for external fields that satisfy Eq. (6.11) the Maxwell equations yield
solutions for EE and EB .

ii | Homogeneous Maxwell equations (HME) Eq. (6.10a) & Eq. (6.10b)

ı
�! 9 “Scalar” potential ' and “Vector” potential EA:

EE D �r' � 1
c
@t EA and EB D r � EA (6.12)

• Constraining the fields EE and EB to this form satisfies the homogeneous Maxwell equations
Eqs. (6.10a) and (6.10b) automatically.

• Because of the twohomogeneousMaxwell equations, the six fields fEx ; Ey ; E´; Bx ; By ; B´g
are not independent so that all degrees of freedom can be encoded in the four fields
f';Ax ; Ay ; A´g. This suggests a reformulation of Maxwell’s theory in terms of these
“potentials”.
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iii | Gauge transformation:

^ Arbitrary function � W R1;3 ! R and define

EA0
WD EACr� and '0

WD ' � 1
c
@t� (6.13)

This transformation of fields is called a ⁂ gauge transformation (→ below).
ı
�! EE D EE 0 and EB D EB 0

! The potentials ' and EA are not unique.

iv | Inhomogeneous Maxwell equations (IME) Eqs. (6.10c) and (6.10d) in terms of the
potentials:

Eq. (6.10c) , r
2' C 1

c
@t .r � EA/ D �4�� (6.14a)

Eq. (6.10d) , r
2 EA � 1

c2 @
2
t
EA D �4�

c
Ej Cr

�
r � EAC 1

c
@t'

�
(6.14b)

In this form, electrodynamics is a gauge theory because it has a local symmetry, namely the
transformation Eq. (6.13). Indeed, it is straightforward to show that if .'; EA/ is a solution of
Eq. (6.14), then .'0; EA0/ given by Eq. (6.13) is another solution. Since �.x/ is arbitrary, one
can choose continuously differentiable �.x/ that vanish everywhere except for a compact
region of spacetime. This makes Eq. (6.13) a local symmetry transformation of the PDE
system Eq. (6.14); such local symmetries are called ⁂ gauge transformations, and models that
feature such symmetries are refered to as ⁂ gauge theories. The locality of the symmetry has
profound implications:

Thus, if we want a deterministic theory (meaning: a theory with predictive power), we
cannot interpret the gauge fields .'; EA/ as physical (= observable) degrees of freedom. Our
only choice (to save predictability) is to identify the equivalence classes Œ.'; EA/� of field con-
figurations that are related by (local) gauge transformations as physical states; this is the
defining property of a gauge theory. In a nutshell: local symmetries must be interpreted as
gauge symmetries and fields related by such transformations are mathematically redundant
descriptions of the same physical state.

v | Eq. (6.14) Gauge theory! Fix a gauge:

r � EAC 1
c
@t'

Š
D 0 ⁂ Lorenz gauge (LG) (6.15)

It is straightforward to show that for any given .'; EA/ there is a gauge transformation � such
that .'0; EA0/ satisfies Eq. (6.15).
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!

Eq. (6.10c) ,

�
1
c2 @

2
t � r

2
�
' D 4�

c
c�

Eq. (6.10d) ,

�
1
c2 @

2
t � r

2
�
EA D 4�

c
Ej

(6.16a)

(6.16b)

• Expressed in potentials in the Lorenz gauge, the inhomogeneous Maxwell equations
become a set of four decoupled wave equations.

• We do not have to consider the homogeneous Maxwell equations in the gauge field
representation because Eq. (6.12) ensures that Eqs. (6.10a) and (6.10b) are automatically
satisfied.

2 | Observation: Charge dq D � d3x in volume dV D d3x independent of inertial system:

� d3x D N� d3Nx ) � d3x„ƒ‚…
Scalar

dx�„ƒ‚…
4�vector„ ƒ‚ …

4�vector

D � d3x dt
dx�

dt
D

1
c
d4x„ƒ‚…

Eq: (4.23)
+

Scalar

�
dx�

dt„ƒ‚…
+

4�vector

(6.17)

This suggests that charge and current density are actually components of a Lorentz 4-vector:

j� WD �
dx�

dt
D

�
c�

�Ev

�
D

�
c�

Ej

�
⁂ 4-current (density) (6.18)

with ⁂ charge density � D �.x/ and ⁂ current density Ej D Ej .x/ D �.x/Ev.x/.

• In the argument above, the trajectory Ex.t/ in x� D .ct; Ex.t// parametrizes the movement
of the infinitesimal volume dV D d3x with charge dq D �dV ; the coordinate velocity
Ev.t/ D dEx

dt is therefore the velocity of the charge distribution at position Ex.t/ at time t : Ev.x/.
Thus, in general, the current density Ej .x/ D �.x/Ev.x/ depends on position and time via
the charge density �.x/ and the velocity field Ev.x/.

• That the charge density � is not a Lorentz scalar is intuitively clear as it is defined as charge
per volume. Volumes, however, are clearly not Lorentz invariant because they are Lorentz
contracted. Since the charge (not the charge density!) is Lorentz invariant (this is an obser-
vational fact), the ratio of charge by volume must change under boosts.
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3 | Eq. (6.18) and Eq. (6.16) suggest the compact notation

Eq. (6.16a)

Eq. (6.16b)

)
@2A� D 4�

c
j� (IME in LG) (6.19)

Remember that @2 D � D 1
c2 @

2
t � r

2.

with

A� WD

�
'

EA

�
⁂ 4-potential (6.20)

The covariant components of the gauge field are A� D .';� EA/.

The transformation of the 4-potential must be that of a Lorentz 4-vector:

N@2 D @2 W Scalar [Eq. (4.36b)]
Nj� D ƒ��j

�
W 4-vector [Eq. (6.18)]

)
! NA� D ƒ��A

�
W 4-vector (6.21)

With this transformation, theMaxwell equations in their simple formulation Eq. (6.19) aremanifestly
Lorentz covariant:

@2A� D 4�
c
j�

K
R;Ev;s;Eb

�����! NK
���������! N@2 NA� D 4�

c
Nj� (6.22)

4 | We can now rewrite our previous equations in tensor notation:

i | The Lorenz gauge condition can be compactly written as:

@A � @�A
�
D 0 (Lorenz gauge) (6.23)

! The Lorenz gauge is Lorentz invariant

Note: The Lorenz gauge is named after ↑ Ludvig Lorenz; by contrast, the Lorentz trans-
formation is named after ↑ Hendrik Lorentz. Thus: The Lorenz gauge (no “t”) is Lorentz
invariant.

ii | The continuity equation also becomes very simple (and Lorentz covariant):

@j � @�j
�
D 0 (Continuity equation) (6.24)

iii | The gauge transformation can be written as follows:

A0�
D A� � @�� (Gauge transformation) (6.25)

Recall that @� D .1
c
@t ;�r/.
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5 | Let us summarize our findings so far:

Maxwell equations W @2A� D 4�
c
j�

Lorenz gauge W @A D 0

Continuity equation W @j D 0

9>=>; K
ƒ

�! NK
�����!

8̂<̂
:
N@2 NA� D 4�

c
Nj�

N@ NA D 0

N@ Nj D 0

(6.26)

! Electrodynamics satisfies Einstein’s principle of Special Relativity SR

• In contrast to Newtonian mechanics, electrodynamics was a relativistic theory all along and
there was no need to modify it. It’s Lorentz covariance was simply not manifest and required
a bit of work to unveil.

• The treatment above relies on (1) expressing the Maxwell equations in terms of the gauge
fields and (2) choosing a particular gauge (the Lorenz gauge). While this is mathematically
legit (and not restrictive), it would be nice to have manifestly Lorentz covariant expressions
(1) withou fixing a gauge and (2) in terms of the physically observable fields EE and EB .

To achieve both goals, we first need a new tensorial quantity:

6 | Field strength tensor:

i | Motivation: We are looking for the simplest field that…

• …is gauge-invariant (i.e., has a physical interpretation).

• …is Lorentz covariant (i.e., can be used to construct Lorentz covariant equations).

ii | ^ Discretized spacetime on a (hypercubic) lattice (here we consider the xy-plane):

• The gauge field A� lives on edges in �-direction.

• The gauge transformation � lives on vertices of the lattice.

! Discretized gauge transformation:

A0
x;xCe�

D Ax;xCe�
C

1
"

�
�xCe�

� �x

�„ ƒ‚ …
�@��

(6.27)

! Sums along paths P transform non-trivially only at their “start site” s and“end site” e:X
e2P

A0
e D

X
e2P

Ae C
1
"
.�e � �s/ (6.28)

Edges e are pairs of adjacent lattice sites, e.g., e D .x;xC ex/ with lattice vector jexj D ".

! Sums
P
e2LAe along closed loops L are gauge-invariant (because s D e)!
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! Smallest gauge-invariant loop (= loop around a single face f D yx):

Fyx WD Ax;xCex
C AxCex ;xCexCey

� AxCey ;xCexCey
� Ax;xCey

(6.29a)

D
�
Ax;xCex

� AxCey ;xCexCey

�
�
�
Ax;xCey

� AxCex ;xCeyCex

�
"!0
���! @yAx � @xAy (6.29b)

iii | This motivates the definition:

F�� WD @�A� � @�A� ⁂ Field strength tensor (FST)

6.12
6.20
D

0BB@
0 Ex Ey E´
�Ex 0 �B´ By
�Ey B´ 0 �Bx
�E´ �By Bx 0

1CCA
��

(6.30a)

(6.30b)

Details: → Problemset 7

! F�� is a .0; 2/ Lorentz tensor

• The FST is gauge-invariant by construction. You can also check this by applying the
gauge transformation Eq. (6.25).

• It is easy to see that the FST has the following properties:

Antisymmetry: F �� D �F �� (6.31a)

Tracelessness: F �� D g��F
��
D 0 (6.31b)

• ¡! When we write “Ex”, we refer to the x-component of the original electric field EE as
it occurs in the Maxwell equations Eq. (6.10). In this context, an expression like Ex

does not make sense since EE is not a 4-vector but the component of a rank-2 tensor.

iv | Using that "��˛ˇ is a Lorentz pseudo-tensor [recall Eq. (4.41)], we can define:

QF �� WD 1
2
"��˛ˇF˛ˇ ⁂ Dual field strength tensor (DFST)

3.41
6.30
D

0BB@
0 �Bx �By �B´
Bx 0 E´ �Ey
By �E´ 0 Ex
B´ Ey �Ex 0

1CCA
��

(6.32a)

(6.32b)

Details: → Problemset 7

! QF �� is a .2; 0/ pseudo Lorentz tensor

• The dual field-strength tensor will be useful below.

• QF �� is obtained from F �� (contravariant!) by the substitution EE 7! EB and EB 7! � EE.
[ Just like in vacuum the homogeneous Maxwell equations Eqs. (6.10a) and (6.10b)
transform into the“inhomogeneous” ones Eqs. (6.10c) and (6.10d)].
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7 | Transformation of the electromagnetic field:

The field strength tensor Eq. (6.30) has the useful properties that (1) we know how it transforms
under Lorentz transformations, and (2) we know how it relates to the observable fields EE and EB .
Hence we can use it to derive the transformation of the electromagnetic field when transitioning
from one inertial system to another.

i | The (contravariant) FST transforms under a Lorentz transformationƒ as follows:

NF ��. Nx/„ ƒ‚ …
f NEi . Nx/; NBi . Nx/g

D ƒ�˛ƒ
�
ˇ F ˛ˇ .x/„ ƒ‚ …

fEi .x/;Bi .x/g

(6.33)

Here it is F �� D ��˛��ˇF
˛ˇ

as usual.

ii | ^ Boost ƒEv [Eq. (4.10)]:

ENE. Nx/ $ 
h
EE.x/C 1

c
Ev � EB.x/

i
� . � 1/

Ev � EE.x/

v2
Ev

ENB. Nx/ $ 
h
EB.x/ � 1

c
Ev � EE.x/

i
� . � 1/

Ev � EB.x/

v2
Ev

(6.34a)

(6.34b)

with x� D .ƒ�Ev/
�
� Nx

� .
¡! Note that on the left-hand side the arguments are Nx and on the right-hand side x!

! Electric and magnetic fields “mix” under boosts!

• Please appreciate what we showed: If you start fromMaxwell Eq. (6.10) and perform an
arbitraryLorentz boost Nx� D ƒ��x� , transforming the derivatives as N@� D ƒ �

� @� , you
obtain a set of horribly looking PDEs. But if you recombine the equations appropriately,

group the terms according to Eq. (6.34) and define the new fields ENE. Nx/; ENB. Nx/, the
equations look again like Eq. (6.10), only with bars over coordinates and fields.

You could show this directly, without ever introducing the gauge field A� and without
using themachinery of tensor calculus (this is what Einstein did for a boost in ´-direction
in his 1905 paper “Zur Elektrodynamik bewegter Körper” [10]); but hopefully you
agree that our more advanced route (using the gauge field and tensor calculus) is a more
elegant approach.

• Because of our motivation from Einstein’s principle of Special Relativity SR , we frame
our discussion in the terminology of passive transformations (= coordinate transforma-
tion): The same electromagnetic field that looks like EE.x/; EB.x/ in an inertial system

K looks like ENE. Nx/; ENB. Nx/ in another system NK.

Because we showed that the Maxwell equations satisfy SR , they have exactly the same
form in NK as inK. This, however, allows you to interpret the transformation actively:
If you are given a solution of Maxwell equations EE.x/; EB.x/, then, for any Ev, the new

functions ENE. Nx/; ENB. Nx/ defined by Eq. (6.34) and x� D .ƒ�Ev/
�
� Nx

� are again solutions
(in the same coordinates). This shows that the Lorentz group is (part of ) the invariance
group of the PDE system Eq. (6.10) we call Maxwell equations (just like the Galiei
group was an invariance group of Newton’s equation, recall Section 1.2).
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↓ Lecture 13 [23.01.24]

iii | ^ Non-relativistic limit:

Eq. (6.34)
�1
���!

8<: ENE. Nx/ � EE.x/C 1
c
Ev � EB.x/

ENB. Nx/ � EB.x/ � 1
c
Ev � EE.x/

(6.35)

• The interconversion between magnetic and electric fields happens already in linear
order of v=c.

• The separation of the electromagnetic field into“electric” and“magnetic” components
is observer dependent!

• Example: A charge at rest has a non-zero electric field, but a vanishing magnetic field.
The same charge as seen from an inertial system in relative motion gives rise to a
current that is accompanied by a non-vanishing magnetic field perpendicular to the
direction of motion and the electric field. This is a direct consequence of Eq. (6.35):
ENB. Nx/ � �1

c
Ev � EE.x/ ¤ E0.

iv | ^ Special case: Boostƒvx
in x-direction: Eq. (6.34)

Ev D .vx ; 0; 0/
��������!

NEx D Ex ; NEy D 
�
Ey �

v
c
B´
�
; NE´ D 

�
E´ C

v
c
By
�
; (6.36a)

NBx D Bx ; NBy D 
�
By C

v
c
E´
�
; NB´ D 

�
B´ �

v
c
Ey
�
; (6.36b)

(Here the fields in NK on the left-hand side are functions of Nx whereas the fields inK on the
right-hand side are functions of x.)

!

• The field components parallel to the boost remain unchanged.

• The perpendicular components mix and get enhanced by a Lorentz factor  > 1.

• Einstein derived this transformation directly (without using gauge fields and tensor
notation) in his 1905 paper“Zur Elektrodynamik bewegter Körper” [10]; you follow
this path in → Problemset 7.

v | Lorentz scalars:

The electric and magnetic field components transform in a complicated way under Lorentz
transformations. Is it possible to combine them into scalar quantities? Thanks to our knowl-
edge of tensor calculus and the field strength tensor, this question is easy to answer:

a | We can construct a scalar by contracting the FST with itself:

F ��F�� D �
�˛��ˇF˛ˇF�� $ 2. EB2 � EE2/ (6.37)

! If j EEj R j EBj is true in one IS, it is true in all IS.

b | We can construct a pseudo scalar by contracting the FST with the DFST:

QF ��F�� D
1
2
"��˛ˇF˛ˇF�� $ �4. EE � EB/ (6.38)

! If EE ? EB is true in one IS, it is true in all IS.
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Some comments:

• Note that QF �� QF�� $ �F ��F�� (use contraction identities for Levi-Civita symbols
to show this, → Problemset 7); i.e., the two quantities above exhaust all elementary
gauge-invariant scalar fields that we can construct (A�A� is of course also a scalar, but
not a gauge-invariant one).

• The combination of Eq. (6.37) and Eq. (6.38) can be used to infer whether inertial
systems exist in which either the electric or magnetic field vanishes. For example: If
QF ��F�� D 0 and F ��F�� > 0, it is possible to find an inertial system where EE D 0
and EB ¤ 0 (but not the other way around). If QF ��F�� ¤ 0 there is no inertial system
in which one of the fields vanishes.

8 | Manifest covariant form of the Maxwell equations:

Using the FST and the DFST, we can write the Maxwell equations manifestly covariant without
using the gauge field and/or fixing a gauge (cf. Eq. (6.19)):

i | The equations we look for must be…

• …manifestly covariant (! tensor equations).

• …linear in the FST or the DFST (the ME are linear in EE and EB).

• …use one 4-divergence @� (the ME are first-order PDEs).

! ^

@� QF
��
D
1

2
"����@�.@�A� � @�A�/ D "

����@�@�A� D 0 (6.39a)

@�F
��
D @�.@

�A� � @�A�/ D @�.@A/ � @2A� (6.39b)

ii | The homogeneous ME Eqs. (6.10a) and (6.10b) must be identically true if the fields are given
in terms of gauge fields. Eq. (6.39a) then suggests that the homogeneous ME are:

@� QF
��
D 0 Homogeneous ME (?) (6.40)

To check this evaluate:

@� QF
��
D
1

2
"����@�F�� (6.41a)

D
1

6
"����

�
@�F�� C @�F�� C @�F��

�
(6.41b)

D
1

2

X
�<�<�

"����
�
@�F�� C @�F�� C @�F��

�
(6.41c)

Here we used that the Levi-Civita symbol is invariant under cyclic permutations of (subsets)
of indices and that the FST (and the Levi-Civita symbol) is antisymmetric in its indices. Note
that for every fixed � there are 3Š D 6 non-vanishing assignments of indices ��� . However,
pairs of terms like "����@�F�� D "����@�F�� are identical, so that only 3 distinct terms
remain. These can be w.l.o.g. written like cyclic permutations as in Eq. (6.41c). Note that for
a fixed index �, the sum contains only one non-vanishing summand.

!

8�<�<� W @�F�� C @�F�� C @�F�� D 0„ ƒ‚ …
↑ Bianchi identity (4 equations)

, 8� W @� QF
��
D 0„ ƒ‚ …

(4 equations)

(6.42)

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → RELATIVISTIC FIELD THEORIES I: ELECTRODYNAMICS

160
PAGE

It is straightforward to check by hand, using Eq. (6.30), that the four Bianchi identities
correspond to the four homogeneous Maxwell Eqs. (6.10a) and (6.10b). For example:

@1F23 C @2F31 C @3F12 $ �r � EB D 0 , Eq. (6.10a) (6.43)

Details: → Problemset 7

• As shown in Eq. (6.39a), the homogeneous ME are identities if the FST is expressed in
terms of gauge fields.

• By contrast, if the FST is expressed in terms of physical fields EE and EB [as given in
Eq. (6.30)], the equation @� QF �� D 0 becomes a non-trivial constraint on the field
configurations.

iii | ^ Lorenz gauge Eq. (6.23)!

Eq. (6.39b) ) @�F
��
D �@2A� (6.44)

Compare Eq. (6.19) (inhomogeneous ME in Lorenz gauge):

�@2A� D �
4�

c
j� (6.45)

This suggests that the inhomogeneous ME are:

@�F
��
D �

4�

c
j� Inhomogeneous ME (?) (6.46)

It is straightforward to check by hand that these four equations are equivalent to the four
inhomogeneous ME Eqs. (6.10c) and (6.10d) using Eq. (6.30). For example for � D 0:

@1F
01
C @2F

02
C @3F

03 $ �r � EE D �
4�

c
j 0 D �4�� , Eq. (6.10c)

(6.47)

Details: → Problemset 7

• In this form, the continuity equation Eq. (6.24) follows trivially from the antisymmetry
of the FST:

@�j
�
D �

c

4�
@�@�F

��
D 0 (6.48)

• If you express the FST in terms of the gauge field, the inhomogeneousME read (without
fixing a gauge!):

@2A� � @�.@A/ D
4�

c
j� (6.49)

This equation becomes Eq. (6.19) in the Lorenz gauge Eq. (6.23). It is easy to check
that this equation is still gauge symmetric under the transformation Eq. (6.25).

iv | In summary, the 8 (=1+3+1+3=4+4) Maxwell equations can be written in the covariant form:

Homogeneous ME: @� QF
��
D 0

Inhomogeneous ME: @�F
��
D �

4�

c
j�

(6.50a)

(6.50b)
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• ¡! Using Eqs. (6.30) and (6.32), these equations make sense without introducing the
gauge field.

• Note that these equations show that under Lorentz transformations the four homo-
geneous (inhomogeneous) Maxwell equations mix among each other. You show this
explicitly in → Problemset 7 for a boost in ´-direction.

• In particular, this means that the Maxwell equations written in their conventional form
Eq. (6.10) (i.e., as two scalar and two vector equations) remain not invariant under
Lorentz transformations for each equation separately, rather the magnetic Gauss law
mixes with the Maxwell-Faraday law, and the electric Gauss law mixes with Ampère’s
law. This explains why showing the Lorentz covariance of the PDE system Eq. (6.10) is
quite messy and complicated without using the tensor formalism. This is why we say
that its Lorentz covariance is not manifest. By contrast, the Lorentz covariance of the
formulation Eq. (6.50) is manifest as these are tensor equations.

9 | Lagrangian formulation:

Our final goal is to make a connection to the formalism introduced in Section 6.1 and obtain the
Lorentz covariant Maxwell equations as the Euler-Lagrange equations of some action/Lagrangian:

i | It is convenient to construct the Lagrangian as a function of the gauge fields A� because in
this formulation the HME are identically satisfied:

@� QF
��
� 0 ) L D L.A; @A/ (6.51)

! Only the inhomogeneous ME must follow as Euler-Lagrange equations

Note that the counting matches: We have four fields A� and thus four Euler-Lagrange
equations – just as we have four IME: @�F �� D �4�c j

�.

ii | We have the following hints to construct a reasonable Lagrangian density:

• The IME are Lorentz covariant. This can be ensured by a Lagrangian density that is a
Lorentz (pseudo) scalar.

• The Maxwell equations are linear (superposition principle!); thus the Lagrangian must
be quadratic in the fields.

• The IME are gauge invariant. This can be ensured by a Lagrangian density that is gauge
invariant up to a total derivative (here: surface term) which does not affect the equations
of motion.

!Most general form:

L.A; @A/ D a1 F
��F�� C a2 �����QF ��F��„ ƒ‚ …

Surface
term

Ca3 �����QF �� QF��„ ƒ‚ …
/F ��F��

Ca4 A�j
�„ƒ‚…

Gauge inv.
up to surface

term

(6.52)

Details: → Problemset 7

• It is straightforward to check that

QF �� QF�� $ �F ��F�� (6.53)

so that we can drop the a3-term without loss of generality.
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• One can also check that

QF ��F�� D
1

2
"���� .@�A� � @�A�/.@�A� � @�A�/ (6.54a)

D
1

2
"���� .@�A�@�A� C @�A�@�A� � @�A�@�A� � @�A�@�A�/ (6.54b)

D 2"���� .@�A�/.@�A� / (6.54c)

D 2 @�

↑ Chern-Simons 3-form‚ …„ ƒ
"���� .A�@�A� /„ ƒ‚ …

Surface term

(6.54d)

so that the a2-term has no effect on the equations of motion and we can drop it as well.

Note: The a2-term is known as the ↑ � -term and is special because it is topological (it
does not “feel” the geometry of spacetime). This is easy to see: One does not need a
metric tensor to construct it because the contravariant indices of the DFST stem from
the Levi-Civita symbol! Despite being a surface term, such terms are important when
one quantizes the theory and/or when the gauge theory is non-Abelian (like the SU.3/
gauge theory of the strong interaction). Note also that this term is a pseudo scalar, i.e., it
breaks parity symmetry (which we know electrodynamics does not).

• The a4-term is not gauge invariant. However, the continuity equation ensures that it
modifies the Lagrangian only by a surface term under gauge transformations:

QA�j
�
D .A� � @��/j

�
D A�j

�
� .@��/j

�
D A�j

�
� @�.�j

�/„ ƒ‚ …
Surface term

(6.55)

(Here we used the continuity equation @�j� D 0.)

Consequently, the equations of motion must be gauge invariant despite the a4-term.

• It is easy to check that the quadratic Lorentz scalar A�A� is not gauge invariant (not
even up to a surface term); thus it is forbidden.

Note: Coincidentally, it is this term that would give the quantized excitations of the
A-field a mass. Thus if you want massive gauge excitations (like theW ˙- andZ-bosons
of the weak interaction), you must find a way to smuggle the term A�A

� into your
Lagrangian. This is what the ↑ Higgs mechanism achieves.

iii | Thus we propose the
Lagrangian density for Maxwell theory:

L � LMaxwell.A; @A/ D �
1

16�
F��F

��
�
1

c
A�j

� (6.56)

The prefactors have been chosen such that the Euler-Lagrange equations match the IME
(→ next step).

iv | Euler-Lagrange equations:

Details: → Problemset 7

There are four (� D 0; 1; 2; 3) Euler-Lagrange equations:

@L

@A�
� @�

�
@L

@.@�A�/

�
D 0 (6.57)
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Straightforward calculations yield:

@L

@A�
D �

1

c
j� and

@L

@.@�A�/
$

1

4�
F �� (6.58)

Hence the Euler-Lagrange equations are exactly the inhomogeneous Maxwell equations:

@�F
��
D �

4�

c
j� (6.59)

! Eq. (6.56) is the correct Lagrangian density for Maxwell theory.

10 | Coordinate-free notation:

Remember the coordinate-free concepts introduced in Chapter 3: All tensor fields T IJ are the
chart-dependent components of chart-independent objects T (the actual tensor fields). This
formalism allows us to reformulate the Maxwell equations in the language of differential geometry,
without using coordinates altogether:

i | First, write gauge field

A WD A�dx� (6.60)

and the field strength coordinate-free:

F WD F�� dx� ˝ dx� D
1

2
F�� Œdx� ˝ dx� � dx� ˝ dx��„ ƒ‚ …

DWdx�^dx� (“wedge product”)

: (6.61)

We say that A is a 1-form and F is a 2-form.

ii | We can evaluate ↑ exterior derivative of the gauge field:

dA def
D dA� ^ dx� D @�A� dx� ^ dx� D

1

2
F�� dx� ^ dx� D F (6.62)

The exterior derivative d maps k-forms onto k C 1-forms.

iii | Now evaluate the exterior derivative of the field strength:

dF def
D
1

2
@�F�� dx� ^ dx� ^ dx� (6.63a)

D
1

6

�
@�F�� C @�F�� C @�F��

�
dx� ^ dx� ^ dx� (6.63b)

D
1

2

X
�<�<�

�
@�F�� C @�F�� C @�F��

�
dx� ^ dx� ^ dx� (6.63c)

(Here we used the antisymmetry of the wedge product in all factors.)

Thus we find:

dF D 0 , @�F�� C @�F�� C @�F�� D 0
6.42
, @� QF

��
D 0 (6.64)

If the field strength is expressed in terms of the gauge field, the homogeneous Maxwell
equations @� QF �� D 0 are identities. In the coordinate-free notation of differential geometry,
this identity follows from the fact that applying an exterior derivative twice produces the
zero field:

dF D ddA D 0 since d2 D 0 (6.65)

The relation dF D 0 is known as a ↑ Bianchi identity.
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iv | Define the linear ↑ Hodge star operator (here for a 4-dimensional Minkowski manifold):

?.dx�/ WD
1

3Š
"���� .dx

�
^ dx� ^ dx� / (6.66a)

?.dx� ^ dx�/ WD
1

2Š
"���� .dx

�
^ dx� / (6.66b)

?.dx� ^ dx� ^ dx�/ WD
1

1Š
"���� .dx

� / (6.66c)

Note that the definition makes use of the metric tensor via pulling up/down indices of the
Levi-Civita symbols. This implies in particular that any equation that uses the Hodge star
depends on the geometry of spacetime (here flat Minkowski space).

v | The dual field-strength tensor (DFST) is the Hodge dual of the field-strength tensor (FST):

?F D
1

2
F�� ? .dx� ^ dx�/ (6.67a)

D
1

4
F��"

��
�� .dx

�
^ dx� / (6.67b)

D
1

2
QF�� .dx� ^ dx� / � QF (6.67c)

Beware: The Hodge star ? is not a multiplication symbol (as the notation on the right-hand
side might suggest) but a linear operator that acts on the differential form to the right.

vi | The Hodge dual of the exterior derivative of the DFST yields:

?d.?F / D
1

4
"����@�F�� ? .dx

�
^ dx� ^ dx� / (6.68a)

D
1

4
"����"

���
˛@�F

�� .dx˛/ (6.68b)

D
1

2
.ı����˛ � ı

�
� ��˛/@�F

�� .dx˛/ (6.68c)

D ��˛@�F
�� .dx˛/ (6.68d)

6.50b
D

4�

c
j˛ .dx˛/ (6.68e)

Here we used a contraction identity for Levi-Civita symbols (over the two red pairs of indices).

vii | This motivates the definition of the coordinate-free current:

J WD
4�

c
j� dx� (6.69)

viii | In conclusion, the Maxwell equations can be written without using a coordinate system as:

Homogeneous ME: dF D 0

Inhomogeneous ME: ?d.?F / D J

(6.70a)

(6.70b)

• If one uses that .?/2 D C1 �1 on odd differential forms (d.?F / is a 3-form), Eq. (6.70b)
can alternatively be written as d.?F / D ?J . If one then defines the current not as
a 1-form but as the dual 3-form, J WD 4�

c
j� ? dx�, the inhomogeneous Maxwell

equations take their simplest form: d.?F / D J .

• Eq. (6.70) is the most general and elegant formulation of the Maxwell equations. In
this form, the equations remain valid even in general relativity on curved space
times. Then the Minkowski metric used in the definition of the Hodge star ? (to pull
the indices of the Levi-Civita symbols up/down) must be replaced by the dynamic,
potentially curved metric of general relativity.
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6.3. Noether theorem and the energy-momentum tensor

In the following, we consider first a generic (classical, relativistic) field theory, and specialize to electrody-
namics later. This is to emphasize thatmost of the results in this chapter are not specific to electrodynamics.

Details: Chapter 1 of my QFT script [20]

1 | ^ General transformation of field � 7! �0:

x 7! x0
D x0.x/ and �.x/ 7! �0.x0/ D F .�.x// (6.71)

Two effects: coordinates and (values of the) field transformed
These are active transformations that change physics. x0 D x0.x/ is not a (passive) coordinate
transformation; the frame of reference remains fixed in the following!

→ Example 1: Homogeneous Lorentz transformations

The (active) homogeneous Lorentz transformation of a vector field A� reads

x� 7! x0�
D ƒ��x

� and A�.x/ 7! A0
�.x

0/ D ƒ �
� A�.x/„ ƒ‚ …

F .A�.x//

(6.72)

whereas the Lorentz transformation of a scalar field � reads

x� 7! x0�
D ƒ��x

� and �.x/ 7! �0.x0/ D �.x/„ƒ‚…
F .�.x//

: (6.73)

2 | ^ Infinitesimal transformations (IT) (jwaj � 1):

x0�
D x� C wa ı

ax�.x/ and �0.x0/ D �.x/C wa ı
a�.x/ (6.74)

Here, wa denotes infinitesimal parameters of the transformation (sum over a implied!) and we
label different transformations by the labels a.

→ Example 2: Homogeneous Lorentz transformations

Infinitesimal homogeneous Lorentz transformations take the form (→ Problemset 4)

ƒw D exp
�
�
i

2
w˛ˇJ˛ˇ

�
jw˛ˇ j�1
� 1 �

i

2
w˛ˇJ˛ˇ (6.75)

(note that the a D ˛ˇ are labels of generators that are not required to be tensor indices)

with generators

.J˛ˇ /�� D i
�
�˛�ıˇ� � ı

˛
� �
ˇ�
�
: (6.76)

With this it follows for the coordinates

w˛ˇ ı
˛ˇx� D x0�

� x� D �
i

2
w˛ˇ .J

˛ˇ /��x
�
D w˛ˇ

1

2

�
�˛�ıˇ� � ı

˛
� �
ˇ�
�
x�„ ƒ‚ …

ı˛ˇx�

(6.77)
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so that

ı˛ˇx� D
1

2

�
�˛�xˇ � �ˇ�x˛

�
: (6.78)

Similar arguments yield ı˛ˇA� D 1
2

�
�˛�Aˇ � �ˇ�A˛

�
for a vector field and ı˛ˇ� D 0 for

a scalar field.

3 | Generator of IT:

ıw�.x/ WD �
0.x/ � �.x/ � �iwaGa�.x/ (6.79)

With (omit first line and refer to previous equation)

�0.x0/ D �.x/C wa ıa�.x/ (6.80a)

D �.x0/ � wa.ıax
�/@��.x

0/C waıa�.x
0/CO.w2/ (6.80b)

(Here we replaced x by x0 in the last term because this is a O.w2/modification.)

it follows (replace x0 by x; these are just labels!)

iGa� D .ıax
�/@�� � ıa� (6.81)

This function describes the infinitesimal change of the field at the same point.

→ Example 3: Translations

i | x0� WD x� C w� � x� C w�ı�x
� with ı�x� D ı

�
�

ii | ı�� D 0 (This is true for scalar and vector fields.)

iii | iG�� D ı
�
�@�� � 0 and therefore

G� D �i@� � P� (6.82)

! The“momentum operator” generates translations.

4 | So far the continuous transformations � 7! �0 were arbitrary.

^ Continuous transformation [with infinitesimal form Eq. (6.74)] which is a

Symmetry of the action W, SŒ�� D SŒ�0� (6.83)

In principle, the action can vary by a surface term – equivalently, the Lagrangian density L can vary
by a 4-divergence @�K�.�; x/ – under the symmetry transformation (because such modifications
do not affect the equations of motion). Here we consider for simplicity only the case where no such
terms exist and the action is strictly invariant.

Then one can prove (see Chapter 1 of my QFT script [20] or Refs. [1, 78]):
�
�!
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5 | ⁂ Noether’s (first) theorem:

For solutions � of the equations of motion, the ⁂ (canonical) (Noether) currents

j�a
�
D

�
@L

@.@��/
@�� � ı

�
� L

�
ıax

�
�

@L

@.@��/
ıa� (6.84)

(associated to the infinitesimal transformations of coordinates ıax� and fields ıa�)

satisfy the continuity equations

8a W @�j
�
a D 0 : (6.85)

This means there is one conserved current j�a for each generator a of the continuous symmetry.

6 | Conserved charge:

The currents Eq. (6.84) are called“conserved” because they describe the flow of a conserved…

Qa WD

Z
Space

dD�1x j 0a ⁂ (Noether) charge (6.86)

There is one conserved chargeQa for each generator a of the continuous symmetry.

Indeed:

1

c

dQa
dt
D

Z
Space

dD�1x @0j
0
a

6.85
D �

Z
Space

dD�1x @kj
k
a

Gauss
D �

Z
Surface

d�kj ka D 0 (6.87)

Here we assume that j ka � 0 on the spatial boundaries—typically at infinity, i.e., the universe is
closed. k D 1; 2; 3 denotes the spatial coordinates.

→ Note 6.1

The current Eq. (6.84) is called canonical current because it is not unique:

Qj�a WD j
�
a C @�B

��
a with B��a D �B

��
a arbitrary ) @� Qj

�
a D 0 (6.88)

This is particularly important for the energy-momentum tensor (→ below).

6.3.1. Application: The Energy-Momentum Tensor (EMT)

Details: → Problemset 7

7 | ^ Infinitesimal spacetime translations:

x0�
D x� C w� ) ı�x

�
D ı�� and ı�� D 0 (6.89)

& Translation-invariant action: S 0 D S (This includes translations in time!)
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8 | Conserved currents: Eq. (6.84)!

‚�� WD

�
@L

@.@��/
@�� � ı

�
� L

�
ı�x

�„ƒ‚…
ı

�
�

D
@L

@.@��/
@�� � ı

�
� L (6.90)

Note that the generator index a is in this case a proper Lorentz index � so that we can pull it up,
‚�� D ���‚

�
�, and obtain:

⁂ (Canonical) Energy-Momentum Tensor:

‚�� D
@L

@.@��/
@�� � ���L (6.91)

with

@�‚
��
D 0 and four conserved charges P � WD

1

c

Z
d3x ‚0� : (6.92)

• Note that these quantities are only conserved for solutions of the Euler-Lagrange equations.

• P � is a 4-vector (show this!). Note that this is a non-trivial statement because d3x is not a
Lorentz scalar and‚0� not a 4-vector.

• The prefactor 1=c ensures that P 0 has the same dimension as a conventional 4-momentum
with p0 D E=c; note that ‚00 has the dimension of an energy density because L has this
dimension.

9 | Interpretation:

i | Energy (� D 0):

cP 0 D

Z
d3x ‚00 D

Z
d3x

�
@L

@ P�
P� �L

�
„ ƒ‚ …
Hamiltonian density

D

Z
d3xH .�; �/„ ƒ‚ …
Hamiltonian

D H (6.93)

! The Hamiltonian is the component of a 4-vector and not Lorentz invariant!

By contrast, the Lagrangian is Lorentz invariant (for relativistic field theories).

ii | Kinetic momentum (� D i):

P i D

Z
d3x ‚0i D

Z
d3x

@L

@ P�
.�@i�/ D �

Z
d3x �@i� (6.94)

� is the canonical momentum conjugate to the field �.

10 | The canonical EMT of electrodynamics:

i | ^ Free (j� D 0) electromagnetic field: Lem D �
1
16�

F��F
��

! Invariant under spacetime translations
Indeed, with x0� D x� C w� and the field transformation A0

�.x/ WD A�.x � w/ it is

SemŒA
0� D

Z
d4xLem.A

0.x/; @A0.x// D

Z
d4xLem.A.x � w/; @A.x � w// (6.95a)

D

Z
d4yLem.A.y/; @A.y// D SemŒA� (6.95b)

where we integrate over the full Minkowski spacetime R1;3, substituted y� D x� �w� and
used d4x D d4y .

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → RELATIVISTIC FIELD THEORIES I: ELECTRODYNAMICS

169
PAGE

ii | ! Canonical EMT conserved: @�‚
��
em D 0 with

‚��em D
@Lem

@.@�A� /
@�A� � �

��Lem
6.58
D

1

4�
F ��@�A� C

���

16�
F��F

�� (6.96)

Note that because the gauge field has multiple components A�, there is now an additional
summation in the first term over these components (marked indices). This follows directly
from a generalization of the proof of Noether’s theorem for fields with multiple components.

Details: → Problemset 7

iii | Problems:

The canonical EMT‚��em has two problematic properties:

• Because of the term @�A� , ‚
��
em is gauge-dependent!

This is problematic because it means that we cannot hope to identify physical quantities
like the energy density or the momentum density of the electromagnetic field with (the
components) of this tensor.

• The canonical EMT is non-symmetric: ‚��em ¤ ‚
��
em !

In general relativity, we will find that the right-hand side of the → Einstein field
equations (which determine how spacetime curves and evolves)

R�� �
1

2
Rg�� Cƒg�� D ��T�� (6.97)

is given by the → Hilbert energy-momentum tensor

T �� D
2
p
g

ı.LMatter/

ıg��
(6.98)

where LMatter describes the Lagrangian density of all fields in the universe (except
the metric tensor field). For example, LMatter contains the Maxwell Lagrangian Lem

(“matter” here includes every degree of freedom that has energy & momentum, i.e.,
also electromagnetic radiation).

Note that T �� is symmetric because the metric g�� is. Hence it cannot be identified
with the canonical EMT‚�� in general (here for the example of Maxwell theory).

¡! These problems are not specific to electrodynamics but typically affect all theories that are
gauge theories and/or include non-scalar fields.

! How to solve these issues?

6.3.2. The Belinfante-Rosenfeld energy-momentum tensor (BRT)

We consider again first a generic field theory, and specialize to electrodynamics later.

Details: → Problemset 7

11 | Remember (Note 6.1) that the canonical EMT is not the only conserved EMT because

Q‚�� WD ‚�� C @�K
��� with K��� D �K��� (6.99)

yields another EMT Q‚�� for any suitable tensorK��� .

! Idea: Find K��� such that Q‚�� D Q‚�� is symmetric (and hopefully gauge-invariant).
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12 | Let us assume that our theory is also invariant under homogeneous Lorentz transformations (in
addition to the spacetime translations needed for the conservation of the EMT).

^ Generators of homogeneous LTs for coordinates:

Eq. (6.78)! ı˛ˇx� D
1

2

�
�˛�xˇ � �ˇ�x˛

�
: (6.100)

Assume that fields transform as ı˛ˇ�.

For the following arguments, we do not need to fix whether our fields transform as scalar, vector,
or even → spinor fields.

Eq. (6.84) & Eq. (6.91) & Eq. (6.100)!

Noether currents for homogeneous LTs:

L�˛ˇ $
1

2

�
‚�˛xˇ �‚�ˇx˛

�
C
1

2
S�˛ˇ (6.101)

with

⁂ Spin current: S�˛ˇ WD �2
@L

@.@��/
ı˛ˇ� (6.102)

which satisfies S�˛ˇ D �S�ˇ˛.

(This follows because ı˛ˇ� D �ıˇ˛� as the generators of homogeneous LTs are antisymmetric.)

The continuity equation reads

@�L
�˛ˇ
D 0 : (6.103)

Because homogeneous LTs describe rotations in space and time, the conserved current L�˛ˇ can
be identified as ↑ (canonical) angular momentum current. The first part in Eq. (6.101) corresponds to
the (canonical) orbital angular momentum while the second part S�˛ˇ encodes the intrinsic angular
momentum of the field (= its ↓ spin). This immediately explains why for a scalar field with ı˛ˇ� D 0,
the spin current vanishes S�˛ˇ D 0.

13 | Eq. (6.92) & Eq. (6.103)!

@�S
�˛ˇ $ ‚˛ˇ �‚ˇ˛ (6.104)

This means that a non-vanishing divergence in the spin current is responsible for the “non-
symmetry” of the canonical EMT!

14 | Now define

K��� WD �
1

2

�
S��� C S��� � S���

�
(6.105)

! K��� D �K��� (This follows from S�˛ˇ D �S�ˇ˛ .)

With this we can finally define the…

⁂ Belinfante-Rosenfeld energy-momentum tensor (BRT):

T ��D ‚�� C @�K
���
WD ‚�� � 1

2
@�
�
S��� C S��� � S���

�
(6.106)
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15 | It remains to be shown that T �� is always symmetric:

T �� � T ��
6.104
D 0 , (6.107)

It can be rigorously shown that the BRT is identical to the Hilbert EMT that shows up ingeneral
relativity as the source of gravity [79]. This is why the BRT gets its own symbol T �� .
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↓ Lecture 14 [30.01.24]

16 | The BRT of electrodynamics:

Details: → Problemset 7

i | Using Lem D �
1
16�

F��F
�� and the transformation of a vector field (= spin-1)

ı˛ˇA� D
1

2

�
ı˛�A

ˇ
� ıˇ�A

˛
�

(6.108)

in Eq. (6.102) yields the spin current:

S�˛ˇem $
1

4�

�
F �˛Aˇ � F �ˇA˛

�
(6.109)

ii | Eq. (6.96) & Eq. (6.106) & Eq. (6.109)!

T ��em $
1

4�
F �� F

��
� ���Lem

D
1

4�

�
F �� F

��
C
���

4
F ��F��

�
$

0@ E c E…T

c E… †

1A
��

(6.110a)

(6.110b)

(6.110c)

To show this you have to use the Maxwell equations in vacuum: @�F �� D 0.

Components:

Energy density: E D
1

8�
. EE2 C EB2/ (6.111a)

Momentum density: E… D
1

4�c
. EE � EB/ (6.111b)

⁂ Maxwell stress tensor: †ij D
1

4�

�
ıij

2
. EE2 C EB2/ �EiEj � BiBj

�
(6.111c)

¡! Convince yourself thatT ��em is symmetric and gauge invariant. Note that we did not construct
it to be gauge invariant, only to be symmetric! We got this as a bonus.

iii | The conservation @�T �� D 0 of the BRT implies the following physical interpretations:

• � D 0:

@�T
�0
D
1

c

@E

@t
C cr � E… D 0 (6.112)

! ↓ Poynting’s theorem (in vacuum)

@E

@t
Cr � ES D 0 (6.113)
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with

↓ Poynting vector: ES D c2 E… D
c

4�
. EE � EB/ (6.114)

Eq. (6.113)! Poynting vector = Energy current density

This is simply the formal statement of energy conservation for the free electromagnetic
field. As energy is the Noether charge for translations in time, it is of course no coinci-
dence that the Poynting theorem follows from the time-component � D 0.

• � D i :

@�T
�i
D
@…i

@t
C @k†ki D 0 (6.115)

! Conservation of momentum with…

– …i : i -momentum density

– †ki : i -momentum current density

!Maxwell stress tensor = Momentum current density

Note that are three momentum densities and corresponding current densities because
there are three spatial momenta: i D x; y; ´.

iv | Some final remarks:

• With the symmetric BRT one can define a gauge-invariant and conserved angular
momentum tensor

M ���
WD T ��x� � T ��x� (6.116)

with @�M ��� D 0 (show this!). The conserved Noether charges are

J�� WD
1

c

Z
d3xM 0��

D
1

c

Z
d3x

�
T 0�x� � T 0�x�

�
(6.117)

which encodes the total angular momentum of the field. Indeed, for the spatial compo-
nents one finds

Jij WD

Z
d3x

�
…ixj �…jxi

�
: (6.118)

Since…i is the momentum density, the three components Jx � J32, Jy � J13 and
J´ � J21 can be identified as the total angular momentum EJ of the field.

• If the electric current j� does not vanish (i.e., the field is not in vacuum), the BRT
derived above is no longer conserved. Rather one finds

@�T
��
em D �

1

c
F ��j� (6.119)

which can be identified as the Lorentz force density. This is perfectly reasonable as an
external (non-dynamic) current j� breaks the translation symmetry of the system in
space and time on which the conservation of the BRT relies. Physically, the electromag-
netic field is no longer a closed system because it can exchange momentum and energy
with the charges described by j�. Only if one describes the charges as dynamic degrees
of freedom (→ next section) and considers the total BRT

T �� D T ��em C T
��
charges (6.120)

one would recover the conservation @�T �� D 0; this is then a statement about total
energy and momentum conservation, including the energy and momentum of the
charges.
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6.4. Charged point particles in an electromagnetic field

1 | ^ N charged point particles with charge qi and mass mi in a EM field A�:

Eq. (6.56) & Eq. (5.41)! Relativistic action of the complete system:

SŒfxkg; A� D

Z
d4x

�
„ ƒ‚ …
Sj ŒA�: EM field with static current j�

�
1

16�c
F��F

��„ ƒ‚ …
SemŒA�
EM field

SAŒfxkg�: N particles in static fieldA�‚ …„ ƒ
�
1

c2
A�j

�„ ƒ‚ …
ScŒfxkg;A�
Coupling

�
�

NX
iD1

mic

Z
dsi„ ƒ‚ …

SpŒxi �

Particle i

(6.121)

Note that the Lagrangian is a Lorentz scalar! SŒfxkg; A� is short for SŒx1; : : : ; xN ; A�.

with current density

j�.x/
6.18
D

X
i

�i .x/
dx�i
dt
D

X
i

qiı.Ex � Exi /„ ƒ‚ …
Point particle

dx�i
dt

: (6.122)

2 | ^ Coupling:

ScŒfxkg; A� D �
1

c2

Z
d4x A�.x/j�.x/ $

X
i

�
�
qi

c

Z
A�.ct; Exi / dx

�
i

�
„ ƒ‚ …

ScŒxi ;A�

(6.123)

Here we used dx�

i

dt dt D dx�i ; the last integral is therefore a four-dimensional ↓ line integral of the
4-vectorfield A� along the trajectory of particle i .

3 | Hamilton’s principle:

ıSŒxk; A� D 0 ,

8̂̂<̂
:̂

ıSemŒA�

ıA
C
ıScŒfxkg; A�

ıA
D
ıSj ŒA�

ıA
D 0

8i W
ıScŒxi ; A�

ıxi
C
ıSpŒxi �

ıxi
D
ıSAŒfxkg�

ıxi
D 0

(6.124)
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4 | ^ Gauge field variations ıA:

Here we don’t have to do anything because we already computed the Euler-Lagrange equations:

ıSj ŒA�

ıA
D 0

6.56& 6.58
(HHHH) @�F

�� 6.122
D

4�

c

X
i

qiı.Ex � Exi /
dx�i
dt

(6.125)

These are the inhomogeneous Maxwell equations with theN point particles as sources of the EM
field. Note that this PDE system couples the particle coordinates fx�

k
g to the EM field A�.

5 | ^ Particle trajectory variations ıxi :

i | Eqs. (6.121) and (6.123)!

SAŒfxkg� D �
X
i

Z �
mic

q
Pxi� Px

�
i C

qi

c
A�.xi / Px

�
i

�
d� (6.126)

Note that this action is again reparametrization invariant.
ı
�! Euler-Lagrange equation for particle i :

ıSAŒfxkg�

ıxi
D 0

x��x
�

i

(HHH)
d
d�

h mic Px�p
Px� Px�

i
C
qi

c

�
PA�.x/ � Px

� @A�.x/

@x�

�
D 0 (6.127)

ii | Choose proper-time parametrization � D � :

mi
du�
d�
C
qi

c

dA�
d�„ƒ‚…

@A�

@x�
dx�

d�

�
@A�

@x�
dx�

d�
D 0 (6.128)

Thus we find as the EOM for particle i :

mi
du�
d�
D
qi

c

�
@A�

@x�
�
@A�

@x�

�
„ ƒ‚ …

F��

u� (6.129)

Or in the form discussed previously in Chapter 5 (we restore the particle index i):

dp�i
d�
D
qi

c
F �� .xi / u

�
i (6.130)

with 4-momentum p
�
i D miu

�
i .

¡! The field strength tensor is evaluated at the position of the particle at a given time.

iii | Compare Eqs. (5.6) and (6.130)! 4-force:

K� D

0@v EF �Ev
c

v EF

1A D qi

c
F �� v

dx�

dt
(6.131)
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! 3-force (we restore the particle index i):

EFi $ qi EEi C
qi

c
.Evi � EBi / ↓ Lorentz force (6.132)

with EEi D EE.xi /, EBi D EB.xi / and Evi D
dExi

dt .

• This result demonstrates that our concept of the relativistic 3-force introduced in
Eq. (5.11) was reasonable: for a force due to an electromagnetic field, it exactly matches
the Lorentz force.

• It also demonstrates that the common expression for the Lorentz force is already fully
relativistic. However, note that the 3-force determines the change rate of the relativistic
3-momentum Ep D vmEv, recall Eq. (5.16).

6 | Comments:

• Eqs. (6.125) and (6.130) together are the equations of motion of the composite system,
i.e., the EM field and the N particles. Note that the system of differential equations is
coupled: The dynamical positions of the particles determine the evolution of the EM field via
Eq. (6.125), and the dynamical EM field determines the trajectories of the charged particles
via Eq. (6.130).

• This model of N charged particles interacting with and via an electromagnetic field is the
culmination of our discussion of relativistic mechanics in Chapter 5 and electrodynamics in
Chapter 6.

• The theory Eqs. (6.125) and (6.130) is fully relativistic as the EOMs are manifestly Lorentz
covariant (they are tensor equations).

• Note that this model describes interactions between theN particles not directly via forces
(as one would in Newtonian mechanics), but via coupling to the dynamic EM field. Thus a
particle can locally affect the EM field due to its motion, the EM field then can propagate
with the speed of light through space and affect the trajectory of any other particle within
the lightcone of the first. There is no instantaneous interaction between the particles!

• One can also consider the� D 0 component of Eq. (6.130). Then one finds with p0i D Ei=c:

dEi
dt

$ qi EEi � Evi : (6.133)

This is just the statement that the change of energy for particle i is given by the distance
it travels collinear with the electric field per time. This is no surprise: The Lorentz force
Eq. (6.132) tells us that the force due to the magnetic field is always perpendicular to the
direction of motion and therefore cannot not perform work on the particle.

7 | Corollary: Single particle in a static electromagnetic field:

i | The action follows from Eq. (6.126) withN D 1 as:

SAŒx� D

Z
d�L.x�; Px�/ D �

Z h
mc
p
Px� Px� C

q

c
A�.xi / Px

�
i
d� (6.134)

where A� is a fixed parameter (the static field configuration).

ii | ^ Parametrization in coordinate time � D t :

L.Ex; Ev/ D �mc2

r
1 �

v2

c2
C
q

c
EA � Ev � q ' (6.135)

with A� D .';� EA/ (covariant!) and PEx D Ev.
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iii | Canonical momentum:

E� WD
@L

@Ev
$ mv Ev C

q

c
EA (6.136)

with mechanical momentum Ep D mv Ev!

Ep D E� �
q

c
EA (6.137)

Ep: Measurable momentum
!Mechanical momentum Ep gauge-invariant
! Canonical momentum E� not gauge-invariant

iv | Hamiltonian:

H D E� � Ev � L $

Mechanical energy‚ …„ ƒ
mc2q
1 � v2

c2„ ƒ‚ …
E

Cq'
5.26
D c

r�
� �

q

c
EA
�2
Cm2c2 C q' (6.138)

so that

E D H � q' (6.139)

E is gauge invariant!H is not gauge invariant

v | Summary:

Gauge invariant

8<:E D H � q'Ep D E� �
q

c
EA
,

E C q' D H

Ep C
q

c
EA D E�

9=; Gauge dependent (6.140)

For more details on the aspect of the gauge-(in)variance of certain quantities, see Ref. [80].
Note that these subtleties are not specific to a relativistic treatment, they already appear in
Newtonian mechanics (only the specific dependency of the Hamiltonian on the mechanical/-
canonical momentum and the functional form of the Lagrangian are relativistic).
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6.5. Summary: The many faces of Maxwell’s equations

Here is a compact overview over the many (physically equivalent) forms of Maxwell’s equations that we
encountered in this chapter:

Magnetic Gauss H1 : r � EB D 0

Maxwell-Faraday H2 : r � EE C 1
c @t
EB D 0

Electric Gauss I1 : r � EE D 4��

Ampère I2 : r � EB � 1
c @t
EE D 4�

c
Ej

I1 : r
2' C 1

c @t .r �
EA/ D �4��

I2 : r
2 EA � 1

c2 @
2
t
EA

�r

�
r � EAC 1

c @t'
�
D �

4�
c
Ej

I1 :
�
1
c2 @

2
t � r

2
�
' D 4�

c c�

I2 :
�
1
c2 @

2
t � r

2
�
EA D 4�

c
Ej

I : @2A� D 4�
c j

�

H : @� QF
��
D 0

I : @�F
��
D �

4�

c
j�

H : dF D 0

I : ?d.?F / D J

I : @2A� � @�.@A/ D
4�

c
j�

I : ?d.?dA/ D J

6.10

6.14

6.16

6.19

6.50

6.70

6.49

Not manifest Lorentz covariant Manifest Lorentz covariant

W
ith

ph
ys
ic
al
fie
ld
s
F
�
�

W
ith

ga
ug
e
fie
ld
A
�

Introduce
Gauge fields:
EE D �r' � 1

c
@t

EA

EB D r � EA

Fix the
Lorenz gauge:
1
c
@t' C r � EA D 0

Identify

4-current:
j� D .c�; Ej /

4-potential:
A� D .'; EA/

Introduce
(Dual) Field strength tensor:
F�� D @�A� � @�A�

QF �� D 1
2
"��˛ˇF˛ˇ

Use
F�� D @�A� � @�A�

QF �� D 1
2
"��˛ˇF˛ˇ

Use
F D 1

2
F��dx

�^ dx�

UseF D dA
and d2 D 0

H = H1 + H2

I = I1 + I2

Check consistency

Derivation
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7. Relativistic Field Theories II: Relativistic
QuantumMechanics

Reminder

1 | The ↓ Schrödinger equation (SE)

i„@t .t; Ex/ D OH .t; Ex/ (7.1)

is a linear field equation with ↓ Hamilton operator

OH D
Ep2

2m
C V.Ex/ D �

„2

2m
�C V.Ex/ (7.2)

and the complex-valued field  W R1;3 ! C.

It describes the time evolution of a single quantum particle with massm in a potential V.Ex/ that is
initially described by the wavefunction  0.Ex/ D  .0; Ex/ at t D 0.

2 | The wavefunction has the interpretation

j .t; Ex/j2 D hProbability to find particle at time t at position Exi (7.3)

which necessitates the normalization condition

8t W k .t/k2 WD

Z
d3x j .t; Ex/j2 D 1 : (7.4)

Thus the wavefunction is an element of the Hilbert space  2 L2 � L2.R3;C/ of square-
integrable functions.

The Hermiticity OH D OH � of the Hamiltonian implies a unitary time evolution and thereby
guarantees a conserved norm:

d
dt
k .t/k2 D

Z
d3x

�
 �@t C  @t 

�
� 7.1
D

1

i„

Z
d3x

h
 �. OH / �  . OH /�

i
7.6
D 0 ; (7.5)

where we used that for  ; � 2 L2 and a Hermitian HamiltonianZ
d3x ��. OH /

def
D h�j OH i

def
D h OH ��j i

def
D

Z
d3x . OH ��/� 

OHD OH�

D

Z
d3x  . OH�/� : (7.6)

3 | Problem: The SE is Galilei covariant but not Lorentz covariant! (recall → Problemset 1)

• The SE is of first order in time but of second order in the spatial derivatives. This asymmetry
already suggests that the equation cannot be Lorentz covariant: Time is treated differently
than space in (non-relativistic) quantum mechanics.

• We would like quantum mechanics to be described by a Lorentz covariant equation because
we subscribed to ← Einstein’s principle of special relativity SR at the beginning of this course:
All laws of physics must take the same form in all inertial systems (which are related by
Lorentz transformations). This certainly includes quantum mechanics.

However, SR is just a (empirically motivated) principle, it is neither a law nor a theorem;
there may be conceivable universes in which SR simply does not apply to the quantum realm
– in which case the Schrödinger Eq. (7.1) would be a perfectly valid model.

As good physicists, we should seek for empirical evidence to settle the matter…
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4 | Evidence:

• First: The Schrödinger equation, published and studied by Erwin Schrödinger in a sequence
of papers in 1926 [81–84] (so relativity was already known at the time), was (and is) a
highly successful theory that describes a plethora of microscopic phenomena remarkably
well. Examples are the ↓ double-slit experiment, ↓ quantum tunneling effects, and, of course,
the ↓ spectrum of the hydrogen atom:

The Hamilton operator for the relative electron-proton system of the hydrogen atom is

OH D �
„2

2�
r
2
�
e2

jExj
(7.7)

with reducedmass� D memp=.meCmp/. The discrete part of the spectrum of the operator
OH can be computed exactly (ER is the ↓ Rydberg energy),

En D �
ER

n2
with principal quantum number n 2 f1; 2; : : : g, (7.8)

and determines the hydrogen spectrum:

The transitions between the levels of the hydrogen spectrum can bemeasured by spectroscopy
(↓ Lyman series [85], ↓ Balmer series [86],…; these observations have been made around
1900). The explanation of these spectral lines by the non-relativistic Schrödinger equation is
the crown jewel of quantum mechanics, and one of the most remarkable advances of 20th
century physics.

• However, it’s not all sunshine and roses. It was already known at the end of the 19th century
(due to advances in spectroscopy [87]) that the spectral lines of various atomic species
(including hydrogen) had a ↓ fine-structure. Expressed in terms of the energy levels of the
hydrogen atom, this means that some of the degenerate eigenstates of Eq. (7.7) are actually
not exactly degenerate:
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Note that this was known to Schrödinger when he published his equation in 1926; he writes
in Ref. [84] (p. 132–133):

ImAnschluß an die zuletzt erwähnten physikalischen Probleme, [..],möchte ich nun doch
die vermutliche relativistisch-magnetische Verallgemeinerung der Grundgleichungen [..]
hier ganz kurz mitteilen, wenn ich es auch vorerst nur fur das Einelektronenproblem und
nur mit der allergrößten Reserve tun kann. Letzteres aus zwei Grunden. Erstens beruht
die Verallgemeinerung vorläufig auf rein formalerAnalogie. Zweitens führt sie,wie schon
in der ersten Mitteilung erwähnt wurde, im Falle des Keplerproblems zwar formal auf
die Sommerfeldsche Feinstrukturformel und zwar mit „halbzahligem” Azimutal- und
Radialquant, was heute allgemein als korrekt angesehen wird; allein es fehlt noch die zur
Herstellung numerisch richtiger Aufspaltungsbilder der Wasserstofflinien notwendige
Ergänzung, die im Bohrschen Bilde durch den Goudsmit-Uhlenbeckschen Elektronen-
drall geliefert wird.

Note that Schrödinger was very much aware that his equation lacked Lorentz covariance and
viewed (and constructed) it as a non-relativistic approximation of a truly “relativistic quantum
mechanics” (which he didn’t know how to formulate consistently).

He also makes this clear in the introduction of Ref. [83] (p. 439):

Wesentlich größeres Interesse wird natürlich die (hier noch nicht darchgeführte) An-
wendung auf den Zeemaneffekt bieten. Diese erscheint mir unlöslich geknüpft an eine
korrekte Formulierung des relativistischen Problems in der Sprache der Wellenmechanik,
weil bei vierdimensionaler Formulierung das Vektorpotential von selbst dem skalaren
ebenbürtig an die Seite tritt. Schon in der ersten Mitteilung wurde erwähnt, daß das
relativistische Wasserstoffatom sich zwar ohne weiteres behandeln läßt, aber zu“hal-
bzahligen” Azimutalquanten, also zu einem Widerspruch mit der Erfahrung führt. Es
mußte also noch“etwas fehlen”. Seither habe ich [..] gelernt, was fehlt: in der Sprache
der Elektronenbahnentheorie der Drehimpuls des Elektrons um seine Achse, der ihm ein
magnetisches Moment verleiht.

• We can also make a back-of-the-envelope calculation to estimate whether relativistic effects
could be the root cause for the discrepancy between the non-relativistic Schrödinger equation
and the observed fine-structure:

In a classical approximation, kinetic and potential energy are of the same order:

Kinetic energy
1

2
mv2 �

e2

r
Potential energy : (7.9)

Because the system is quantum, momentum and position obey the ↓ Heisenberg uncertainty
relation �p�r � „. In the energy eigenstates of an interacting quantum system (like an
atom) we typically have�p � p and�r � r , and in our semi-classical approximation it is
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p � mv, so that

v �
e2

mvr
�
e2

„c
c D ˛c D Fine-structure constant � c �

c

137
: (7.10)

The semi-classical velocity of the electron v is therefore much smaller than the speed of
light c; this explains why the non-relativistic Schrödinger equation is so successful (and your
course non non-relativistic quantum mechanics is no waste of time). However, the observed
fine-structure splitting of spectral lines is indeed very small, so it is reasonable that relativistic
effects can have small but measurable effects in atomic physics.

The situation is therefore similar to that of Newtonian mechanics before we made it relativistic:
We have a very successful Galilei covariant theory that, however, shows signs of being the low-
velocity/energy approximation of another, presumably relativistic theory.

(Note that historically the situation is very different, though: While Newtonian mechanics, born in
the 17th century, had to wait more than 200 years to be“made relativistic”, the development of
relativistic quantum mechanics was very fast: Non-relativistic quantum mechanics was established
in 1925/26 – and just two years later, in 1928, Paul Dirac published the correct equation describing
relativistic electrons: the → Dirac equation [88].)

! Are there relativistic field equations which allow for a probabilistic interpretation?

7.1. The Klein-Gordon equation

TheKlein-Gordon equation has been studied byKlein [89] andGordon [90] in 1926 as a possible relativistic
version of the Schrödinger equation. Schrödinger and Fock found the equation independently as well.

1 | ^ Complex scalar field: � W R1;3 ! C

!Most general quadratic (superposition principle!) and Lorentz covariant Lagrangian density:

LKG.�; @�/ D .@
��/.@��

�/ �M 2��� (7.11)

M D mc
„
2 R: arbitrary parameter (m will be the mass of the particle)

• Note thatM D
mc
„
D

2�
�

has the dimension of an inverse length; here � D h
mc

is the
← Compton wavelength Eq. (5.77).

• One can also derive the non-relativistic Schrödinger equation from a Lagrangian density
(→ below):

LSE. ; @ / D i„ 
�@t �

„2

2m
.r �/.r / � V.x/ � (7.12)

This is of course not a Lorentz scalar (you cannot write this combining only tensors).

2 | Euler-Lagrange equations:

Trick: Consider � and �� as independent fields; let �� be the complex conjugate of � at the end.

@LKG

@��
� @�

@LKG

@.@���/
D 0 ) �M 2� � @�@

�� D 0 (7.13)

The Euler-Lagrange equations for the field � yield the complex conjugate Klein-Gordon equation.
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!

.@2 CM 2/�.x/ D 0 ⁂ Klein-Gordon equation (7.14)

The Klein-Gordon equation (KGE) is the simplest relativistic wave equation.

The non-relativistic Schrödinger equation follows along the same lines from Eq. (7.12):

@LSE

@ �
� @�

@LSE

@.@� �/
D 0 ) i„@t � V C

„2

2m
r
2 D 0 (7.15)

The Euler-Lagrange equations for  � yield the complex conjugate of the Schrödinger equation.

3 | Lorentz symmetry of the KGE:

The KGE is manifest Lorentz covariant. However, it is instructive (and useful for our derivation of
the Dirac equation → later) to check its invariance manually. To this end, we view Lorentz transfor-
mations as active transformations, mapping solutions to different solutions. This is equivalent to
the passive viewpoint where the coordinate system is transformed instead:

i | ^ Coordinate transformation: Nx D ƒx & Field transformation: N�. Nx/ D �.x/
We write Nx D ƒx for Nx� D ƒ��x� .

ii | ^ �.x/ with .@2 CM 2/�.x/ D 0 for all x
That is, �.x/ is a solution of the KGE.

iii |
ı
�! N�.x/ WD �.ƒ�1x/ is a new solution:

Use the chain rule in the first step twice:

.���@�@� CM
2/ N�.x/ D Œ���.ƒ�1/��@� .ƒ

�1/��@� CM
2��.ƒ�1x/ (7.16a)

Use invariance of the metric Eq. (4.21) (7.16b)

D .���@�@� CM
2/�.ƒ�1x/ (7.16c)

D .@2 CM 2/�.ƒ�1x/
� solution
D 0 (7.16d)

Here @��.ƒ�1x/must be read as @��.y/jyDƒ�1x , i.e., we compute the derivative of the
function � with respect to its argument y and then plug in the valueƒ�1x.

4 | Conserved current:

i | ^ Global phase rotations:

�0.x/ D ei˛�.x/ for ˛ 2 Œ0; 2�/ (7.17)

with infinitesimal generator j˛j D jwj � 1

�0.x/ D �.x/C iw�.x/ � �.x/C w ı�.x/ ) ı� D i� (7.18)

Note that this is an“internal symmetry” that has nothing to do with spacetime; thus ıx D 0.
For the complex conjugate field �� one finds analogously ı�� D �i��.

! Continuous symmetry:

LKG.�; @�/ D LKG.�
0; @�0/ (7.19)

If the Lagrangian density is invariant, the action is trivially invariant!
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ii | Noether theorem Eq. (6.85)! Conserved Noether current density Eq. (6.84):

j
�
KG $ i.@��/��

� i.@���/� (7.20)

Note that if one treats � and �� independent fields, one has to sum over the two fields in the
evaluation of the Noether current; this then yields the real-valued current density above.

! Noether charge density:

�KG.x/ WD j
0
KG.x/ D

i

c

�
P���
� P���

�
with �KG.x/ 2 R (7.21)

! Conserved Noether charge:

Q D

Z
d3x �KG.x/ D

i

c

Z
d3x

�
P���
� P���

�
(7.22)

Important: �KG.x/ Q 0 is not positive-definit! !

�KG.x/ cannot be interpreted as a probability density! (7.23)

• To sum up:

– The inner product (= positive-definite, symmetric sesquilinear form) onL2.R1;3;C/

h�j iL2 WD

Z
d3x �� (7.24)

is not conserved under the time-evolution of the KGE.

– The indefinite symmetric sesquilinear form (which is not an inner product!)

h�j iKG WD
i„

2mc2

Z
d3x

�
�� P � P�� 

�
(7.25)

is conserved under the time-evolution of the KGE. But because it is not positive-
(semi)definite, we cannot interpret the induced“norm” as a probability.

The prefactor „

2mc2 is chosen such that it has the dimension of a time (because
„

mc
/ � has the dimension of a length). Then the square of the fields (= wave-

functions) has the dimension of one over a volume – which is the conventional
dimension of wavefunctions. The factor 1

2
is chosen to simplify expressions later.

• Compare this to the conserved current for the same phase rotation symmetry that
follows for the Schrödinger field Eq. (7.12) with ı D i and ı � D �i �:

j
�
SE �

�
„c�SE

„ EjSE

� 7.12
6.84
D

(
„c � ; � D 0
i„2

2m
Œ.r �/ � .r / �� � D i D 1; 2; 3

(7.26)

(Recall that you must sum over the fields  and  �.)

This is the positive-definite probability density you already know from quantummechanics,

�SE.x/ D  
�.x/ .x/ D j .x/j2 � 0 ; (7.27)
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and the ↓ probability current density

EjSE D
i„

2m

�
.r �/ � .r / �

�
: (7.28)

In this context, Noether’s theorem ensures probability conservation:

@�j
�
SE D 0 , @t�SE Cr � EjSE D 0 : (7.29)

5 | Solutions: (for the free Klein-Gordon field)

i | The KG Eq. (7.14) is a wave equation:�
1

c2
@2t � r

2
C
m2c2

„2

�
�.t; Ex/ D 0 (7.30)

! Solution space spanned by plane waves:

�.t; Ex/ D e
i
„
. Ep� Ex�Et/ (7.31)

Plug this ansatz into Eq. (7.30)! Dispersion relation:

�
E2

c2„2
C
Ep2

„2
C
m2c2

„2

Š
D 0 (7.32)

E D ˙

q
Ep2c2 Cm2c4 (7.33)

• This is the relativistic energy-momentum relation Eq. (5.26).

• ¡! There are two solutions for each 3-momentum Ep, one of which has negative energy
E < 0 (if we interpret the prefactor of t as the energy as usual). This is a consequence
of the quadratic nature of the KGE (as compared to the SE), and therefore a direct
consequence of its relativistic covariance.

• At the time of its inception, the negative energy solutions of the KGE could not be
interpreted properly. This (together with the fact that its conserved “norm” cannot
be interpreted as a probability and it fails to predict the fine-structure of the hydrogen
atom correctly, → below) lead to its dismissal as a relativistic wave equation for quantum
wave functions. It only became clear later that the negative energy solutions herald the
existence of antiparticles. Only in modern ↑ relativistic quantum field theories [where the
KGE reappears as the equation of motion of (free scalar) quantum fields, see Chapter 2
of my script on QFT [20]] this “feature” can be cast into a consistent framework: The
negative energy solutions are interpreted as eigenmodes of antiparticles with positive en-
ergies (and norms). If the particles are charged, their antiparticles have opposite charge;
then the conserved Noether charge Eq. (7.22) is interpreted as charge conservation (and
not probability conservation).

ii | As usual, one can“normalize” the plane wave solutions Eq. (7.31) if one considers a finite
system with volume V D L3. Then one finds the “orthonormal” solution basis of the KGE:
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ı
�!

�
.˙/

Ek
.t; Ex/ D N Ek

ei.
Ek� Ex�!kt/ with…

Dispersion: !k D

q
Ek2c2 Cm2c4=„2

Momentum: Ep D „Ek 2 „
2�

L
Z3

Normalization: Nk D

s
mc2

V „!k

(7.34a)

(7.34b)

• It is straightforward to check that these states are “orthonormal” with respect to the
Klein-Gordon sesquilinear form Eq. (7.25):

h 
.˛/

Ek
j 
.ˇ/

Ek0
iKG $ ˛ ı˛;ˇ ı Ek; Ek0 with ˛; ˇ 2 f˙g : (7.35)

Note that the .�/ states have negative “norm”.

• The fact that there are“twice as many” linearly independent solutions (two for each
momentum) means that you need“twice as many” parameters to specify a particular
solution (i.e., a linear combination of the plane waves). This corresponds to the fact
that the KGE is of second order in the time derivative, so that you need to provide both
�.t D 0; Ex/ and P�.t D 0; Ex/ to specify a unique solution.
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↓ Lecture 15 [06.02.24]

6 | Coupling to a static EM field:

The KGE can be coupled to the gauge field of electrodynamics. This is necessary to described
charged particles (in particular: the hydrogen atom). Note that in the following the gauge field is a
parameter and not a dynamic degree of freedom.

i | Goal: Construct Lagrangian density that is…

• … a Lorentz scalar.

• … quadratic in �.

• … gauge invariant under the gauge transformation A0
� D A� � @��.

• … couples � and A� in a non-trivial way.

Without additional tools, this is a tough job!

ii | ^ Gauge transformation A0
� D A� � @��.x/

Let us assume that the KG field transforms under the gauge transformation as follows:

�0.x/ WD eiQ�.x/�.x/ with the ⁂ U.1/ chargeQ D
q

„c
2 R : (7.36)

q: electric charge of the particle described by the wavefunction �

• It is reasonable to assume that the KG field must transform via phase factors because we
already know [recall Eq. (7.19)] that the KG Lagrangian is invariant under global phase
transformations �.x/ D const. Our hope is that we can “extend” this symmetry for
arbitrary non-constant �.x/.

• The chargeQ is a property of the field and quantifies how it transforms under gauge
transformations; it essentially plays the role of the electric charge of the particle de-
scribed by �; e.g., for an electron we would setQ D �e

„c
< 0.

The additional division by „c is necessary for dimensional reasons: Œ�� D LŒ'� with
A� D .'; EA/; therefore Œ�q� D LŒ'q� D LŒE� D ML3

T 2 and it is Œ„c� D ML3

T 2 as well.
In natural units (where „ D 1 D c,Q D q is simply the electric charge.

• The term“U.1/ charge” highlights that the gauge transformation eiQ�.x/ 2 U.1/ is a
U.1/ gauge transformation; the charge is the generator of this Lie group.

iii | Problem:

Derivatives transform complicated under gauge transformations:

@��
0.x/ $ eiQ�.x/

�
iQ.@��/�.x/C @��.x/

�
(7.37)

! It is hard to combine derivatives of fields to construct gauge-invariant terms!

Solution:

Define the…

⁂ (Gauge) Covariant derivative: D� WD @� C iQA� (7.38)

! Lorentz vector (thus we can it use to construct Lorentz scalars!)
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The covariant derivative has the following useful property:

D0
��

0
D
�
@� C iQA� � iQ.@��/

�
eiQ�� $ eiQ�D�� (7.39)

!D�� transforms like � under gauge transformations. [and not as ugly as Eq. (7.37)!]

This is useful because it allows us to combine derivatives into gauge-invariant terms.

iv | Using the covariant derivative, we can now construct the following general Lagrangian density
that satisfies our four requirements above:

LA.�; @�/ D .D
��/.D��/

�
�M 2��� (7.40)

Please appreciate the ingenuity of the term .D��/.D��/
�: It is Lorentz invariant because

we pair the indices correctly, and it is gauge invariant because we pair .D��/with its complex
conjugate .D��/� (which is sufficient becauseD�� gauge-transforms like �).

This Lagrangian density is gauge-invariant by construction in the sense that

LA.�; @�/ D LA0.�0; @�0/ or L.�;D�/ D L.�0;D0�0/ : (7.41)

• A comparison of the free Klein-Gordon Lagrangian Eq. (7.11) and the new one Eq. (7.40)
reveals that we simply made the substitution @� 7! D�, i.e., we replaced partial
derivatives by covariant derivatives (which depend on the gauge field). This trick is not
specific to the Klein-Gordon field and yields gauge-invariant theories in general. This
procedure is called ↑ minimal coupling.

• Note that the transformation Eq. (7.36) is a local phase rotation of the KG-field. In
Eq. (7.17) we considered a global phase rotation and identified it as a continuous symme-
try of the KG Lagrangian LKG. You can check that the new local transformation does
not leave LKG invariant, but it does leave LA invariant if A� transforms together with
� as defined above. The transition from LKG (with a global symmetry) to LA (with a
local version of the same symmetry) is called gauging the symmetry. You can use this
line of reasoning to “invent” the electromagnetic gauge field: If you start from a global
continuous symmetry and demand that it becomes a local symmetry, you have to pay
for it by introducing a new field: the gauge field.

v | Klein-Gordon equation in a static EM field:

The Euler-Lagrange equations of LA yield: Eq. (6.6)
Eq. (7.40)
�����!

.D2 CM 2/�.x/ D 0 (7.42)

withD2 D D�D� andM D mc
„
.

In the form Eq. (7.42) both Lorentz covariance and gauge invariance are manifest (because
we use the covariant derivative). If we expand everything, we loose these features but obtain
a less abstract (but more complicated) form of the PDE:�

1

c2

�
@t C iQc'

�2
�

�
r � iQ EA

�2
C
m2c2

„2

�
�.t; Ex/ D 0 (7.43)

Here we used A� D .';� EA/ (covariant!).
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vi | Example: Hydrogen atom

Goal: Describe the electron of the hydrogen atom in the static EM field generated by the
proton in terms of the KGE; i.e., we interpret the KG field � naïvely as the wavefunction of
the electron. Our hope is that the energy spectrum of this relativistic theory explains the
observed fine-structure splitting.

a | ^ Coulomb potential (of proton with charge e > 0)!

Choose a gauge where '.x/ D
e

jExj
and EA D E0 (7.44)

ı
�!With electron chargeQ D �e

„c
< 0 one finds:�

1

c2

�
i@t C

e2

„jExj

�2
Cr

2
�
m2c2

„2

�
�.t; Ex/ D 0 (7.45)

b | ^ Ansatz �.t; Ex/ D Q�.Ex/e� i
„
Et
!“Stationary” Klein-Gordon equation:"

c2„2�C

�
E C

e2

jExj

�2
�m2c4

#
Q�.Ex/ D 0 (7.46)

Note that this PDE is quadratic in the energyE (and not linear, like the time-independent
Schrödinger equation).

c | One can use a clever mapping to the non-relativistic Schrödinger equation to solve for
Q�.Ex/ and determine the energiesE for which solutions exist:

�
�! En;l D

mc2q
1C ˛2

.n�ıl /
2

with ıl D l C
1
2
�

q�
l C 1

2

�2
� ˛2 : (7.47)

Here n D 1; 2; : : : is the ↓ principal quantum number and l D 0; 1; 2; : : : is the ↓ orbital
angular momentum quantum number. ˛ D e2

„c
�

1
137

is the fine-structure constant.

d | Comments:

• The spectrum Eq. (7.47) predicts a splitting of the l-degeneracy; recall that this
degeneracy is perfect in the non-relativistic hydrogen atom [cf. Eq. (7.8)]. Unfortu-
nately, the spectrum Eq. (7.47) does not match observations! The reason is that
the Klein-Gordon equation does not know about the electron spin. Schrödinger
and his contemporaries were aware of this solution and its problems (this shines
through in the quotes at the beginning of this chapter). This failure to predict
the fine-structure correctly led to the dismissal of the Klein-Gordon equation and
motivated Paul Dirac to search for another equation (→ next section).

• Today we know that the Klein-Gordon equation is not wrong: It simply does not
apply to particles with non-zero spin (and the electron in the hydrogen atom hap-
pens to have spin s D 1

2
). However, it does apply to spin-0 particles like ↑ kaons (K

mesons, bound states of two quarks), ↑ pions (pi mesons), and the ↑ Higgs boson
(the latter being the only elementary particle with zero spin). But since we cannot
build hydrogen atoms out of these particles, the significance of the above solution
remains limited.

7 | First-order formulation:

Here we consider again the free KGE (without EM field) for simplicity.

i | KGE = Second-order PDE in time
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Problem: �.t D 0; Ex/ does not specify the state of the system completely [unlike for the
Schrödinger equation one also needs P�.t D 0; Ex/ to pick out a unique solution �.t; Ex/].

Recall: Every higher-order differential equation can be recast as a first-order differential
equation with multiple components.

!Goal: Rewrite the KGE in the first-order form

i„@tˆ D OHKGˆ with ˆ D

�
�C

��

�
: (7.48)

Downside: In this form, the KGE is no longer manifest Lorentz covariant.

ii | Define

�˙ WD
1

2

�
� ˙

i„

mc2
@t�

�
(7.49)

so that

� D �C C �� and
i„

mc2
@t� D �C � �� : (7.50)

iii | Define the 2 � 2 differential operator

OHKG WD

�
OH0 Cmc

2 OH0
� OH0 � OH0 �mc

2

�
D OH0 ˝ .�

´
C i�y/Cmc2�´ (7.51)

with OH0 D � „2

2m
r2 the free particle Hamiltonian and the Pauli matrices

�x D

�
0 1

1 0

�
; �y D

�
0 �i

i 0

�
; �´ D

�
1 0

0 �1

�
: (7.52)

OHKG is a linear operator on the Hilbert space L2 ˝C2 of two-component square-integrable
functions. Note that OH �

KG D
OH0 ˝ .�

´ � i�y/Cmc2�´ ¤ OHKG is non-Hermitian with
respect to the conventional inner product on L2 ˝C2:

hˆj‰iL2˝C2 D

Z
d3x ˆ�.x/‰.x/ D

Z
d3x

�
��

C C C �
�
� �

�
: (7.53)

iv | Check that the differential equation in first-order Schrödinger form

i„@tˆ D OHKGˆ ,

(
i„@t�C D . OH0 Cmc

2/�C C OH0��

i„@t�� D � OH0�C � . OH0 Cmc
2/��

(7.54)

is equivalent to the KGE:

a | Indeed, the difference of the two equations yields

�
„2

mc2
@t� D . OH0 Cmc

2/� C OH0� ,
1

c2
@t� � r

2� C
m2c2

„2
� D 0 (7.55)

where we defined � WD �C C �� and � WD mc2

i„
.�C � ��/.

b | By contrast, the sum of the two equation yields

mc2@t� D . OH0 Cmc
2/� � OH0� , @t� D � : (7.56)

c | Combining Eq. (7.55) and Eq. (7.56) returns the KGE:

1

c2
@2t � � r

2� C
m2c2

„2
� D 0 : (7.57)
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v | If one defines the

⁂ Klein-Gordon adjoint N̂ WD ˆ��´ D
�
��

C;��
�
�

�
; (7.58)

one can express the Klein-Gordon sesquilinear form Eq. (7.25) as

hˆj‰iKG WD

Z
d3x N̂ .x/‰.x/ 7.49

D
i„

2mc2

Z
d3x

�
�� P � P�� 

� 7.25
D h�j iKG : (7.59)

Remember that this is not a proper inner product because it is not positive-definite.

vi | If one defines additionally for an operator A on L2 ˝C2 the

⁂ Klein-Gordon adjoint NA WD �´A��´ ; (7.60)

it follows Aˆ D N̂ NA and NNA D A, and thereby

hˆjA‰i
7.59
D h NAˆj‰i : (7.61)

vii | It is easy to verify that the KG Hamiltonian is “Klein-Gordon Hermitian”, namely

NOHKG
7.51
D OHKG (7.62)

because �´�y�´ D ��y .

viii | With this machinery, we have now a new method to check that the time-evolution generated
by the KGE leaves the KG sesquilinear form invariant:

d
dt
h�j iKG

7.59
D

d
dt
hˆj‰iKG (7.63a)

D hˆj P‰iKG C h P̂ j‰iKG (7.63b)

7.54
D

1

i„
hˆj OHKG‰iKG �

1

i„
h OHKGˆj‰iKG (7.63c)

7.61
7.62
D

1

i„

�
hˆj OHKG‰iKG � hˆj OHKG‰iKG

�
D 0 (7.63d)

We already knew this fromNoether’s theorem, but it is always nice to derive such statements
in various ways.

8 | Non-relativistic limit:

i | Goal: Derive a non-relativistic approximation of the Klein-Gordon equation�
1

c2
@2t � r

2
C
m2c2

„2

�
�.t; Ex/ D 0 : (7.64)

ii | ^ Kinetic energy: Ekin D E �mc
2 D

p
Ep2c2 Cm2c4 �mc2 � 1

2
mv2 CO.ˇ4/

(Note that bothEkin andE are non-negative!)

^ Ansatz:

�˙.t; Ex/ D Q�˙.Ex/e
� i

„
Et
D Q�˙.Ex/e

� i
„
Ekint„ ƒ‚ …

DW O�˙.t;Ex/

e� i
„
mc2t (7.65)

O�.t; Ex/ contains only the time evolution due to the kinetic energy, excluding the rest energy.
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iii | If we use that

@2t
O�˙ D �

E2kin
„2
O� ; (7.66)

we can make the following approximation in the non-relativistic limitEkin � mc2:

@2t �˙ D e
� i

„
mc2t

(
@2t
O�˙ �

2imc2

„
@t O�˙ �

�
mc2

„

�2
O�˙

)
(7.67a)

D �e� i
„
mc2t

(
˙
2imc2

„
@t O�˙ C

�
mc2

„

�2 "
1C

�
Ekin

mc2

�2#
O�˙

)
(7.67b)

� �e� i
„
mc2t

(
˙
2imc2

„
@t O�˙ C

�
mc2

„

�2
O�˙

)
(7.67c)

iv | Eq. (7.67c) in Eq. (7.64) yields:

e� i
„
mc2t

�
˙
2im

„
@t C

m2c2

„2
Cr

2
�
m2c2

„2

�
O�˙.t; Ex/ D 0 (7.68)

And finally:

˙i„@t O�˙.t; Ex/ D �
„2

2m
r
2 O�˙.t; Ex/ (7.69)

This is the Schrödinger equation for a free particle.

Note that the “negative energy solutions” �� lead to the time-inverted Schrödinger equation.

7.2. The Dirac equation

The Dirac equation was published by Paul Dirac in [88], only two years after Schrödinger published the
Schrödinger equation.

1 | Goal:

The Klein-Gordon equation has a few undesirable quirks:

• It’s conserved U.1/ current has no positive-definite density and therefore cannot be interpreted as a
probability current. Conversely, the conventional norm onL2 is not conserved. In the first-order
formulation, this corresponds to a non-Hermitian Hamiltonian.

! Can we construct a relativistic field equation with a conserved positive-definite density
that gives rise to a norm and a Hermitian Hamiltonian?

• In its manifest Lorentz covariant formulation, the KGE is of second order in time, so that we must
provide both the wavefunction and its time derivative as initial data.

! Can we construct a relativistic field equation which is first order in time (just like the
Schrödinger equation)?

• For each momentum there is are two solutions: one with positive and one with negative energy.

! Can we get rid of the negative energy solutions?

The Dirac equation succeeds in solving the first two issues – but not the last one, i.e., there will
still be negative energy solutions.
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2 | Observation:

To reach our goals we must equip our “toolbox” of tensor calculus with additional building blocks.
As it turns out, there is another type of field (besides the tensor fields we introduced in Chapter 3)
that plays an important role in quantum mechanics: ↑ spinor fields.

Remember: Vector fields under rotations: E�0.Ex/ D R E�.R�1 Ex/

! In general, a field �.x/ 2 Cn can transform under homogeneous Lorentz transformations as

�0
a.x/ DMab.ƒ/�b.ƒ

�1x/ a D 1; : : : ; n (7.70)

where

M.ƒ0/M.ƒ/�.ƒ�1ƒ0�1x/
Š
DM.ƒ0ƒ/�..ƒ0ƒ/�1x/ (7.71)

is a n-dimensional representation of the (proper orthochronous) Lorentz group SOC.1; 3/.

• Regarding groups and their representations: → Problemset 1.

• More explicitly: The tensor fields (of various rank) we know so far allow only for the descrip-
tion of particles with integer spin S D 0; 1; 2; � � � (spin = internal angular momentum). What
we are missing are fields that can describe particles with half-integer spin S D 1

2
; 3
2
; � � � ; these

are the spinor fields.

The reason why this is crucial for relativistic quantum mechanics in particular has to do
with the fact that multiplying wave functions by a global phase does not change the state.
In mathematical parlance we are dealing with ↑ projective Hilbert spaces and ↑ projective
representations of symmetries. Thus if you are interested what rotations SO.3/ do to the
quantum state of your system, you must study all projective representations of SO.3/. It turns
out that these can be identified with the“conventional” (= linear) representations of another
group: SU.2/ (the so called ↑ double cover of SO.3/). And you know that the irreducible
representations of SU.2/ are labeled by“spin quantum numbers” s D 0; 1

2
; 1; 3

2
; 2; : : :. In

general, the double covers of SO.n/ are called ↑ spin groups Spin(n), and similarly, the double
cover of the proper orthochronous Lorentz group SOC.1; 3/ is the group Spin.1; 3/ '
SL.2;C/ (the group of complex 2 � 2matrices with determinant one). It turns out that the
irreducible representations of this group can be labeled by two numbers .m; n/ withm; n D
0; 1
2
; 1; 3

2
; : : :. The spinor representations we are interested in (the ones missing from our

discussion of tensor fields) are the ones for whichmCn is half-integer. Conversely, the .1
2
; 1
2
/

representation is our well-known 4-vector representation A� and the .0; 0/ representation is
that of a scalar like �.

3 | We want a first-order relativistic field equation! Ansatz:

.@�@� C const/� D 0 ) .i��@� C const/� D 0 (7.72)

We do not yet know what � is (only that it cannot be a derivative).
The i anticipates wave-like solutions for real �.

A covariant equation of the form @�� D 0 or @�A� D 0 would of course also be possible; their
solutions, however, are either too simple or do not match observations.

4 | Then (combine 2 & 3)

i | ^ Coordinate transformation x0 D ƒx & Field transformation �0.x0/ DM.ƒ/�.x/

ii | ^ � with .i��@� C const/�.x/ D 0 for all x

That is, �.x/ is a solution of the equation we want to construct.
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iii | When is �0.x/ DM.ƒ/�.ƒ�1x/ is a new solution?

We want the equation to be Lorentz covariant; this means that the Lorentz group must be
(part of ) its invariance group: Lorentz transformations map solutions to new solutions.

.i��@� C const/�0.x/ D Œi��.ƒ�1/��@� C const�M.ƒ/�.ƒ�1x/
Š
D 0 (7.73)

Multiply withM�1.ƒ/:

, Œi M�1.ƒ/��M.ƒ/.ƒ�1/��„ ƒ‚ …
Š

D��

@� C const� �.ƒ�1x/
Š
D 0 (7.74)

!�� � � must be n � n-matrices with

M�1.ƒ/�M.ƒ/ D ƒ��
� (7.75)

The -matrices“translate”the“spinor”-representationM.ƒ/ into the“vector”-representation
ƒ and vice versa.

5 | Question: How to find appropriate � andM.ƒ/ that satisfy Eq. (7.75)?

Remember: SOC.1; 3/ is a Lie group (Recall → Problemset 4):

ƒ D exp
�
�
i

2
!˛ˇJ˛ˇ

�
!�1
� 1 �

i

2
!˛ˇJ˛ˇ (7.76a)

M.ƒ/ D exp
�
�
i

2
!˛ˇS˛ˇ

�
!�1
� 1 �

i

2
!˛ˇS˛ˇ (7.76b)

!˛ˇ antisymmetric tensor! 3 rotations (angles) + 3 boosts (rapidities)

It is .J˛ˇ /�� D i.ı˛�ı
ˇ
� � ı

˛
� ı
ˇ
�/; these 4 � 4matrices J˛ˇ generate the 4-vector representation

.1
2
; 1
2
/, i.e., the 4 � 4-matrices ƒ. By contrast, the n � n-matrices S˛ˇ generate the spinor-

representation M.ƒ/ [we will find .1
2
; 0/ ˚ .0; 1

2
/]. The generators are antisymmetric in the

spacetime indices.

• Infinitesimal form of Eq. (7.75):h
�;S˛ˇ

i
$ .J˛ˇ /��

� $ i.�˛�ˇ � �ˇ�˛/ (7.77)

• ^ J˛ˇ (→ Problemset 4)! Lie-algebra of Lorentz group (J D S ;J):�
J�� ; J ��

�
$ i.���J�� � ���J �� � ���J�� C ���J ��/ (7.78)

The Lie algebra defines the structure of the Lie group by exponentiation and is therefore the
same for all representations, recall Eq. (4.63).

6 | Solution to Eq. (7.75) via Dirac’s trick [88]: ^ � such that

f�; �g D 2��� 1n�n ⁂ Dirac algebra (7.79)

with the ↓ anticommutator fX; Y g D XY C YX .
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• Matrices � D .0; 1; 2; 3/ that satisfy Eq. (7.79) are called ⁂ Dirac matrices or
⁂ Gamma matrices.

• This is the 16-dimensional Clifford algebra C`1;3.C/.

Then

S�� WD
i

4

�
�; �

�
(7.80)

satisfies the Lorentz algebra Eq. (7.78) and Eq. (7.77).

Check this by plugging Eq. (7.80) into Eq. (7.78) and Eq. (7.77) and using Eq. (7.79)!

! Problem of solving Eq. (7.75) has been reduced to finding 4 matrices � that satisfy Eq. (7.79).

7 | Representations of Eq. (7.79):

• At least n D 4-dimensional
(Think of the � as Majorana modes and construct ladder operators! 2 modes.)

• All 4-dimensional representations are unitarily equivalent
(Actually, they constitute the unique irrep of the Dirac algebra which is 4-dimensional.)

• We use the Weyl representation (sometimes called chiral representation):

0 D

�
0 1

1 0

�
and  i D

�
0 � i

�� i 0

�
i D 1; 2; 3 (7.81)

– Recall the Pauli matrices Eq. (7.52):

�x D

�
0 1

1 0

�
; �y D

�
0 �i

i 0

�
; �´ D

�
1 0

0 �1

�
: (7.82)

– Other common choices are the ↑ Dirac representation and the ↑ Majorana representation.

• Henceforth: ƒ 1
2
�M.ƒ/

It turns out that these are two“copies”of a spin-1
2
projective representation: ƒ 1

2
corresponds

to the .1
2
; 0/ ˚ .0; 1

2
/ representation of SL.2;C/. Since n C m D 1

2
, this is a spinor

representation, i.e., a projective representation of the Lorentz group SOC.1; 3/. The fact
that it is the sum of two such representations makes it reducible. The wavefunction‰.x/ has
therefore n D 4 components and is a spinor field (and not a tensor field).

8 | Setting const D �M D �mc
„

(which has dimension of an inverse length), we find:

.i�@� �M/‰ D 0 ⁂ Dirac equation (7.83)

Here, ‰.x/ is a ⁂ (bi)spinor-field:

‰ W R1;3 ! C4
D C2

˚C2 : (7.84)

Introduce the ⁂ Feynman slash notation: =O WD �O�

(Here,O� stands for any object with a 4-vector index.)
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With the slash notation, the Dirac equation can be written as:

.i =@ �M/‰ D 0 (7.85)

TheDirac equation is engraved in a plaque on the floor ofWestminsterAbbey next to IsaacNewton’s
tomb (they abbreviate  � @ D �@� and are in natural units „ D 1 D c whereM D m):

(Photograph from https://cerncourier.com/a/paul-dirac-a-genius-in-the-history-of-physics.)

9 | The components ‰a.x/ (a D 1; 2; 3; 4) satisfy the KGE:

0 D .�i�@� �M/.i�@� �M/‰
7.79
D .@2 CM 2/‰ (7.86)

On the right hand side of Eq. (7.86) there is an identity 14�4 that we omit.

• The Dirac differential operator is the“square root” of the Klein-Gordon differential operator.

• ¡! Although ‰ has as many components as the EM gauge field A�, we do not write these
components as ‰�, but either simply as ‰ (and think of it as a four-dimensional column
vector), or as‰a with spinor index a D 1; 2; 3; 4. The purpose of this notational difference
is to denote the different ways the fields transform under Lorentz transformations:

A0�
D ƒ��A

� versus ‰0
a D .ƒ 1

2
/ab‰b or simply ‰0

D ƒ 1
2
‰ : (7.87)

Note thatƒ � ƒ�� andƒ 1
2
DM.ƒ/ are not the same 4 � 4matrices!

10 | Dirac adjoint:

We would like to find a Lagrangian density for the Dirac equation; since this must be a Lorentz
scalar, we ask the question:

How to form Lorentz scalars from Dirac spinors?

i | First try: ‰�‰

‰0�‰0
D ‰�ƒ

�
1
2

ƒ 1
2„ƒ‚…

¤1

‰ ¤ ‰�‰ (7.88)

ƒ 1
2
is not unitary because S�� is not Hermitian for boosts (� D 0 and � D 1; 2; 3).

This is a consequence of the ↑ non-compactness of the Lorentz group due to boosts.

ii | Define

N‰ WD ‰�0 ⁂ Dirac adjoint (7.89)
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ı
�! N‰0‰0 D N‰ƒ�1

1
2

ƒ 1
2
‰ D N‰‰) Lorentz scalar

Use Eq. (7.80) and Eq. (7.76b) and the Dirac algebra to show this!

11 | Lagrangian:

With these tools, it is reasonable to propose the following Lagrangian density:

LDirac D N‰.i
�@� �M/‰ D N‰.i =@ �M/‰ (7.90)

ı
�! Euler-Lagrange equations = Dirac equation

• Note that in explicit index notation, the Lagrangian density reads

LDirac D i N‰a
�

ab
.@�‰b/ �M N‰a‰a (7.91)

where sums over pairs of spinor indices are implied.

The Euler-Lagrange equations follow again by treating‰a and N‰a as independent fields:

0
Š
D
@LDirac

@ N‰a
� 0 D i

�

ab
.@�‰b/ �M‰a D

�
.i =@ �M/‰

�
a

(7.92a)

0
Š
D
@LDirac

@‰a
� @�

@LDirac

@.@�‰a/
D �M N‰a � i.@� N‰b/

�

ba
$
h
.i =@ �M/‰

i
a

(7.92b)

Note that the two equations are Dirac adjoints of each other.

• Let us check that LDirac is a Lorentz scalar:

L0
Dirac D

N‰0
�
i�@0

� �M
�
‰0 (7.93a)

D N‰ƒ�1
1
2

�
i�ƒ �

� @� �M
�
ƒ 1

2
‰ (7.93b)

D N‰
�
iƒ�1

1
2

�ƒ 1
2
ƒ �
� @� �M

�
‰ (7.93c)

7.75
D N‰

�
iƒ��

�ƒ �
� @� �M

�
‰ (7.93d)

D N‰ .i�@� �M/‰ D LDirac (7.93e)

Here we used the following fact:

The gamma matrices transform not like Lorentz vectors:  0�
D �. (7.94)

This is good because otherwise the Dirac equation would be different in different inertial systems.

This also means that slashed quantities (like =@ D �@�) are not Lorentz scalars. Think of it like
this: they do not have a Lorentz index, but they do have a two spinor indices (which we don’t write)
because they are matrices. To get rid of these indices, you must pair them with the indices of spinor
fields. That is, slashed quantities become Lorentz scalars if put between two Dirac spinors like in
the Dirac Lagrangian: N‰=@‰ is a scalar field.

12 | Conserved current:

Now that we have a Lagrangian, it is just a straightforward application of Noether’s theorem to
obtain the conserved current associated to global phase rotations:
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i | ^ Global phase rotations:

Eq. (7.90) is clearly invariant under global phase rotations of the spinors:

‰0.x/ D ei˛‰.x/ for ˛ 2 Œ0; 2�/ (7.95)

with infinitesimal generator j˛j D jwj � 1

‰0.x/ D ‰.x/C iw‰.x/ � ‰.x/C w ı‰.x/ ) ı‰ D i‰ (7.96)

! Continuous symmetry:

LDirac.‰; @‰/ D LDirac.‰
0; @‰0/ (7.97)

ii | Noether theorem 6.85! Conserved current density:

A straightforward calculation yields:

j
�
Dirac

6.84
D �

@LDirac

@.@�‰a/
ı‰a

7.91
D N‰b

�

ba
‰a D N‰

�‰ : (7.98)

j
�
Dirac D

N‰�‰ with @�j
�
Dirac D 0 (7.99)

Since the Lagrangian density LDirac is a Lorentz scalar, this Noether current must be a
4-vector. We can check this explicitly:

j
0�
Dirac D

N‰0�‰0
D N‰ƒ�1

1
2

�ƒ 1
2
‰

7.75
D ƒ��

N‰�‰ D ƒ��j
�
Dirac : (7.100)

iii | Conserved Noether charge:

Q D

Z
d3x N‰0‰ D

Z
d3x ‰�‰„ƒ‚…

�0

� 0 (7.101)

!

Conserved norm on L2 ˝C4: k‰k2 WD
Z

d3x ‰�‰ (7.102)

• ¡! The positive-definite density ‰�‰ D N‰0‰ is the time-component of a 4-vector
and therefore not Lorentz invariant. However, the Noether chargeQ is a Lorentz scalar
so that the norm is Lorentz invariant: k‰0k

�
D k‰k.

Note that not all Noether charges are Lorentz scalars. The total field momentum
Eq. (6.92), for example, is a 4-vector; similarly, the total field angular momentum
Eq. (6.117) is a tensor of rank 2. However, it can be shown that the Noether charges of
internal symmetries (like the U.1/ symmetry considered here) are necessarily Lorentz
scalars (↑ Coleman-Mandula theorem [91]).

Let us proveQ0
a D Qa in the case where the Noether current j�a has no other Lorentz

index (and the internal group generators commute with the generators of Lorentz
transformations):
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a | We consider an infinitesimal Lorentz transformation.

Coordinates transform according to Eq. (6.78),

ı˛ˇx� D
1

2

�
�˛�xˇ � �ˇ�x˛

�
; (7.103)

and, as a 4-vector, the components of the current transform in the same way:

ı˛ˇj�a D
1

2

�
�˛�j ˇa � �

ˇ�j ˛a

�
$ j �a

�
@�ı

˛ˇx�
�
: (7.104)

(The labelsa of the internal symmetry do notmix under this transformation because
the internal symmetry is assumed to commute with Lorentz transformations.)

The generator of Lorentz transformations acts then according to Eq. (6.81) on the
current field

�iG˛ˇj�a .x/ D ı
˛ˇj�a � .@�j

�
a /ı

˛ˇx� : (7.105)

In the following we suppress the indices ˛ˇ whenever possible.

b | It is easy to check that @�ıx� D 0; furthermore, we know that @�j �a D 0 from
the Noether theorem. Together, this allows us to write the action of infinitesimal
Lorentz transformations on the current as a 4-divergence:

�iGj�a .x/ D .@�j
�
a /„ƒ‚…

D0

ıx� C j �a .@�ıx
�/ � .@�j

�
a /ıx

�
� j�a .@�ıx

�/„ ƒ‚ …
D0

(7.106a)

D @�
�
j �a ıx

�
� j�a ıx

�
�
: (7.106b)

Here we used that ıj�a D j �a .@�ıx
�/.

c | Wefinally obtain for the infinitesimal Lorentz transformation of theNoether charge:

�iGQa D

Z
d3x .�iGj 0a / (7.107a)

D

Z
d3x @�

�
j �a ıx

0
� j 0a ıx

�
�

(7.107b)

D

Z
d3x @i

�
j iaıx

0
� j 0a ıx

i
�

(7.107c)

Gauss’s theorem

D

Z
@

d�i
�
j iaıx

0
� j 0a ıx

i
�
D 0 (7.107d)

In the last step we used that on the surface @ (typically spatial infinity) all fields
vanish (for wavefunctions in L2 this is clearly true).

Thus anyNoether charge derived from internal symmetries transforms as a Lorentz
scalar. In particular, theDirac norm k‰k is invariant under Lorentz transformations
of the bispinor fields‰.x/.

13 | Hamiltonian:

i | Since the Dirac equation is first order in time, we can easily bring it into Schrödinger form
and identify the Hamiltonian as the generator of time translations:

Eq. (7.83) ,

h
i„0@t C i„c

i@i �mc
2
i
‰ D 0 (7.108)

Use .0/2 D 1!

i„@t‰ D
h
�i„c0 i@i C 

0mc2
i
‰ (7.109)
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ii | Let us define the new matrices:

ˇ WD 0 D

�
0 1

1 0

�
; ˛i WD 

0 i D

�
�� i 0

0 � i

�
i D 1; 2; 3 (7.110)

with ˇ2 D 1 D ˛2i and f˛i ; j̨ g D 0 D f˛i ; ˇg for i ¤ j , and in particular

ˇ� D ˇ and ˛
�
i D ˛i : (7.111)

¡! Note that the spatial gamma matrices are anti-Hermitian: . i /� D � i .

iii | With these matrices we can define the…

⁂ Dirac Hamiltonian:
OHDirac D �i„c Ę � r C ˇmc

2
D c Ę � Ep C ˇmc2 (7.112)

with Ę D .˛1; ˛2; ˛3/ and the ↓ momentum operator Ep D �i„r.

! The Dirac Hamiltonian is Hermitian:
(With respect to the standard inner product on L2 ˝C4):

OH
�
DiracD c Ę

�
� Ep� C ˇ�mc2 D c Ę � Ep C ˇmc2 D OHDirac (7.113)

Here we use that the momentum operator is self-adjoint (Hermitian) for (a dense subset of )
functions in L2.R3;C/:

h j Ep�i D

Z
d3x  �.�i„r�/ D

Z
d3x .�i„r /�� D h Ep j�i : (7.114)

We used partial integration and lim
jExj!1

�.Ex/ D 0 D lim
jExj!1

 .Ex/ for admissible functions.

iv | The Dirac equation then takes the Schrödinger form

i„@t‰.x/ D OHDirac‰.x/ (7.115)

In this form its Lorentz covariance is no longer manifest.

v | Eq. (7.102) conserved! ^ Inner product on L2 ˝C4:

h‰jˆi WD

Z
d3x ‰�.t; Ex/ˆ.t; Ex/ with k‰k D

p
h‰j‰i (7.116)

This inner product is constant under the evolution of the Dirac equation:

Eq. (7.113) & Eq. (7.115) )
d
dt
h‰jˆi $ 0 (7.117)

• This generalizes our previous finding in Eq. (7.102) about the conserved norm.
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• That the inner product is constant is straightforward to show:

d
dt
h‰jˆi D

Z
d3x

h
‰� P̂ C P‰�ˆ

i
(7.118a)

7.115
D

1

i„

Z
d3x

�
‰�

�
OHDiracˆ

�
�

�
OHDirac‰

��
ˆ

�
(7.118b)

7.113
D

1

i„

Z
d3x

h
‰�

�
OHDiracˆ

�
�‰�

�
OHDiracˆ

�i
D 0 (7.118c)

14 | Conclusion:

Let us summarize our findings and compare them to the Klein-Gordon equation:

Klein-Gordon Equation Dirac Equation

.@2 CM 2/� D 0 .i =@ �M/‰ D 0

Time derivative second order first order

Function space L2.R1;3;C/ L2.R1;3;C2 ˚C2/

Wavefunction Complex scalar field �.x/ Complex bispinor field‰.x/

Conserved form i

Z
d3x

�
��
1
P�2 � P�

�
1�2

� Z
d3x ‰�1‰2

Positive definite? 7 3

Hermitian
Hamiltonian? 7 3

!What about the eigenenergies and eigenstates of OHDirac?

7.2.1. Free-particle solutions of the Dirac equation

15 | Eq. (7.86): Solutions of the Dirac equation satisfy the Klein-Gordon equation component-wise:

Eq. (7.34)
�����! Ansatz:

‰˙.x/ D  ˙.p/e� i
„
px with p0 D

E

c
D

q
Ep2 Cm2c2 > 0 (7.119)

with complex-valued four-component ⁂ bispinor

 ˙.p/ �

�
 ˙
L

 ˙
R

�
2 C4

' C2
˚C2 : (7.120)

• We setp0 > 0 for both positive (C) and negative (�) energy/frequency solutions and change
the sign of p in the exponent (to simplify the discussion below).

• Note that px D p�x� D Et � Ep � Ex.

16 | Eq. (7.119) in Eq. (7.83) yields:

.˙�p� �mc/ 
˙.p/ D

�
�mc ˙p�

˙p N� �mc

��
 ˙
L

 ˙
R

�
D 0 (7.121)

with p� D p��� and �� D .1; �x; �y ; �´/ and N�� D .1;��x;��y ;��´/.
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17 | Mathematical facts (check these!):

• .p�/.p N�/ $ p2 D m2c2

• Eigenvalues of p� and p N� : p0 ˙ j Epj ! for p0 > 0 and m ¤ 0 positive spectrum

! p� and p N� are invertible and the positive square roots
p
p� and

p
p N� are Hermitian.

18 | ^  ˙
L �

p
p� �˙ with arbitrary, normalized [.�˙/��˙ D 1] ⁂ spinor �˙ 2 C2:

Eq. (7.121) ) �mc
p
p� �˙

˙ p�  ˙
R D 0 (7.122)

Use
p
p�
p
p N� D mc:

 ˙
R D ˙

mc
p
p�

�˙
D ˙

p
p N��˙ (7.123)

!  ˙
L and  ˙

R are now parametrized by the spinor �˙ 2 C2 (which is unconstrained!).

The second equation in Eq. (7.121) yields the same solution.

19 | Solutions:

Let us adopt the more conventional notation

�C
7! �

��
7! �

and
 C
7! u

 �
7! v

(7.124)

and choose the spinor basis �s; �s (s D";#) with

�"; �"
D

�
1

0

�
and �#; �#

D

�
0

1

�
: (7.125)

Then linearly independent solutions of the free Dirac equation can be written as:

‰C

Ep;s
.x/ D

�p
p��s
p
p N��s

�
„ ƒ‚ …

us. Ep/

e� i
„
px (positive energy solutions)

‰�

Ep;s
.x/ D

� p
p��s

�
p
p N��s

�
„ ƒ‚ …

vs. Ep/

eC i
„
px (negative energy solutions)

(7.126a)

(7.126b)

with p� D .p0; Ep/, p0 D
p
Ep2 Cm2c2 > 0 and s D";#.

! Four linearly independent solutions for each 3-momentum Ep (˙ and s D 1; 2).

You can easily check that Eq. (7.126) form an orthogonal eigenbasis of the Dirac Hamiltonian:

OHDirac‰
˙

Ep;s
$ ˙E Ep‰

˙

Ep;s
with spectrum E Ep D

p
p2c2 Cm2c4 : (7.127)

Their orthogonality follows with the identities

Œur . Ep/��us. Ep/ $ 2
c
E Epı

rs ; Œvr . Ep/��vs. Ep/ $ 2
c
E Epı

rs ; Œur . Ep/��vs.� Ep/ $ 0 : (7.128)

! The Dirac equation still has negative-energy solutions. (7.129)
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20 | Interpretation:

• The negative energy solutions are not problematic as long as we consider a single particle
(electron) without interactions (this is also why we can apply the Dirac equation to describe
the hydrogen atom, → below). However, in reality the electron couples to a dynamic elec-
tromagnetic field and therefore could emit a photon (thereby lowering its energy). If the
negative energy eigenstates really exist, there is no reason why this process should terminate;
as a consequence, no stable electrons should exist.

Dirac writes in Ref. [92]:

It is true that in the case of a steady electromagnetic field we can draw a distinction
between those solutions [..] with E positive and those with E negative and may assert
that only the former have a physical meaning (as was actually done when the theory
was applied to the determination of the energy levels of the hydrogen atom), but if a
perturbation is applied to the system it may cause transitions from one kind of state to
the other. In the general case of an arbitrarily varying electromagnetic field we can make
no hard-and-fast separation of the solutions of the wave equation into those referring to
positive and those to negative kinetic energy. Further, in the accurate quantum theory in
which the electromagnetic field also is subjected to quantum laws, transitions can take
place in which the energy of the electron changes from a positive to a negative value even
in the absence of any external field, the surplus energy [..] being spontaneously emitted
in the form of radiation. [..] Thus we cannot ignore the negative-energy states without
giving rise to ambiguity in the interpretation of the theory.

Dirac suggested a “fix” for this problem [92]: Because the electron is a fermion, it obeys
the Pauli exclusion principle. Thus one can imagine that (for some reason) all the negative
energy states are already occupied by electrons. The electrons we see can then only occupy
the positive energy states and cannot decay to states of arbitrarily low energy. This construct
is know as the ↑ hole theory because creating a“hole” in this ↑ Dirac sea of electrons with
negative energy can be viewed as an excitation with positive energy. Dirac’s holes are of
course a precursor to what we know today as ↑ antiparticles. (Dirac didn’t think of it this
way, he conjectured that the holes in his sea of electrons are the protons!)

• However, Dirac’s interpretation is not how we deal with the negative-energy solutions today:
Within the modern framework of ↑ relativistic quantum field theories, the four single-particle
wave functions are associated (through “second” quantization of the Dirac field and the
construction of a fermionic ↑ Fock space) to two particle types, both with positive energy and
two internal spin-1

2
states:

Type Momentum Spin Energy Charge

‰C

Ep;"
W fermion C Ep C

1
2
CE Ep C1

‰C

Ep;#
W fermion C Ep �

1
2
CE Ep C1

‰�

Ep;"
W antifermion C Ep �

1
2
CE Ep �1

‰�

Ep;#
W antifermion C Ep C

1
2
CE Ep �1

(7.130)

Here“Spin” refers to the ↓ spin-polarization quantum number m´ D ˙12 .

! Take home message:

Relativistic quantum mechanics predicts spin and antiparticles. (7.131)
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The negative energy solutions (and therefore the existence of antiparticles) are a necessary
feature of relativistic quantummechanics (more precisely: relativistic quantum field theories,
via the ↑ CPT-theorem).

By contrast, the fact that particles can have an internal angularmomentum (spin), and that this
angular momentum can take half-integer values S D 0; 1

2
; 1; 3

2
; : : : is not a relativistic feature

per se: Spin enters quantum mechanics the moment one considers spatial rotations and its
representations on the Hilbert space. Because these can be ↑ projective, one is forced to study
the irreducible linear representations of SU.2/ – the double cover of the rotation group SO.3/
– which happen to be labeled by the“spin quantum numbers”S D 0; 1

2
; 1; 3

2
; : : :. Now, since

the rotation group is a subgroup of the homogeneous Lorentz group, SO.3/ � SOC.1; 3/,
the moment a quantum theory is relativistic [i.e., features a representation of SOC.1; 3/],
spin enters the stage automatically. However, you can describe quantum particles with spin
without making quantum mechanics relativistic.

• The Dirac equation applies to all spin-1
2
fermions. The most prominent example is of course

the electron e� and its associated antiparticle, the positron eC. However, all other elementary
fermions, namely leptons (like the muon/antimuon, the tau/antitau and the neutrinos) and
the six quark/antiquark pairs, are described by the Dirac equation as well.

7.2.2. The relativistic hydrogen atom

21 | Dirac equation with a static EM field:

To couple the Dirac field‰ in a gauge- and covariant way to a static EM field A�, we use the same
trick as for the Klein-Gordon equation:

← Minimal coupling Eq. (7.38)!

@� 7! D� D @� C iQA� ) =@ 7! =D D =@C iQ =A D �@� C iQ
�A� (7.132)

For an electron it isQ D � e
„c

with e > 0.

!

.i =D �M/‰ D 0 (7.133)

In this form, the Dirac equation is manifest Lorentz- and gauge invariant.

We can expand Eq. (7.133) to obtain a less abstract (but more convoluted) expression:�
i�@� �Q

�A� �M
�
‰ D 0 (7.134a)

,
�
i„0@t C i„c

i@i � q
0' C q iAi �mc

2
�
‰ D 0 (7.134b)

,

h
i„@t C i„c Ę � r � q ' C q Ę � EA � ˇmc

2
i
‰ D 0 (7.134c)

Here we usedQ D q
„c

,M D mc
„
, and A� D .';� EA/; q is the charge of the particle.

In Schrödinger form the Dirac equation reads then:

i„@t‰ D
h
�i„c Ę � r C q ' � q Ę � EAC ˇmc2

i
‰ (7.135a)

i„@t‰ D
h
c Ę �

�
Ep � q

c
EA
�
C q ' C ˇmc2

i
„ ƒ‚ …

OHDirac;A

‰ (7.135b)
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22 | Choose the Coulomb potential (of the proton)

'.x/ D
e

jExj
and EA D E0 (7.136)

and set q D �e (charge of the electron)!

i„@t‰ D

�
�i„c Ę � r �

e2

jExj
C ˇmc2

�
‰ (7.137)

With the ansatz‰.t; Ex/ D  .Ex/e� i
„
Et one obtains the time-independent eigenvalue problem�

�i„c Ę � r �
e2

jExj
C ˇmc2 �E

�
 .Ex/ D 0 with  D

�
 L
 R

�
W R3 ! C4 : (7.138)

Note that ˇ (unlike ˛i ) is an off-diagonal block matrix that mixes the two spinors  C and  �; this
complicates the solution. However, one can solve Eq. (7.138) exactly and compute the eigenvalues
E and eigenstates  .Ex/.

23 | Solution:
�
�! Eigenenergies (including the rest energy of the electron):

En;j D mc
2

8̂̂̂<̂
ˆ̂:1C

˛2�
n � j � 1

2
C

q�
j C 1

2

�2
� ˛2

�2
9>>>=>>>;

� 1
2

(7.139)

with

• ↓ principal quantum number n D 1; 2; : : :

• ↓ total angular momentum quantum number j D 1
2
; 3
2
; : : : ; n � 1

2

• ↓ fine-structure constant ˛ � 1
137

The principal quantum number n D 1; 2; : : : constrains the allowed orbital angular momentum
to l D 0; 1; : : : ; n � 1. The allowed total angular momentum is then given by the usual rules of
angular momentum addition: jl � 1

2
j � j � jl C 1

2
j (in integer steps, s D 1

2
is the electron spin).

So for example n D 1 allows only for l D 0 and therefore j D 1
2
; this is the 1S1=2 orbital and

the ground state of the hydrogen atom. For n D 2 one finds again l D 0 with j D 1
2
(the 2S1=2

orbital) but also l D 1 with j D 1
2
and j D 3

2
(the 2P1=2 and 2P3=2 orbitals – which are no longer

degenerate becauseE2;1=2 ¤ E2;3=2).

This result explains why in the hydrogen spectrum the degeneracy of the 2S1=2 and 2P3=2 orbitals is
lifted whereas the 2S1=2 orbital remains degenerate with the 2P1=2 orbital (← fine-structure).

!

The Dirac equation explains the fine-structure of the hydrogen atom ,. (7.140)

Note: You may have encountered the following Hamiltonian for the hydrogen atom with added
relativistic corrections:

OHrel D
Ep2

2m
�
e2

r„ ƒ‚ …
Non-rel.

hydrogen atom

�
1

2mc2

�
p2

2m

�2
„ ƒ‚ …
Rel. kinetic energy

C
e2

2m2c2

EL � ES

r3„ ƒ‚ …
Spin-orbit coupling

�
e2„2

8m2c2
�

�
1

r

�
„ ƒ‚ …

Darwin term„ ƒ‚ …
Relativistic corrections

: (7.141)

This Hamiltonian can reproduce the fine-structure as well. It has several drawbacks, though:
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• It is only an approximation.

• It is hard to solve (perturbation theory!).

• The Schrödinger equation i„@t D OHrel is not manifestly Lorentz covariant.

• The relativistic corrections are ad hoc and seemingly independent of each other.

Luckily, Eq. (7.141) does not have to appear out of thin air; one can show via a complicated derivation
(↑ Foldy-Wouthuysen transformation) that it is indeed the non-relativistic limit [with corrections
in order .v=c/2] of the Dirac equation Eq. (7.138) in a Coulomb potential (without the rest energy
mc2 of the electron).

7.2.3. The electron g-factor

Besides the fine structure, there is one other “mystery” that the relativistic treatment of the electron
in terms of the Dirac equation finally explains: The non-classical ratio between the electrons internal
magnetic moment and its spin.

24 | ^ Dirac electron in homogeneous magnetic field EB D r � EA (' D 0):

Eq. (7.135b)
‰D e

� i
„

Et

HHHHHHHH)

h
c Ę �

�
Ep C e

c
EA
�
C ˇmc2 �E

i
 D 0 (7.142)

with bispinor

 D

�
 L
 R

�
W R3 ! C4 : (7.143)

Using Eq. (7.110) we can write this equation in terms of the two spinors:�
�cE� E� �E

�
 L Cmc

2 R D 0 (7.144a)�
CcE� E� �E

�
 R Cmc

2 L D 0 (7.144b)

Here we used E� D Ep C e
c
EA and introduced E� D .�x ; �y ; �´/.

We can now use one of the two equations to decouple the system:�
cE� E� CE

� �
cE� E� �E

�
 R C .mc

2/2 R D 0 (7.145a)

, c2.E� E�/2 R �
�
E2 � .mc2/2

�
 R D 0 (7.145b)

25 |
ı
�! Non-relativistic approximation:

We can use E2 � .mc2/2 D .E � mc2/.E C mc2/ � 2mc2 QE with QE D E � mc2 to find a
non-relativistic approximation of Eq. (7.145b):

1

2m
.E� E�/2 R D QE R (7.146)

Last, use the Pauli algebra � i�j D ıij C i"ijk�k and Bk D "ijk.@iAj / to show that .E� E�/2 $
E�2 C „e

c
E� � EB . We end up with the non-relativistic, time-independent Schrödinger equation of a

charged particle in a magnetic field with a spin-dependent Zeeman term:"
1

2m

�
Ep C

e

c
EA
�2„ ƒ‚ …

Particle in mag. field

C
e„

2mc
E� � EB„ ƒ‚ …

Zeeman effect

#
 R D QE R (7.147)
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! Potential energy of electron in magnetic field:

Emag
def
D �E� � EB

7.147
D

e„

2mc
E� � EB (7.148)

26 | !Magnetic moment (operator) of the electron:

E�e D �
e„

2mc
E� D ge

�B

„

ES (7.149)

with ↓ spin operator ES D „
2
E� and ↓ Bohr magneton �B D e„

2mc
and

⁂ Electron g-factor ge D �2 : (7.150)

27 | Comments:

• What makes Eq. (7.149) with ge D �2 remarkable is that it is not what one would expect
if the magnetic moment would be caused by a charge flying along a tiny orbit with angular
momentum ES . Indeed, a straightforward classical calculation yields for the relation between
magnetic moment and (orbital) angular momentum EL:

E�L D gL
�B

„

EL with gL D �1 : (7.151)

So, quite surprisingly, the Dirac equation predicts that the internal angular momentum (=
spin) produces “twice as much”magnetic moment as one would naïvely expect.

That this really is the case can be easily measured: Just apply a magnetic field to hydrogen
atoms and observe how strongly their spectral lines split as a function of the magnetic field
strength (↑ anomalous Zeeman effect). This effect had already been experimentally observed
at the end of the 19th century [93, 94]. Since it was unknown at the time that electrons had
spin, certain line splittings could not be explained (therefore “anomalous”). The fact that
the Dirac equation explains both – the electron spin and its “non-classical” g-factor – is
therefore a remarkable feature of relativistic quantum mechanics.

• If one measures the electron g-factor really, really precisely, one finds [95]

ge D �2:00231930436118.27/ : (7.152)

You may notice that this is not exactly �2 but a tiny bit off. One cannot explain this deviation
with theDirac equation because it stems from“virtual particles” thatmodify how the electron
interacts with the EM field (and the Dirac equation is a single-particle wave equation). It is
therefore remarkable that modern theories can explain this deviation perfectly (up to error
bars), but for this one needs the machinery of ↑ relativistic quantum field theory.
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↓ Lecture 16 [09.04.24]

8. Limitations of special relativity

8.1. Reminder: special relativity

1 | special relativity in a nutshell:

• ← Inertial frames [Section 1.1]

There exists a special class of infinitely extended reference frames (equipped with Cartesian
coordinates) in which the law of inertia holds ( IN = the trajectories of free particles are
straight lines that are traversed with constant velocity). All inertial frames move relative to
each other with constant velocities:

• ← Einstein’s principle of (special) relativity SR [Section 1.3]

The laws of physics (orange boxes in the sketch below) have the same form in all inertial
systems. This extends Galilei’s principle of relativity which makes this claim only for the
realm of mechanics. The modifier“special” emphasizes that the principle makes only claims
about the special class of inertial systems:

We characterized SR previously as follows: No experiment can distinguish between inertial
frames. This description can be misleading, so let me prevent any misconceptions: What we
mean is that there is no local physical experiment that you can perform in a sealed box (at rest
in some inertial system) that allows you to figure out in which inertial system your box is at rest.
In this way you probe the form of physical laws (e.g., whether there is an additional Coriolis
term in your equation of motion or not) and thus probe the validity of SR as formulated
above.
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The statement above does not mean that there is no operational way to label specific inertial
systems. For example, we can define the (approximate) inertial frame in which the center of
Earth is at rest and, for comparison, another inertial frame in which the ↑ cosmic microwave
background (CMB) has no dipole structure (the latter has a velocity of roughly 360 km s�1

wrt. the former). Clearly there are experiments to decide whether you are in one or the other
(measure the CMB dipole and/or the velocity of Earth relative to you). This does not violate
SR though, because all phenomena you observe in these frames of reference are described
correctly by the same equations (e.g. you can use the same Maxwell equations to describe the
CMB radiation in both inertial frames). This is also why the existence of the global inertial
frame labeled by a CMBwithout dipole is not in conflict with special relativity. There
is a difference between physical states and physical laws; SR only makes claims about the latter.

• ← Lorentz transformations [Section 1.5]

The coordinate transformations that map the record of physical events from one inertial
system to another are given by Lorentz transformations (more generally: Poincaré transfor-
mations). (Proper orthochronous) Lorentz transformations form a group SOC.1; 3/ and are
parametrized by a three-dimensional rotation and a three-dimensional boost velocity. They
linearly map the spacetime coordinates .t; Ex/ of an event in one inertial system K to the
spacetime coordinates .t 0; Ex0/ of the same event in another inertial systemK 0.

A pure boost in x-direction has the form:

ƒ.K
vx
�! K 0/ W

8̂̂̂<̂
ˆ̂:

ct 0 D 
�
ct � vx

c
x
�

x0
D .x � vxt /

y0
D y

´0
D ´

with Lorentz factor

 D
1p

1 � v2x=c
2

(8.1)

• ← Constancy of the speed of light SL [Section 1.5]

Lorentz transformations are characterized (and differ from Galilei transformations) by the
existence of a finite maximum velocity vmax. Experience tells us to identify this velocity with
the speed of light c. Lorentz transformations then imply that this maximum velocity is the
same for all inertial observers (← relativistic addition of velocities):

Experiments ! vmax <1 , Lorentz transformations (8.2a)

vmax D1 , Galilei transformations (8.2b)

• ← Tensor calculus [Chapter 3 and Chapter 4]

Combining the principle of relativity with the assertion that Lorentz transformations translate
between inertial systems implies that the laws of nature must be expressed as equations
that are forminvariant under Lorentz transformations (← Lorentz covariance). The Lorentz
covariance of a theory can be quite tedious to show and even more tedious to ensure when
constructing it from scratch. (Recall Maxwell equations in their conventional form!) This is
why we prefer equations in which the Lorentz covariance is manifest. To achieve this, we
developed tensor calculus as a “toolbox” to construct Lorentz covariant equations from
Lorentz scalars, vectors, tensors,….

For example, the equation of motion for a charged particle in an electromagnetic field reads
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and transforms as follows:

Inertial systemK‚ …„ ƒ
dp�i
d�
D
qi

c
F �� u

�
i

Np� D ƒ
�
�p
�

Nu� D ƒ
�
�u
�

NF
�
� D ƒ

�
˛ƒ

ˇ
� F ˛ˇ

���������������!

Inertial system NK‚ …„ ƒ
d Np�i
d�
D
qi

c
NF �� Nu

�
i (8.3)

2 | Problems:

Despite the undeniable success of special relativity, it’s not just sunshine and roses:

• What about gravitation?

In our discussion of special relativity we explicitly avoided the phenomenon of
gravitation (we will see below why). This makes special relativity clearly incomplete
(and special) as a description of nature (which, on very large scales, is dominated by the
gravitational force) and asks for a more general theory.

• Why are inertial coordinate systems special?

special relativity describes physics with respect to a particular class of reference
frames (inertial frames) in a particular class of coordinates (Cartesian coordinates). Only
in these coordinate frames the laws of nature take their “simplest” form and the Lorentz
transformation only translates between these special coordinate systems. However, in our
very general discussion of differential geometry (Chapter 3) we established the notion of
“geometric objects” that are independent of coordinates. We also interpreted coordinates as
mathematical auxiliary structures to label events, and denied their physical existence (“coor-
dinates do not exist”). special relativity does not live up to this rather fundamental
claim with its focus on inertial coordinate systems. Shouldn’t there be a formulation of
physics in which coordinates play no role at all?

• What is the origin of inertia?

Remember Newton’s bucket (p. 14)? It’s punchline was to argue for the existence of an entity
(“absolute space”) which determines whether an object is accelerated or not. special
relativity, of course, disposes of Newton’s absolute space wrt. to which position and
velocity can be measured (no ether!). The existence of such, however, was never implied by
the bucket experiment anyway, which asks about the absolute notion of acceleration. And
special relativity is silent about the origin of inertia and what determines whether the
water in Newton’s bucket is concave or flat (we simply assumed that inertial frames exist, we
neither asked where they come from nor what makes them inertial in the first place). This
situation is clearly unsatisfactory.

3 | Non-problems:

Sometimes one hears that acceleration is a problem for special relativity. This is not so:

• Accelerated motion 3

special relativity of course describes accelerated objects perfectly well. Recall our
concept of 4-acceleration in Section 5.1, the relativistic equation of motion in Eq. (5.6), and
the validity of the proper time integral for arbitrary time-like trajectories in Eq. (2.25). Note
that these equations are only valid in inertial frames, though.

• Accelerated observers 3

While our equations were given in inertial systems (where, according to Einstein’s principle
of relativity, the laws of physics take the same and simplest form), special relativity
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can describe the physics in accelerated non-inertial frames as well (e.g. using the concept of
instantaneous rest frames). In such non-inertial coordinate systems the physical laws do not
take their simplest forms and can look messy (in particular, one cannot Lorentz transform
into these frames). This, however, does not mean that we cannot describe what happens in
such systems. As an example recall the relativistic rocket of → Problemset 6. (For details see
Chapter 6 inMisner et al. [3] and also Einstein’s original work [96].)

8.2. The special role of gravity

Let us now focus on the problem of incorporating gravity into special relativity. It is important
to understand why the gravitational force poses a fundamental problem for the framework of special
relativity (and is not just a technical inconvenience).

Note on nomenclature:

In English, there are two terms with slightly different meaning (if we take Merriam-Webster as a reference):

Gravity: the gravitational attraction of the mass of the Earth, the moon, or a planet for bodies at
or near its surface

Gravitation: a force manifested by acceleration toward each other of two free material particles or
bodies or of radiant-energy quanta

This distinction has no counterpart in German as far as I can tell (perhaps“Schwerkraft” vs. “Gravita-
tion”?). Given that even the English literature does not seem to be consistent, I will use these two terms
interchangeably. Their context will suffice to establish semantic clarity.

4 | Recall Newton’s law of universal gravitation:

i | ^ Mass distribution �.Ex/!

r
2�.Ex/ D 4�G�.Ex/ ! Gravitational potential �.Ex/ (8.4)

G � 6:674 30 � 10�11m3s�2=kg: Gravitational constant

Please appreciate the smallness of G (and therefore the weakness of gravity) as compared
to the human-scale units in which it is given. Gravity is, if compared to the other three
fundamental forces, by far (really really really far) the weakest force. It is a fundamental
unsolved problem of physics why this is so.

! Equation of motion of test mass (e.g. a satellite):

mI
REr D �mGr�.Er/ (8.5)

mI: inertial mass
mG: gravitational mass

We will discuss the relation ofmI andmG later (Section 9.1).

ii | Example: Static point massMG � mG as source in origin (e.g. Earth):

�.Ex/ D �
GMG

jExj
) mI

REr D EFG D �G
mGMG

r2
Or (8.6)

If the source is dynamic as well, Er is the relative distance vector between the two masses and
mI must be replaced by the reduced mass of the two bodies.
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iii | Observation: Equations [especially Eq. (8.4)] are not Lorentz covariant!

You can check that they are ← Galilei invariant, recall Eq. (1.18).

This is no surprise: We already know fromour discussions in Section 6.4 that inrelativity,
classical forces can only act locally, and not at a distance. Interactions between distant objects
must be mediated by dynamical degrees of freedom (a“field”) to obey the speed limit for
information propagation imposed by Lorentz symmetry. But Newton’s gravitational potential
� is static and not dynamic!

5 | Problem: “Action at a distance” (Gravitational force acts instantaneously and has no dynamics.)

Isaac Newton writes in a letter to Bentley in 1692 [97]:

It is inconceivable, that inanimate brute Matter should, without the Mediation of something
else, which is not material, operate upon, and affect other Matter without mutual Contact,
as it must be, if Gravitation in the Sense of Epicurus, be essential and inherent in it. And
this is one Reason why I desired you should not ascribe innate Gravity to me. That Gravity
should be innate, inherent and essential to Matter, so that one Body may act upon another at
a Distance through a Vacuum, without the Mediation of any thing else, by and through which
their Action and Force may be conveyed from one to another, is to me so great an Absurdity,
that I believe no Man who has in philosophical Matters a competent Faculty of thinking, can
ever fall into it. Gravity must be caused by an Agent acting constantly according to certain
Laws; but whether this Agent be material or immaterial, I have left to the Confederation of
my Readers.

Thus even Newton himself was not entirely satisfied with his law of universal gravitation (which
describes an action at a distance) and anticipated some entity that mediates the force.

6 | First try: Make gravitational potential a dynamic field:

Poisson equation Eq. (8.4) !

Wave equation: @2�.t; Ex/ D

�
1

c2
@2t � r

2

�
� D �4�G �.t; Ex/ (8.7)

!Gravity propagates with the speed of light,
�
�! Problems:

For a detailed study of a fully specified scalar theory of gravity: → Problemset 1 (also Exercise 7.1
inMisner et al. [3]). See also Ref. [98].

• Electromagnetic field cannot couple to gravity! No bending of light /

Today it is a well tested fact that light follows a curved trajectory in strong gravitational fields
(→ later). Thus any theory that does not couple the EM field to gravity must be incorrect.

Here is a quick-and-dirty explanation why a theory of the form Eq. (8.7) fails to couple to the
electromagnetic field in a relativistic setting:

Since � is assumed to be a scalar field, for Eq. (8.7) to be Lorentz covariant, � must be a
scalar as well. In a relativistic theory, energy and (inertial) mass are equivalent (E0 D mc2).
If we assume that gravitational mass and inertial mass are equivalent (→ later), this implies
that energy (density) must be a source of gravity. The problem is that the energy (density)
(of any theory) is the 00-component of the ← energy-momentum tensor T 00 (this is the charge
density associated to the Noether current that comes from translation symmetry in time); in
particular, the energy density is not a scalar and therefore cannot be used as a source on the
right-hand side of Eq. (8.7). The only scalar we can construct from the energy-momentum
tensor is the ⁂ Laue scalar T D T

�
� D ���T

�� , i.e., the trace of the EMT. Thus a
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simplistic but fully Lorentz covariant form of scalar gravity is

@2� D �4�G
c2 T : (8.8)

(For a complete theory one also needs a Lorentz covariant analog of Eq. (8.5) which deter-
mines the motion of matter in dependence of the gravitational field �. This equation is not
relevant for the following argument.)

If the EM field couples to gravity, it must also be a source of gravity. This coupling is then
described by the EMTofMaxwell theory Eq. (6.110) (in its symmetric, gauge-invariant form).
The problem is that the trace of this particular EMTvanishes identically,Tem D .Tem/

�
� D 0

(check this!), so that the scalar gravitational field and the EM field do not “feel” each other.
In particular, there is no bending of light in the vicinity of massive bodies.

• Wrong value for perihelion precession (even with a wrong sign) /

The↑ perihelion precession ofMercury deviatesmeasurably from itsNewtonian value (which is
caused by perturbations by other planets). For Einstein, this anomaly served as a“litmus test”
on his quest to generalize special relativity, and his first application of general
relativity was the successful explanation of Mercury’s anomalous perihelion precession
[14] (→ later). Thus any theory that does not predict the correct value for the perihelion
precession cannot be correct.

Historically, this first approach [Eq. (8.7)] to patch up Newton’s theory and make it consistent with
special relativity goes back to the Finnish physicistGunnar Nordström. He quickly
dismissed Eq. (8.7) because of fundamental problems (especially its linearity, → below). He then
proposed another (non-linear) scalar theory of gravity (↑ Nordström’s theory of gravitation) which
circumvented the most glaring issues but still failed to predict the bending of light (for the same
fundamental reason sketched above) and produced the wrong value for the perihelion precession
(even with a wrong sign!). Nonetheless, the theory merits consideration because it led Einstein
andAdriaan Fokker to a groundbreaking realization [99]: Properly reformulated, the scalar
field could be interpreted as a local “stretching” of the Minkowski metric. For the first time there
was a clear formal link between a relativistic theory of gravity and a geometric deformation of
spacetime, where the shape of the latter is determined by the distribution of mass and energy.

For a historical account of Nordström’s gravity and its role in the genesis of general relativ-
ity see Refs. [100, 101].

7 | Second try: Make potential a vector field:

Since scalar gravity fails tomatch observations, a natural next stepwould be to consider a vector field
and treat gravity analogous to Maxwell theory. This is also reasonable insofar as the gravitational
potential of a point mass in Newton’s theory and the Coulomb potential of a point charge in
Maxwell’s theory share the same form. For example, we can take Eq. (6.121) as a blueprint and
propose an analogous Lagrangian for a vector gravitational field:

Eq. (6.121)! ^ Vector field �� & particle with trajectory y�.�/:

SGŒy; ��
‹
D
C1

16�G

Z
d4x G��G��„ ƒ‚ …

Gravitational field

�mc

Z p
Py� Py�d�„ ƒ‚ …

Relativistic particle

�
m

c

Z
�� Py

�d�„ ƒ‚ …
Coupling

with “charge”m

(8.9)

with Py� D dy�

d� and the “gravitational field strength tensor”G�� WD @��� � @���.

• Note the sign difference compared to Eq. (6.121)!
This ensures that equal charges (= masses) attract each other.
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• The Lagrangian for the relativistic particle differs from the one given in Exercise 7.2 in
Misner et al. [3]; the two are equivalent and lead to the same equations of motion.

�
�! Results:

For details see Exercise 7.2 inMisner et al. [3]; see also Ref. [98].

• No bending of light /

• Wrong perihelion precession /

• Gravitational waves have negative energy /

8 | Third try: Make potential a tensor field:

At that point, desperation starts to kick in. But since scalar and vector fields failed miserably, we
have no other choice: add another index and consider a tensor field. Interestingly, this makes it
rather straightforward to write down a Lorentz-covariant modification of Eq. (8.8) [or Eq. (8.4)]
where we no longer must butcher the EMT by taking a trace:

^ Symmetric tensor field ��� D ���:

@2��� D �
16�G

c4
T �� (8.10)

The EMT on the right is the symmetric BRT of whatever matter occupies space (Section 6.3.2).
�
�! Results:

For details: → Problemset 1 (also Exercise 7.3 inMisner et al. [3])

• Light is bent around gravitational potentials ,

• Gravitational waves have positive energy ,

• Describes perihelion precession not correctly /

• Theory not self-consistent /

Notes:

• Eq. (8.10) will describe the linearized version of the correct field equations of general
relativity (the → Einstein field equations) with ��� essentially the (small) deviation of
the metric tensor from flat Minkowski space.

• That the linear tensor theory of gravity Eq. (8.10) is not self-consistent follows if one com-
pletes the theory with dynamic matter (which is the source of the gravitational field, but also
influenced by the latter). Then one can show that this system of differential equations as no
solution.

• As we will discuss below, the deficiency of this theory is its linearity (in the gravitational
field); this is the root cause for its inconsistency and wrong predictions. And here comes a
fascinating insight: One can show [102] that if one systematically fixes the inconsistencies
of this theory, it becomes inevitably non-linear and one eventually ends up with the correct
equations of general relativity (which we will find much later via a different route)!

9 | So far, all our tentative theories of relativistic gravity failed (none of them describe observations
correctly and they even suffer from intrinsic inconsistencies). There is a simple argument why this
must be so, and why the correct theory must be more complicated:

i | The source (= charge) of gravity is, by definition, the gravitational mass mG.

This is a physically vacuous statement.
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ii | A relativistic theory of gravity must be a field theory with a dynamical field.

This is necessary so that gravity does not propagate faster than the speed of light.

iii | Since the field is dynamical, it has a non-vanishing energy density.

Recall that energy is the Noether charge of time translations and therefore generates the
time evolution (think of the Hamiltonian in quantum mechanics).

iv | As a relativistic theory it must obey the mass-energy equivalence: E0 D mIc
2.

We writemI to emphasize that special relativity only knows about inertial mass.

v | Experiments tell us that inertial and gravitational mass are the same: mI D mG.

We will discuss this, and the closely related → equivalence principle, in detail below.

vi | Thus a gravitational field has a non-vanishing density of gravitational mass mG.

Please appreciate how strange this is! If an analog statement were true for Maxwell theory
(which it is not), electromagnetic waves would be electrically charged, and other electromag-
netic waves could scatter off them!

vii | Excitations of the gravitational field are sources of the gravitational field.

This means that a relativistic theory of gravity must allow for self-interaction. In particular,
it cannot feature a ↓ superposition principle and the field equations must be non-linear.

!

The field theory of gravity must be non-linear and allow for self-interactions.

• All of the above theories are linear in the gravitational field; hence they are bound to fail!

• This argument also clarifies the fundamental difference between relativistic theories of gravity
and electrodynamics (both of which are classical field theories that mediate forces): The EM
field is also dynamical and carries energy, hence, via the mass-energy equivalence and the
equivalence of inertial and heavy mass, it is a source of gravity. But the mass/energy carried
by the EM field is not the source of the EM field (electrical charge is). Thus Maxwell theory
does not close the“vicious circle” from above and can be both relativistic and linear.

• If you want an even more boiled down version:

Gravity is special in relativity, because special relativity has something to say
about (inertial) mass (E0 D mIc

2) and the latter is – via the → equivalence principle – the
source of gravity.
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↓ Lecture 17 [16.04.24]

10 | Yet another problem:

Besides the formal complications encountered above, there are also less formal yet fundamental
lines of reasoning that suggest that the phenomenon of gravitation and the premises of special
relativity are incompatible:

i | Experimental facts:

• Gravity cannot be shielded.

Contrary to all other forces (which have negative charges), there is no negative mass.

• Gravity is typically inhomogeneous.

In a gravitationally homogeneous universe there are no planets and we wouldn’t exist.

• In free fall, gravity is exactly countered by the inertial force.

We will discuss this in more detail later (→ equivalence principle).

ii | For the machinery of special relativity to work, we need inertial frames.
Can we find inertial frames in the presence of gravity?

Thought experiment:

a | ^ Laboratory on the surface of Earth:

! Not an inertial system /

The problem is that we cannot simply shroud our lab by some magic material that
shields the gravitational force. By contrast, this can be done for the electromagnetic
field (↓ Faraday cage, ↑ Mu-metal). Note that this is not a technical problem, it is a
fundamental one!

b | ^ Interior of orbital space station:

! Approximate inertial system ,

The space station is equivalent to a free falling laboratory, where the gravitational force
is canceled exactly by inertia. What makes a space station so convenient is that it also
has orbital velocity so that it“falls around Earth” and therefore can be usedmuch longer
than a free falling lab that eventually crashes on the surface.
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This is a situation where it actually makes sense to use the terms“gravity” and“gravita-
tion” differently: In the space station, there is no gravity (the astronauts float), but there
is a gravitational field! (The latter is just canceled by the inertial force due to free fall.)
This situation is different from being in a spaceship far away from Earth in interstellar
space where no gravitational forces can be measured. (Although these two situations
cannot be distinguished from within a small space station/spaceship, → later.)

c | ^ Very large orbital space station:

↑ Tidal forces! Not an inertial system /

When we extend the size of the space station, the inhomogeneity of the gravitational
acceleration becomes noticeable and the “inertial test” IN fails. Inhomogeneous gravi-
tational fields therefore constrain the size (both in space and time) of reference systems
that satisfy the properties of an inertial system. Hence our assumption that inertial
systems cover all of spacetime (and therefore can describe arbitrary physical phenomena,
not just local ones) is invalidated by the presence of inhomogeneous gravitational fields.

Note that there is another way to detect the inhomogeneous gravitational field and make
the system non-inertial: Stay in the small spacecraft and wait longer. At some point you
will notice that the two balls drift apart—even when they are only centimeters apart.
This shows that the approximate inertial system really must be small in space and time.

d | ^ Two small orbital space stations:

! Local inertial systems accelerated wrt. each other /

If you imagine that these small inertial systems overlap on their boundaries, you could
ask how to transform the coordinates of an event in this overlap from one of these
systems into the other. Because these systems are accelerated wrt. each other, this
transformation cannot be linear, in particular it cannot be a Lorentz transformation!
There seems to be something missing; what determines this transformation?
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iii | This thought experiment leads us to the following (troubling) conclusion:

Inertial systems can only exist locally in an inhomogeneous gravitational field.

How to transform between these local inertial systems is unclear (→ later).

! Extended phenomena cannot be described by special relativity!

“Extended” here means “on the scale of gravitational inhomogeneities.”

11 | In a nutshell:

special relativity cannot…

• … describe the gravitational field itself.

• … describe physics in inhomogeneous gravitational fields.

How to fix this? ! general relativity

8.3. ‡ The gravitational redshift and curved spacetime

Quite surprisingly, one can derive some predictions of general relativity without knowledge of
the detailed theory. One is the → gravitational redshift of light, which, again without the usage of heavy
math, implies that general relativitymust describe a curved spacetime.

The following is based on Sections 7.2 and 7.3 ofMisner et al. [3] and Section 2.1 ofCarroll [4].

1 | Gravitational redshift:

Einstein already concluded in 1908 that light leaving a gravitational potential must be red-
shifted [96]. The following he showed in 1911 [103], that is, years before he finalized general
relativity.

i | ^ Particle of rest mass m in (homogeneous) gravitational potential:

In the following, we assume that inertial and gravitational mass are equal: mI D m D mG.
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ii | Step 1: Drop the particle by h! New total energy:

Etot D mIc
2
CmGgh D m.c

2
C gh/ (8.11)

iii | Step 2: Assume electron annihilates into a photon with energy:

E# D Etot (8.12)

iv | Step 3: Let the photon propagate upwards by h! New photon energy E":

• Possibility 1: Photon is not affected by gravity! E" D E# > mc
2 7

This immediately leads to a violation of energy conservation because the photon can
now be used to recreate the particle plus some kinetic energy that wasn’t there before.

• Possibility 2: Photon is redshifted by gravitational field such that E" D mc
2 3

This is the only possibility consistent with energy conservation, i.e., the photon must
loose energy just as a particle would when climbing the potential.

v | Thus we find for the photon energies:

E# D
E"

c2

�
c2 C gh

�
D E"

�
1C

gh

c2

�
(8.13)

vi | ^ ⁂ Redshift parameter ´ WD ��=� D .�" � �#/=�#

The redshift ´measures the relative change in wavelength�� wrt. a reference wavelength �.

! Gravitational redshift: (Use the photon energyE D h� D hc=�.)

1C ´ D
�"

�#

D
E#

E"

D 1C
gh

c2
(8.14)

Using the ↑ Mößbauer effect, Robert Pound andGlen Rebka verified this prediction
in 1960 with their famous ↑ Pound-Rebka experiment [104, 105].

2 | Schild’s argument:

The following reasoning goes back to Alfred Schild [106] (see also references in [3]) and
demonstrates that a relativistic theory of gravity cannot be formulated on a flat Minkowski space-
time:

i | Assumptions:

• There exists an extended inertial frameK attached to Earth’s center.
(We relax our definition and allow particles to be accelerated near earth.)

• In this frame, proper time and lengths are given by the Minkowski metric.

• There is some gravitational field (of unspecified nature) that matches observations.
(This implies the gravitational redshift derived above.)

ii | Thought experiment:

a | ^ Two observers O#;" at height ´#;" with ´" D ´# C h at rest in K
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b | Observer O# emits a light signal with wavelength �#

! Time for one wavelength: �t# D �#=c

Note that since both observers are at rest inK, their proper times and the coordinate
time of K coincide.

c | Observer O" receives the signal with wavelength �"

! Time for one wavelength: �t" D �"=c

d | Redshift! �" > �#! �t" > �t#

e | But in the Minkowski diagram of the (imagined) global inertial frame, the experiment
looks as follows:

! �t" D �t# �

Note that the only important aspect for the contradiction is that the two world lines
of the start and end of one wavelength are congruent in Minkowski space. That is, we
do not need to know how gravity affects the trajectory of light (maybe it is bent). The
only important thing is that both trajectories are bent in the same way, which is to be
expected in a static scenario where the gravitational field does not change.

iii | Conclusion:

In the presence of gravity, the trajectories of light signals in spacetime must be congruent
(if they are straight: parallel)—but at the same time their distance in time direction must
change! This is impossible in the flat (pseudo-)Euclidean geometry of Minkowski space; but
it is possible in a curved spacetime. As we will see → later, the tendency of initially parallel
“straight lines” (→ geodesics) to approach or recede from another is exactly what characterizes
a curved space(time):
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! Spacetime must be curved!

3 | We can summarize:

A Lorentz covariant theory of gravity cannot be formulated on Minkowski space.

This already suggests that we will need the more general machinery of differential geometry,
introduced in Chapter 3, to model spacetime not as flat Minkowski space, but as a more general,
curved pseudo-Riemannian manifold.
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9. Conceptual Foundations

9.1. Einstein’s equivalence principle

The wording of the equivalence priciples are paraphrased fromCarroll [4].

1 | Remember:

There are two concepts of mass in Newtonian physics:

Inertial mass mI: EF D mIEa (9.1a)

Gravitational mass mG: EF D �mGr� (9.1b)

Strictly speaking, two gravitational masses must be conceptually distinguished: The passive gravita-
tional mass is the charge that couples to the gravitational field via Eq. (9.1b). The active gravitational
mass is the source of the gravitational potential� D �GMG=r . However, given thatNewton’s third
law is valid (action equals reaction), the situation is completely symmetric and these two masses
can be identified. Thus, in the following we only distinguish between inertial and gravitational
mass.

! Gravitational acceleration:

aG D
mG

mI

GM˚

r2„ƒ‚…
g

(9.2)

It has been long known (since Galileo Galilei) that the gravitational acceleration is independent of
the material of the body (if one can ignore air resistance): All bodies fall at the same rate.

Experience:

mG

mI
D const ! Choose units appropriately:

mG

mI
D 1 (9.3)

In classical mechanics, this is just an observation; it is neither explained nor necessary for its
consistency.

2 | The Eötvös experiment [107]: (See also the later publication [108].)

While there have been earlier experiments that quantitatively tested the equivalence of inertial
and gravitational mass, the experiment by Hungarian physicist Roland Eötvösmade huge im-
provements in precision. The experiment was used by Einstein as an argument for his → equivalence
principle.
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^ Torsion balance with two different test bodies: (Details: → Problemset 1)

→ Problemset 1
ı
�!

Torque: � � mGaxl„ ƒ‚ …
¤0

�
mI

mG
�
m0

I

m0
G

�
(9.4a)

� D 0 ,
mI

mG„ƒ‚…
Material A

D
m0

I

m0
G„ƒ‚…

Material B

D const (9.4b)

! Result by Eötvös [107]:

ım

m
D
mI �mG

mI
< 3 � 10�9 (9.5)

The latest (2022) and most precise results testing the equivalence of inertial and gravitational mass
come frome the satellite-based MICROSCOPE experiment [109]; it improved the upper bound
for a violation of the equivalence to ım=m < 10�15. Recent experiments also demonstrated the
equivalence for antimatter [110].

! Experimental fact:

Inertial mass and gravitational mass are proportional (w.l.o.g. mI D mG). (9.6)

This trivial sounding assertion (when have you ever distinguished between these two masses?) has
profound consequences: Recall that special relativity is concerned with the concept of
inertia (e.g. by using inertial systems); in particular, the (rest) mass that shows up in themass-energy
equivalenceE0 D mc2 is the inertial massmI of the system. The equivalence above now links this
mass to the gravitational mass, and therefore asserts the the inert bodies of special relativity
must be affected by (and be sources of ) gravity. But special relativity had nothing to say
about gravity! Quite to the contrary: as discussed in Section 8.2, the theory cannot accomodate
gravity in a consistent way.

3 | Classical mechanics does not explain Eq. (9.6). However, if we take Eq. (9.6) for granted, a
homogeneous gravitational field vanishes in an accelerated frame:

^ N particles of (inertial = gravitational) mass mk in gravitational field:

mk
d2 Exk
dt2„ ƒ‚ …

Inertia

D mk Eg„ƒ‚…
Gravity

C

X
l¤k

EFkl.Exk � Exl/ with k D 1; : : : ; N . (9.7)
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^ Coordinate transformation into free-falling frame:

t 0 D t and Ex0
k D Exi �

1
2
Egt2 : (9.8)

This coordinate transformation is non-linear, in particular, it is not a Galilei transformation!
ı
�! Equations of motion in the free-falling coordinate system:

mk
d2 Ex0

k

dt 02
D

X
l¤k

EFkl.Ex
0
k � Ex

0
l/ with k D 1; : : : ; N . (9.9)

! No graviy in the free-falling frame!

This matches our experience and can be illustrated with the following though experiment:

4 | Caveat: Only true for homogeneous gravitational fields: mk Eg.

What about inhomogeneous gravitational fields?

Note that the inhomogeneity of gravity is essential for planets and stars to form; it is the root cause
for complexity in the world that is neccessary for life to exist. This is not a slight inconvenience we
can sweep under the rug!

! Small enough regions look homogeneous:

! Gravity can be compensated locally in an accelerated frame.

¡! This implies that there is no transformation to a global free-falling reference frame in which
inhomogeneous gravitational fields vanish. Thus acceleration and gravity are only equivalent locally;
globally, they are physically distinct. In particular, this means that the phenomenon of gravity is
not just “acceleration in disguise.” As mentioned previously, accelerated coordinate systems (and
bodies) are something that special relativity can handle. If gravity and acceleration were
equivalent globally, special relativity would be sufficient to describe gravity and there was
no need for general relativity.
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5 | Given all these facts, it is reasonable to proclaim the following principle:

§ Postulate 6: Weak equivalence principle WEP (Univesality of free fall)

In small enough regions of spacetime, the motion of freely-falling particles in a
gravitational field and free particles in a uniformly accelerated frame are the same.

(This formulation formalizes the idea sketched in the upper panel of the sketch above.)

Equivalently:

For every event, there is a local reference frame, covering small enough regions of
spacetime in its vicinity, such that gravity has no effect on the motion of arbitrary
particles in this frame and the law of inertia holds.

(This formulation formalizes the idea sketched in the lower panel of the sketch above.)

6 | Einstein’s generalization:

The local equivalence of gravity and accelerated frames is true for all physical phenomena
(and not only classical mechanics).

Einstein was aware of the Eötvös experiment and was convinced that the equivalence of inertial
and gravitational mass hinted at a deep relationship between inertia (acceleration) and gravitation.
He wrote in 1907 [96] (highlights are mine):

Bisher haben wir das Prinzip der Relativität, [..], nur auf beschleunigungsfreie Bezugssysteme
angewendet. Ist es denkbar, daß das Prinzip der Relativität auch für Systeme gilt, welche
relativ zueinander beschleunigt sind? [..]

Wir betrachten zwei Bewegungssysteme †1 und †2. †1 sei in Richtung seiner X -Achse
beschleunigt, und es sei  die (zeitlich konstante) Größe dieser Beschleunigung. †2 sei
ruhend; es befinde sich aber in einem homogenen Gravitationsfelde, das allen Gegenständen
die Beschleunigung� in Richtung derX -Achse erteilt.

Soweit wir wissen, unterscheiden sich die physikaliscben Gesetze in bezug auf†1 nicht von
denjenigen in bezug auf †2; es liegt dies daran, daß alle Körper im Gravitationsfelde
gleich beschleunigt werden. Wir haben daher bei dem gegenwärtigen Stande unserer
Erfahrung keinen Anlaß zu der Annahme, daß sich die Systeme †1 und †2 in irgen-
deiner Beziehung voneinander unterscheiden, und wollen daher im folgenden die völlige
physikalische Gleichwertigkeit von Gravitationsfeld und entsprechender Beschleuni-
gung des Bezugssystems annehmen.
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Pictorially, Einstein claims that any type of local experiment cannot distinguish gravity from accel-
eration (here, for example, some quantum mechanical scattering process):

7 | We can formalize this as follows:

§ Postulate 7: Einstein’s equivalence principle EEP

In small enough regions of spacetime, the laws of physics reduce to those of
special relativity: It is impossible to detect the existence of a gravitational
field by means of local (non-gravitational) experiments.

Equivalently:

For every event, there is a local reference frame, covering small enough regions of
spacetime in its vicinity, such that gravity has no effect on any (non-gravitational)
experiment in this frame and the law of inertia holds.

• The EEP implies the WEP .

• Excluding non-gravitational experiments means that the intrinsic gravitational energy of our
experiment does not contribute significantly to its mass (see SEP below). Note that we do not
require that gravitational experiments (using large masses) can locally distinguish between
gravity and acceleration; the WEP does simply not constraint such experiments.

• It is important to appreciate the profound implications of this principle for doing physics
in a gravitational field: It asserts that as long as your laboratory is small (compared to the
inhomogeneties of the gravitational field) and free-falling (e.g. a space station in orbit),
special relativity is sufficient to describe all experiments that you can conduct in
this lab. In particular, the fact that special relativity cannot describe gravity is not
important because in the free-falling lab there is none. This means that everything we
discussed last term remains valid—and therefore useful—locally. Thus gravity does not
completely invalidate special relativity, it only restricts its domain of validity to local,
free-falling inertial frames. I hope you are happy to hear that!

• More precisely, for every event (point in spacetime) there is an equivalence class of local
inertial frames (related by boosts), equiped with inertial coordinate systems (related by trans-
lations and rotations), in all of which special relativity holds good. The coordinate
transformations between these systems are given by Lorentz transformations. (You can check
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the existence of such frames in our Newtonian calculation above by adding a term Evt to the
transformation of the position coordinates.)

• In our mathematical framework of differential geometry, the equivalence class of local inertial
systems at a spacetime point will be identified with the ← tangent space of the spacetime
manifold at that point.

8 | Concerning gravitational laws of physics:

In our defintion of the EEP , we excluded experiments that depend on the gravitational interaction
itself (e.g., use objects with considerable intrinsic gravitational energy). This exclusion follows
Schröder [2], whereas other authors likeCarroll [4] include the (unkown) gravitational laws
of physics in the EEP .

For us, it makes then sense to define an extension of the EEP as follows:

§ Postulate 8: Strong equivalence principle SEP

The EEP is valid for all laws of physics, including the gravitational laws.

• general relativity satisfies the SEP (and thereby the EEP and the WEP ).

• The reason to separate the EEP from the SEP is that alternatives to general relativity
can satisfy the EEP (and the WEP ) but violate the SEP . This alternatives can bemetric theories
like general relativity with additional fields; see Ref. [111] for details.

• In particular, the SEP requires that the universality of free fall ( WEP ) also holds for large
bodies like planets (not just small test particles) with significant amounts of gravitational
self-energy. More precisely, the SEP demands that the rest massEgrav=c

2 that comes from
the gravitational self-energy Egrav accelerates just like any other rest mass in an external
gravitational field.

Note that the validity of the SEP cannot be deduced from typical experiments that test the
WEP because these experiments use small test masses with a gravitational self-energy that is
way too small to detect any violation of the SEP (because gravity is such a weak force). One
needs to use planet-sized objects to draw conclusions about the SEP (→ next).

• Using reflectors on the moon (left by Apollo 11 in 1969), lunar laser ranging (LLR) can be
used to experimentally test the SEP since the fractions of gravitational self-energy of moon
and earth are different enough to modify moon’s orbit measurably if the SEP was violated.
To date there is no evidence of such a violation to high precision [112, 113], hence we will
assume that the SEP holds.

9 | If special relativity explains everything you can do in a local, free-falling laboratory, at
which point does gravity enter the picture? Well, the hitch is that not all physical processes can be
restricted to a single, local inertial frame:
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^ Meteroid traversing the inhomogeneous gravitational field of earth:

How to model the trajectory?

Imagine you start in a local inertial system where you know the initial data (position, velocity) of
the meteroid. Since special relativity is valid in this small patch, you can use the known
equations of relativistic mechanics to compute the trajectory of the meteroid. However, at some
point, the meteroid will leave the local inertial system and enter another one. To proceed with your
application of relativistic mechanics, you need to know the coordinate transformation that maps
the coordinates of the final position and velocity in the first inertial system to the coordinates of
the next.

But a priori these inertial system are unrelated, in particular, they can be accelerated with respect to
one another (recall the two small space stations in Section 8.2). To proceed with your application
of relativistic mechanics, you need this coordinate transformation! And this is where gravity hides:
The gravitational field (here generated by earth) and the pattern of local coordinate transformations
are one and the same thing! This is what is meant by gravity becoming a geometric property of spacetime.

!

The gravitational field is the (dynamical) structure that determines which local
frames of reference are inertial or, equivalently, how to transform from one local
inertial frame to the next.
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↓ Lecture 18 [23.04.24]

9.2. General relativity and covariance, background independence

The equivalence principle EEP is the foundation of general relativity; it motivates both the
metrization of gravity (Section 9.4 and Chapter 12) and the minimal coupling of matter to gravity (Chap-
ter 11). However, there are additional principles that are conceptually important to understand and were
historically important for the genesis of general relativity as well:

10 | Motivation:

• No global inertial systems anymore!More general coordinate charts needed!

As we have seen, the description of gravity forces us to give up the restriction to formulate
physical models within the distinguished family of infinitely extended inertial coordinate
systems. Hence we must formulate our physical theories in a way that is valid for arbitrary
coordinate charts, and allows for arbitrary coordinate transformations between them.

Einstein was not satisfied with the distinguished role of inertial systems in special rela-
tivity. After all, relativity is all about the relativity of states of motion, i.e., only motion
of systems with respect to one another are of physical significance – and no class of states
of motion should be distinguished. special relativity clearly does not live up to this
rigorous form of relativity as it singles out inertial frames as special. Einstein’s ultimate goal
was to make all states of motion (including accelerated motion) “equivalent.” general
relativity does not achieve this goal! Even in general relativity, inertial motion is
physically distinct from accelerated motion; the new thing is that mass and energy determine
which states of motion are inertial.

We are therefore in the strange (and confusing) situation, that Einstein’s original motivation
to seek out equations that have“the same form” in all coordinate systems does not achieve
its goal, but nevertheless is the correct way forward (see → next point). We will also see
that “having the same form”means something different in special relativity than in
general relativity because the former is formulated on a fixed background (Minkowski
space) and the latter not (→ background independence) – and this changes what it means for two
equations to have“the same form.” The situation is quite convoluted and we can disentangle
it not until the end of this course.

• Chapter 3: Physics describes relations of geometric entities (“Coordinates don’t exist.”)

! Coordinates should play no role in the formulation of physical models!

Recall our motivation in Chapter 3 for the introduction of tensor fields: We realized that
coordinates are mathematical artifacts that we use to label events in spacetime. The essence
of physical laws should clearly be independent of the labeling scheme we choose. Thus we
should strive for a formulation of physical models (which, hopefully, capture physical laws)
that is independent of coordinates, or at least makes it manifest that physical predictions do
not depend on the choice of coordinates.

Note that this argument is very different fromEinstein’s hope to extend the principle of special
relativity SR by“equalizing”more states of motion. The argument is way more fundamental,
has nothing to say about states of motion, and, in some sense, is almost tautological. It’s only
physical content is the rather uncontroversial statement that “coordinates do not exist as
physical entities.”
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11 | This motivates the following definition:

★ Definition 1: General covariance GC (Coordinates don’t exist)

An equation is said to be ⁂ generally covariant if it is forminvariant under arbitrary
(differentiable) coordinate transformations.

! Tensor equations are automatically generally covariant.

Generally covariant equations have an alternative ⁂ coordinate-free formulation in terms of geomet-
ric objects on a manifold (↑ differential forms):

Examples:

• ^ Two vector fields A D A�@� and B D B�@�:8̂̂̂<̂
ˆ̂:
�A D �B

EA D EB

ˇ̌̌̌
ˇ̌̌̌
ˇ

N�A D
@ Nx0

@x0
�A C

@ Nx0

@xi
Ai

NAi D : : :

N�B D : : :

NBi D : : :

9>>>=>>>;„ ƒ‚ …
Generally
covariant

, A� D B�„ ƒ‚ …
Manifestly
(generally)
covariant

, A D B„ ƒ‚ …
Coordinate

free

(9.10)

– Whilemathematicians often prefer the coordinate-free notation, in physics, the coordinate-
dependent, manifestly covariant notation is more widespread. This has to do with how
physics is done: While coordinates do not exist a priori, physicists typically make them
exist in their labs because measurements always use some form of reference system.
The generally covariant equations are more useful in that regard because they can be
specialized to any coordinate system most convenient for an experiment.

! In this course we will only use the manifestly covariant notation.

– To decided whether an equation remains form invariant under arbitrary coordinate
transformations, you must first know how the elementary fields of the equation trans-
form. This is why the non-manifest notation is so cumbersome: In addition to the
equation(s), you must figure out (or specify) how the different fields transform. (Recall
the non-tensorial form of the Maxwell equations and how cumbersome it was to check
their Lorentz covariance [see Eq. (6.34)]!)

This makes the benefit of the manifest notation clear: First, by convention, the tensor
notation A� implies that the transformation of the field is NA� D @ Nx�

@x� A
� , and second,

because of the rules of tensor calculus, checking the general covariance of a (valid)
tensor equation is trivial.

• ^ Inhomogeneous Maxwell equations on arbitrary spacetime (Section 11.3):

F ��I� D �
4�
c
J�„ ƒ‚ …

Manifestly covariant

, d.?F / D ?J„ ƒ‚ …
Coordinate-free

(9.11)

Remember that I� denotes the ← covariant derivative Eq. (3.79) which implicitly depends on
the metric of spacetime. In the coordinate-free notation, the metric is hidden in the definition
of the ↑ Hodge star operator ?.
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12 | We can now use this definition to formulate our physical insight that the equations that describe
physical laws must not single out specific coordinate systems:

In Einstein’s words [21]:

Die Gesetze der Physik müssen so beschaffen sein, daß sie in bezug auf beliebig bewegte
Bezugssysteme gelten. (p. 772)

Die allgemeinen Naturgesetze sind durch Gleichungen auszudrücken, die für alle Koor-
dinatensysteme gelten, d.h. die beliebigen Substitutionen gegenüber kovariant (allgemein
kovariant) sind. (p. 776)

!

§ Principle 1: General relativity principle GRP

Models of laws of nature must take the same form in all coordinate systems;
i.e., they must be expressed in terms of generally covariant equations.

Here the“must take the form”means that it must be possible to formulate them in a coordinate-
independent way; if this were not the case, the theory (and its prediction) would implicitly depend
on (and single out) a specific coordinate system. Note that there is nothing wrong in formulating
such a theory in a way that is not generally covariant.

For example, Maxwell equations in their conventional (non-tensorial) form are not generally
covariant, they are only Lorentz covariant. This is not a problem, though, because these equations
are just a specialization of Eq. (9.11) to a particular class of coordinate systems (namely inertial
systems). If you (naïvely) apply these specialized equations in a non-inertial frame (such as a
laboratory on the surface of earth!), you can get incorrect results (→ Problemset 3 and Ref. [114,
115]).

13 | What is the physical content of GRP ?

GRP , while being important for the formulation of physical models in general and being strictly
satisfied in general relativity, is neither specific nor fundamental to and for general
relativity. For example, the Maxwell equations in the manifestly covariant form of Eq. (9.11)
satisfy the GRP on the fixed background of Minkowski space and have nothing to do withgeneral
relativity.

!

The principle of general relativity GRP has (almost) no physical content.

The“almost” referes to the fact that the principle asserts that there are no distinguished coordinate
systems that exist as physically independent structures.

• The relativity postulate GRP , and its mathematical manifestation as general covariance GC

have been criticized already in 1917 byKretschmann [116]:

[Man] vergegenwärtigt sich, daß alle physikalischen Beobachtungen letzten Endes in
der Feststellung rein topologischer Beziehungen (“Koinzidenzen”) zwischen räumlich-
zeitlichen Wahrnehmungsgegenständen besteht und daher durch sie unmittelbar kein
Koordinatensystem vor irgend einem anderen bevorrechtigt ist, so wird man zu dem
Schlusse gezwungen, daß jede physikalische Theorie ohne Änderung ihres–beliebigen–
durch Beobachtungen prüfbaren Inhaltes mittels einer rein mathematischen und mit
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höchstens mathematischen Schwierigkeiten verbundenen Umformung der sie darstellen-
den Gleichungen mit jedem beliebigen–auch dem allgemeinsten–Relativitätspostulate in
Einklang gebracht werden kann.

• To drive the point home: One can also formulate good old non-relativistic Newtonian me-
chanics in a generally covariant form (it’s quite ugly, though)! See the original literature [117]
andMisner et al. [3] (Box 12.4 and §12.5):

Any physical theory originally written in a special coordinate system can be recast in
geometric, coordinate-free language. Newtonian theory is a good example [..]. Hence,
as a sieve for separating viable theories from nonviable theories, the principle of general
covariance is useless.

• For a detailed account on the role general covariance plays in general relativity (and
historically played in its inception), see Ref. [118].

14 | We can summarize the relation of SR , EEP , and GRP as follows:

• Both SR and EEP make claims about the equivalence (indistinguishability) of certain states
of motion. These are physical claims about reality that can be assessed by experiments.
Note that to check whether they are false or true you do not even know how to work with
mathematical equations. It’s a simple matter of collecting the results of experiments (recall
the ← Michelson-Morley experiment). It is this physical content that makes SR and EEP the
foundations of special relativity and general relativity, respectively.

• By contrast, GRP makes no such claims about reality. GRP does not claim that all states of
motion are indistinguishable (they are not, even ingeneral relativity you can tell local
inertial frames and accelerated frames apart); the principle only claims that all fundamental
theories of physics should have a formulation that can be applied by all possible observers.
GRP is therefore more a statement about physical models than about reality.

• The sketch makes it clear that the EEP is actually more similar to the SR (in the role it plays
for general relativity) than the GRP is. In that sense “principle of general relativity”
is kind of a misnomer.

15 | There is another important concept that (contrary to GC / GRP ) distinguishes general rela-
tivity from other theories and must itself be distinguished from GC / GRP :
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★ Definition 2: Background independence BI (No prior geometry)

Physical models that do not contain the geometry of spacetime as an absolute
element are called ⁂ background independent. This implies that the geometry of
spacetime emerges dynamically as solutions of the theory.

(Counter-)examples:

• 3 general relativity is (and historically was the first example of ) a background
independent theory (→ below):

SEinstein�HilbertŒg� D
c3

16�G

Z
d4x
p
gR (9.12)

Here R is the → Ricci scalar that depends in a complicated way on the metric tensor field
g��.x/.

p
g is short for

p
j detŒg��.x/�j (Minkowski metric:

p
� D 1).

• 7 Maxwell theory is not background independent (recall Eq. (6.56)):

SMaxwellŒA� D

Z
d4x
p
g

�
�

1

16�
g�˛g�ˇF

˛ˇF ��
�

(9.13)

with field-strength tensor F �� D @�A� � @�A�.

– Note that you do not extremize this action wrt. the metric g; the metric (e.g. Minkowski
metric g D �) is given as a parameter (absolute element) of the theory. Hence it plays
the role of a static background.

– Note also that the Maxwell equations (and their Lagrangian) are generally covariant:
they are tensorial expressions that descibe geometric objects on a manifold. That does
not prevent them to have a tensor field (the metric) as an absolute element.

16 | Beware:

general relativity ismost likely the first (andpossibly last) generally covariant and background-
independent theory that you will encounter in your university courses. Thus it is important to
mention a peculiarity that, if ignored, can lead to lots of confusion when studying such theories:

i | ^ Trajectory of particle in spacetime:

Because of general covariance ( GC ) there is always a coordinate system in which the (spatial)
coordinates of an object are constant in time.

! One cannot infer from coordinates whether an object is moving!
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(There is no absolute notion of “motion” in general relativity; the only motion that
makes sense is motion wrt. some reference object, → next step.)

ii | ^ Two objects at rest in some coordinate system:

In a background-independent theory ( BI ) the metric is a dynamic degree of freedom. There-
fore two objects a and b can have constant coordinates in space while their distance varies
over time! Note that the coordinates are completely independent of the metric in general.

! One cannot infer from coordinates whether distances of objects change!

We can sum this up as follows:

Coordinates have no physical meaning in general relativity;

they are simply (arbitrary) labels of events.

• Please make sure you grasp this statement fully (we will see explicit examples later when we
understand general relativity better):

If I tell you in special relativity that (in some inertial frame) two test particles have
constant spatial coordinates xi and yi , you immediately know their relative velocity and
distance: Evrel D PEx � PEy D E0 and�l2 D �.x� � y�/2 D jEx � Eyj2.

By contrast, if I tell you in general relativity that two test particles have (in some
coordinate system) constant spatial coordinates xi and yi , this tells you nothing about their
distance; not even whether it is constant or varies in time! This information is hidden in the
values of the metric field, not in the coordinates.

• This is important, for example, when studying the effects of gravitational waves (→ later).

17 | Summary:

• Every reasonable fundamental theory has a generally covariant formulation.
• A generally covariant theory does not need to be background independent.
• general relativity is background independent and generally covariant.

• We will return to the question of general covariance, background independence (and diffeo-
morphism invariance) → later when we know more about general relativity. At this
point it is only important that you know the conceptual difference between the terms general
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covariance GC and background independence BI and the requirement of the principle of general
relativity GRP .

• One sometimes hears that general covariance GC is a distinguishing feature of general
relativity (as explained above, it is not). Sometimes even the very concepts of general
covariance GC and background independence BI are confused. This confusion is partially
rooted in history because Einstein himself didn’t separate the two concepts clearly. Misner
et al. explain [3] (p. 431):

Mathematics was not sufficiently refined in 1917 to cleave apart the demands for“no
prior geometry” and for a“geometric, coordinate-independent formulation of physics.”
Einstein described both demands by a single phrase,“general covariance.” The“no-prior-
geometry” demand actually fathered general relativity, but by doing so anonymously,
disguised as“general covariance,” it also fathered half a century of confusion.

• For more details on the relation between the concepts of background independence, general
covariance, and diffeomorphism invariance see Ref. [119] (and references therein).

9.3. Mach’s principle (an its failure in general relativity)

Mach’s principle is not a logical postulate of general relativity and mostly of historical (and
perhaps philosophical) importance. However, it is also conceptually interesting because at a fist glance
once might conclude (as Einstein did), that general relativity actually satisfies the principle. It is
rather subtle (and instructive) why this is not so:

18 | Recall ← Newton’s bucket:

Question: Rotation with respect to what determines the shape of the water surface?

Newton: Absoute space!

Note that the experiment already suggests that this“absolute space”must have certain symmetries
since the experiment cannot distinguish specific points nor specific states of uniform motion.
special relativity tells us that the correct symmetry group of spacetime is the Poincaré
group. So from our modern perspective, Newton’s answer must be read as follows: The experiment
demonstrates the independent existence of an entity which determines the local inertial systems. We may
call this entity “spacetime.”

19 | The austrian physicist Ernst Mach fervently disagreed with Newton [120]:

Der Versuch Newton’s mit dem rotirenden Wassergefäss lehrt nur,dass die Relativdrehung des
Wassers gegen die Gefässwände keine merklichen Centrifugalkräfte weckt, dass dieselben aber
durch die Relativdrehung gegen die Masse der Erde und die übrigen Himmelskörper geweckt
werden. Niemand kann sagen, wie der Versuch verlaufen würde, wenn die Gefässwände
immer dicker und massiger, zuletzt mehrere Meilen dick würden. Es liegt nur der eine Versuch
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vor, und wir haben denselben mit den übrigen uns bekannten Thatsachen, nicht aber mit
unsern willkürlichen Dichtungen in Einklang zu bringen.

Mach deniedNewton’s notion of an independent entity responsible for inertia and proposed
that the large-scale structure of matter in the cosmos determines the local inertial systems instead
(↑ relationalism):

§ Principle 2: Mach’s principle MP

Local inertial frames are determined by the cosmic motion and distribution of
matter.

• Mach never formulated his principle precisely, which leaves room for interpretation and
personal taste. This is why there are various readings of MP in the literature, not all equivalent.
The above phrasing is a rather strict version of the principle.

• Here is an alternative way to illustrate the point by Steven Weinberg [121] (p. 17):

There is a simple experiment that anyone can perform on a starry night, to clarify the
issues raised by Mach’s principle.

First stand still, and let your arms hang loose at your sides. Observe that the stars
are more or less unmoving, and that your arms hang more or less straight down. Then
pirouette. The stars will seem to rotate around the zenith, and at the same time your arms
will be drawn upward by centrifugal force. It would surely be a remarkable coincidence
if the inertial frame, in which your arms hung freely, just happened to be the reference
frame in which typical stars are at rest, unless there were some interaction between the
stars and you that determined your inertial frame.

Put this way, the situation is quite puzzling indeed and Mach’s principle doesn’t seem far
fetched at all.

• Einstein was responsible for coining the term“Mach’s principle” and was influenced
by it during his construction of general relativity. At first, he believed that in his
new theory of gravity the principle was indeed satisfied. He writes in a letter to Mach in
1913 [122]:

DieserTage haben Sie wohl meine neueArbeit über Relativität und Gravitation erhalten,
die nach unendlicher Mühe und quälendem Zweifel nun endlich fertig geworden ist.
Nächstes Jahr bei der Sonnenfinsternis soll sich zeigen, ob die Lichtstrahlen an der
Sonne gekrümmt werden, ob m. a. W. die zugrunde gelegte fundamentale Annahme
von der Aequivalenz von Beschleunigung des Bezugssystems einerseits und Schwerefeld
andererseits wirklich zutrifft.

Wenn ja, so erfahren Ihre genialen Untersuchungen über die Grundlagen der Mechanik
– Planck’s ungerechtfertigter Kritik zum Trotz – eine glänzende Bestätigung. Denn
es ergibt sich mit Notwendigkeit, dass die Trägheit in einer Art Wechselwirkung der
Körper ihren Ursprung hat, ganz im Sinne Ihrer Überlegungen zum Newton’schen
Eimer-Versuch.

(You may wonder how Einstein could write this letter in 1913 when he finalized general
relativity in November of 1915. Einstein refers to his paper with Marcel Grossmann
published in 1913 [123] in which they established the “Entwurftheorie”, a precursor of
general relativity that already included most of the pieces needed [but not yet the
correct field equations].)

20 | So here is the caseMach (& early Einstein) vs.Newton:
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• Newton:

Space exists as an independent entity and determines locally which frames are inertial.

• Mach:

Space emerges from the relations between matter and does not exist independently. Hence
the distribution of matter in the universe completely determines the local inertial systems.

Who is right according to general relativity?

21 | Answer: Both…(in a sense, though Newton is more correct)

• Newton’s conclusion was correct: Because of locality (constancy of the speed of light)
the matter distribution of the cosmos (the fixed stars) cannot immediately influence the
local inertial frame; there must be a mediator, some “background” that is here right now.
general relativity tells us what this is: the metric tensor field that determines the
geometry of spacetime.

• Mach was right insofar as it is indeed not a coincidence that the local inertial frame on
earth is at rest with respect to the fixed stars. There is a relation, although not a direct and
immediate one. general relativity tells us that the large-scale distribution of matter
(and energy) in the universe determines the (large-scale) metric of spacetime, which, in turn,
determines the local inertial systems everywhere. But there is a hitch: the metric is not
uniquely determined by the mass distribution. Thus the metric (and therefore spacetime)
carries independent degrees of freedom. There is more than matter in the world, spacetime
is a real entity!

Notes:

• Today we know that there are solutions of the Einstein field equations (e.g. the ↑ Gödel
universe [124]) that violate Mach’s principle explicitly [125].

• Mach, in his critique ofNewton’s bucket experiment, asked (rhetorically) what would
happen if the walls of the bucket would become very thick and massive. His point was that it
is not excluded that at some point the rotation of the bucket would influence the shape of the
water. general relativity tells us that this is so indeed, because a very massive bucket
affects the geometry of spacetime. This is known as the → Lense-Thirring effect [126, 127]
(also know as ↑ frame-dagging) and has been experimentally confirmed (not with a massive
bucket, of course, but with earth) [128, 129]. However, for the reasons explained above, this
effect does not make general relativity comply with Mach’s principle in the strict
sense.

• Because of the many different versions of MP floating around, for some the case is still not
closed (at least for philosophers of science, it seems). For doing physics with general
relativity, MP is irrelevant.

• Mach advocated a relational view of space(time): Only relations between the degrees of
freedom of matter are observable. There is no independent meaning of, say, an electron
being here now. It is interesting to realize that this relational view might very well be true
(and in accordance with general relativity) if one accepts that the metric field is just
another collection of degrees of freedom which can be in relations (coincide or interact) with
other degrees of freedom. For example, an electron being here now might simply mean that
an excitation of the field that describes the electron coincides/interacts with a particular
degee of freedom of the metric field.

22 | Conclusion:

The controversy about the MP essentially boils down to the question whether spacetime has
independent degrees of freedom (and therefore exists in a physical sense):
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In its strict version, the MP denies spacetime this independent role. By contrast, general
relativity grants spacetime independent degrees of freedom because the → Einstein field
equations only constrain the → Einstein tensor but not the metric directly (→ Gravitational waves):

general relativity violates Mach’s principle MP because matter influences
the geometry of spacetime but does not determine it uniquely.

This situation is exemplified by gravitational waves: When in 2015 the interferometers of LIGO
detected a gravitational wave passing earth, the spacetime geometry in our vicinity changed by a
very tiny bit. However, the mass distribution in the vicinity of earth didn’t change at all. So while
the geometry of spacetime certainly is influenced by earths mass, it is not uniquely determined by it.
LIGO therefore measured directly the dynamics of the degrees of freedom the existence of which
MP denies.

9.4. Overview and Outline

Now that we know the conceptual starting point of general relativity, and argued that more
general spacetimes than flat Minkowski space are needed to accomodate gravity, we can reveal the gist of
general relativity and sketch the plan for the remainder of this course:

¡! You are not required to fully grasp the how and why of the following statements. Understanding the
details is the objective of this course. However, I think that it is useful to start off with a rough picture of
what we want to accomplish because otherwise one is easily swamped by the details along the way.

general relativity in a Nutshell

• Ontology:

Spacetime � 4D differentiable manifoldM

Gravitational field � pseudo-Riemannian metric g with signature .1; 3/

! Spacetime is a ← 4D Lorentzian manifold

– Note that we only fix the dimensionality ofM (and thereby its local topology) but not its
global topology (i.e., whether it is simply R4, a sphere, a torus, or something even more
fancy). Thus, for example, general relativitymakes no a priori statement about the
finiteness of the universe. (Asking about the local topology is like asking where space and
time come from—and general relativity is silent about that. A reasonable theory of
quantum gravity must address this question!)

– At this stage it is sufficient to interpet the points E 2 M of the manifold as points in
spacetime and therefore as (equivalence classes of ) events. However, we will see that this
interpretation is problematic (→ Hole argument) because of the diffeomorphism invariance
of general relativity. It is thus questionable whether points of the manifold (and
thereby the manifold itself ) can be associated to any existing entity. An entity that certainly
does exist, however, is the metric field.
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• Equivalence principle:

The EEP is built right into the mathematical framework of general relativity:

For every point with coordinates y, there exists a coordinate transformation 'y with
Nx D 'y.x/ such that:

Ng��. Nx/ D
@ Nx�

@x˛
@ Nx�

@xˇ
g˛ˇ .x/

x�y
� ��� and N@� Ng

��. Nx/
x�y
� 0 (9.14)

with Minkowski metric

��� D

0BB@
C1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCA
��

: (9.15)

! Locally inertial coordinates 3(→ Problemset 2)

The EEP motivates the metrization of gravity. (9.16)

– ¡! In the presence of gravity, there is no coordinate transformation that brings the metric
into Minkowski form everywhere on the spacetime manifold. Conversely, if this is possible,
spacetime is flat Minkowski space and you were doing special relativity all along
(perhaps in curvilinear coordinates).

– Note that metrization of gravity is not a mathematical corollary of the EEP (the latter is
a physical principle, not a rigorous mathematical statement). However, the EEP is most
naturally incorporated into a mathematical framework where gravity is described by a metric
because the gist of the EEP is that all (local) physical phenomena are affected by gravity
in the same way. This is exactly what happens if gravity is identified with the geometry of
spacetime!

– At every point, the basis fN@�g of the tangent space forms a so called ⁂ local Lorentz frame.
You can choose such a basis for all points of spacetime. However, in general there is no
coordinate system that induces this basis everywhere; you have to use multiple charts to
patch together spacetime.

• Important fields:

All degrees of freedom (some gauge, some physical) of general relativity are stored in the
metric tensor field. From the metric, one can then derive other fields that play important roles in
the formulation of the theory:

Metric
tensor‚ …„ ƒ
g��.x/„ ƒ‚ …

¶
Gravitational
potential

Connection
(no tensor)‚…„ƒ
����„ ƒ‚ …

¶
Gravitational
field strenght

R����„ƒ‚…
Curvature
tensor

Ricci
tensor‚…„ƒ
R��

R„ƒ‚…
Ricci
scalar

G��„ƒ‚…
Einstein
tensor

@g

Sec. 10.3

@�; �2

Sec. 10.2

Tr

T
r

Subsec. 10.3.2

Sub
sec
. 10

.3.2
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Note that the Einstein tensor is non-linear in themetric an contains (up to) second-order derivatives.

• Einstein field equations (EFE): (here without cosmological constant)

The centerpiece of general relativity is a tensorial partial differential equation that deter-
mines the metric tensor field in dependence of the energy momentum tensor of matter:

Einstein
tensor ! G��„ƒ‚…

“Geometry”

D �� T��„ƒ‚…
“Matter”

 Energy-momentum
tensor (9.17)

¡! “Matter” refers here to all degrees of freedom that carry energy and/or momentum. This
includes bodies with rest mass but also electromagnetic radiation etc.

^ Eq. (9.17): Non-linear, second-order PDE for g�� :

general relativity describes the geometry of space as a dynamical field that evolves “in
time” according to a highly nontrivial PDE:!

general relativity = ⁂ Geometrodynamics (9.18)

The nonlinearity makes Eq. (9.17) hard to solve, even in vacuum were the right-hand side vanishes.

– Spacetime geometry is dynamical! Background independence 3

– Tensor equation!General covariance (no preferred coordinate system) 3

– Mass distribution determines metric determines local inertial frames
However: FixingG�� leaves some degrees of freedom of g�� unconstrained!
! Boundary conditions required for unique solution
!Mach’s principle is not satisfied (but partially survives in spirit) 7/3

– Recall Eq. (8.10) and our discussion that followed (also → Problemset 1). Eq. (9.17) is
structurally similar but fixes the problem of linearity because the Einstein tensor is a non-
linear function of the metric.

• Physics with gravity:

Once gravity is described by the metric, one must generalize the other relativistic theories (me-
chanics, electrodynamics,…) into a generally covariant form that couples to the metric. This
generalization is a priori not unique because matter can couple in various ways to the fields derived
from the metric.

However, the EEP severely restricts the couplings that are allowed and leads to a “recipe” how the
Lorentz covariant equations of special relativitymust be rewritten to match the principles
of general relativity (→“Comma-Goes-to-Semicolon Rule”, Minimal coupling):

The GRP demands physical theories to be specified by tensor equations.

The EEP restricts the possible couplings of matter and metric.

!

– Mechanics: (with u� D dx�

d� the 4-velocity)

m
Du�

D�„ƒ‚…
Absolute
derivative

D m
d2x�

d�2„ƒ‚…
4-accel.

Cm�
�

˛ˇ

dx˛

d�
dxˇ

d�„ ƒ‚ …
New!

D K�„ƒ‚…
4-force

(9.19)
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! Free particle: K� D 0! Geodesic equation (“straight lines” in spacetime)

– Electrodynamics: ^ Inhomogeneous Maxwell equations: (cf. Eq. (6.50))

special relativity‚ …„ ƒ
F ��;� D �

4�

c
j� !

general relativity‚ …„ ƒ
F
��

I�„ƒ‚…
Covariant
derivative

D �
4�

c
J� (9.20)

The covariant derivative contains the connection � and therefore the metric g. This is how
the electromagnetic field is affected by the gravitational field (e.g., bent in the vicinity of
heavy masses). Conversely, the EM field gives rise to the energy momentum tensor T ��em

[← Eq. (6.110)] and thereby contributes to the right-hand side of Eq. (9.17).

! Energy-momentum tensor T�� is dynamical

A generally relativistic theory of matter, interacting with and via gravity, is then described by a
coupled, non-linear, higher-order system of partial differential equations (where T�� depends on the
dynamical variables of the matter theory).

! Hard to solve in general! Approximations needed!

Outline of this course

Here is our approach for this course to study these various aspects of general relativity:

• Step 1 (Section 9.4): How to describe non-Euclidean manifolds mathematically?

In Chapter 3 we introduced the concept of differentiable manifolds and introduced the concept
of a (pseudo-)Riemannian metric to measure lengths of curves on the manifold. To formulate
general relativity mathematically, we need to revisit and extend this toolbox of tensor
calculus.

In particular, we will study two (at first independent) structures that can be put on a differentiable
manifold:

→ Affine connection ! Determines parallel transport, straight lines, and curvature

← Riemannian metric ! Determines lengths, shortest lines, and angles

As it turns out, when you are given a Riemannian metric, there is a unique way to construct an
affine connection. This means that once you are given a spacetime manifold with a (pseudo-)
Riemannian (Lorentzian) metric, all concepts in the list above are well-defined. This is then the
framework we will use: The spacetime of general relativity is a Lorentzian manifold and
the degrees of freedom (field) of the theory is the Lorentzian metric itself.

• Step 2 (Chapter 11): How to formulate relativistic theories on non-Euclidean spacetimes?

In the first part of this course, we first established the tenets of special relativity (Lorentz
symmetry) and then incorporated them successively in known theories of physics (point mechanics
in Chapter 5, electrodynamics in Chapter 6, quantum mechanics in Chapter 7). Now that we
established the tenets of general relativity (the spacetime metric is not necessarily the
Minkowski metric but an arbitrary Lorentzian metric), we must again reformulate our theories to
comply with this new insight. Recall p. 17 in the introduction:
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This will lead us to generally covariant formulations of relativistic mechanics in Section 11.2 and
electrodynamics in Section 11.3 (we will skip quantummechanics this time, but this is also possible).
Thanks to the combination of EEP and GRP (and tensor calculus), the recipe to go from the equations
of special relativity to that of general relativity will be very simple.

• Step 3 (Chapter 12): How to determine the geometry of spacetime dynamically?

Up until this point we simply declared that the metric of spacetime is an arbitrary Lorentzian metric
and studied the effects on physics given such a metric. The core idea of general relativity
(and maybe the most important insight of Albert Einstein) was that this metric was not part of
the laws of nature but just another degree of freedom that had to be dynamically determined.
This means that there is no a priori geometry of spacetime, a principle known as ← background
independence. The equations that dynamically determine the metric are the → Einstein field equations
Eq. (9.17); they are the centerpiece of general relativity and determine the geometry of
spacetime, given the distribution of mass and energy and some boundary conditions. We will derive
these equations via an action principle from a Lagrangian.

Together with Step 2, this completes the framework of general relativity.

• Step 4 (Chapter 13): What does general relativity predict?

If we combine the results of Step 2 and Step 3 we obtain a self-contained, background indepen-
den framework to describe physics: Matter determines the geometry of spacetime (Step 3) and,
conversely, this geometry determines how matter evolves (Step 2). This interplay makes for
beautiful but mathematically complicated models. Thus, to study the predictions of general
relativity, we typically resort to simplified approaches:

– Consider a static, inhomogeneous distribution of large masses (e.g. the sun). Using the
Einstein field equations from Step 3 (and reasonable boundary conditions), calculate the
geometry of spacetime induced by this distribution. Then use the results of Step 2 to
determine the evolution of small test particles on this curved spacetime (without taking their
backaction on spacetime into account). This approach leads to a variety of phenomena, e.g.,
the slowing down of clocks close to large masses (Section 13.2.5), the perihelion precession
of Mercury (Section 13.2.1), the bending of light (Section 13.2.2), etc.

– Consider the Einstein field equations in vacuum, i.e., without anymatter (or energy). Because
the EFEs are non-linear (recall Section 8.2) and the geometry of spacetime is not uniquely
determined by the distribution of mass and energy, this situation is not as boring and trivial
as it sounds (its actually very complicated). But even in the weak field limit (where one drops
the self-interactions) one finds something interesting: gravitational waves (Section 13.4).

– Consider an idealized universe that is homogeneously filled with matter and energy (and
potentially dark matter and dark energy). If one calculates the solutions of the EFEs in such
a scenario, one obtains the (approximate) spacetime geometry of the whole universe. This
leads into the field of ↑ relativistic cosmology and to the current standard model of cosmology,
known as “ƒCDM”. This is where one finds the possiblity of an expanding universe and its
origin, the Big Bang; this is also where the cosmological constant becomes important.
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↓ Lecture 19 [30.04.24]

10. Mathematical Tools II: Curvature

Here we continue our discussion of differential geometry in Chapter 3. We study two structures on a
differentiable manifold that are particularly important for general relativity: → connections and the
← Riemannian metric (the latter we already know). Since most of our results are not specific to general
relativity, we mostly consider generalD dimensional manifolds, and only specialize to the case of
D D 3C 1 spacetime dimensions later.

• The mathematical framework of general relativity is ↑ Riemannian geometry, i.e., the
field of differential geometry that studies differentiable manifolds equipped with a Riemannian
(pseudo-)metric. The field was kickstared in 1854 by German mathematician Bernhard Rie-
mann with his inaugural lecture in Göttingen titled“Über die Hypothesen, welche der Geometrie zu
Grunde liegen” [130]. In the audience wasCarl Friedrich Gauß, who had also picked the
topic for Riemann’s habilitation (Gauß died one year later).

Fun fact: In his 1854 lecture, Riemann speculated that the material bodies might determine the
metric of space; many years before Einstein worked out general relativity (see Part III,
Paragraph 3 in Ref. [130], highlights are mine):

Die Frage über die Gültigkeit der Voraussetzungen der Geometrie im Unendlichkleinen hängt
zusammen mit der Frage nach dem innern Grunde der Maßverhältnisse des Raumes. Bei
dieser Frage, welche wohl noch zur Lehre vom Raume gerechnet werden darf, kommt [..] zur
Anwendung,daß bei einer diskreten Mannigfaltigkeit das Prinzip der Maßverhaltnisse schon
in dem Begriffe dieser Mannigfaltigkeit enthalten ist, bei einer stetigen aber anders woher
hinzukommen muß. Es muß also entweder das dem Raume zugrunde liegende Wirkliche
eine diskrete Mannigfaltigkeit bilden, oder der Grund der Maßverhaltnisse außerhalb,
in darauf wirkenden bindenden Kräften gesucht werden.

He continues…

Die Entscheidung dieser Fragen kann nur gefunden werden, indem man von der bisherigen
durch die Erfahrung bewährten Auffassung der Erscheinungen, wozu Newton den Grund
gelegt, ausgeht und diese durch Tatsachen, die sich aus ihr nicht erklären lassen, getrieben
allmählich umarbeitet; [..].

…and closes:

Es führt dies hinüber in das Gebiet einer andern Wissenschaft, in das Gebiet der Physik,
welches wohl die Natur der heutigen Veranlassung nicht zu betreten erlaubt.

Not only did he sketch the route Einstein would take half a century later, he even seemed intrigued
exploring it himself.

• Themathematical field of geometry was conceived in ancient times as a formalization of observable
facts about physical space and culminated in the axiomatization of ↓ Euclidean geometry. One of
the facts/axioms of Euclidean geometry is the ⁂ parallel postulate:

If a line segment intersects two straight lines forming two interior angles on the same side that
are less than two right angles, then the two lines, if extended indefinitely, meet on that side on
which the angles sum to less than two right angles.

For two millenia (!) it was suspected that this axiom can be derived from the other four axioms of
Euclidean geometry (so that it doesn’t deserve the title “axiom” after all). Finally,Gauß (and
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contemporaries) recognized that the parallel postulate cannot be proven from the other four; it
is an independent axiom that can be modified to define consistent geometries that differ from
Euclid’s! The result is ⁂ non-Euclidean geometry which comes in two flavours, ↑ elliptic geometry
and ↑ hyperbolic geometry:

The realization bymathematicians that there aremany consistent geometries opened a new question
for physics: Are we sure that the geometry of space really is Euclidean? The answer of general
relativity is: No, on large scales space is only approximately Euclidean, and it can be very
non-Euclidean in regimes of strong gravitational fields.

10.1. Summary: What we know and what comes next

1 | Concepts we already know:

• ← Differentiable manifolds (Section 3.1):

AD-dimensional manifold is locally homeomorphic (continuously isomorphic) to RD (it
locally“looks like” Euclidean space). A continuous, invertible function that maps a region of
the manifold to a subset of RD is called a (coordinate) chart. A collection of overlapping charts
that covers the whole manifold is called an atlas. If the transition functions that map between
different coordinates in regions where two charts overlap are all differentiable (smooth) on
RD , the manifold is a ← differentiable (smooth) manifold. On a differentiable manifold we can
talk about the differentiation of functions defined on the manifold. In physics we consider
almost exclusively such manifolds:

• ← Tangent and cotangent spaces (Section 3.3):

Given a differentiable manifold (which is not a vector space in general!), there is a canonical
way to associate a vector space to every point of the manifold: the ← tangent space TpM .
Mathematically, it is the vector space of directional derivative operators that act on smooth
functions on that point. Given a coordinate chart, the directional derivatives along the
coordinates (evaluated at p 2M ) induce a basis f@i jpg of the tangent space TpM (different

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → MATHEMATICAL TOOLS II: CURVATURE

246
PAGE

coordinates lead to different bases). In addition, to every vector space there is an associated
dual space spanned by the linear forms on the vector space; thus there is a dual tangent space:
the ← cotangent space T �

pM . It is spanned by the dual basis fdxipg of differential forms:

Tangent space TpM at p 2M„ ƒ‚ …
Vector space of directional derivatives

with evaluation at p 2 M .

D span
˚
@i jp j i D 1; : : : ;D

	„ ƒ‚ …
Spanned by coordinate basis
derived from given chart.

(10.1)

With the dual basis (we often drop the subscript p)

dxip.@j jp/ WD ı
i
j D

@xi

@xj

ˇ̌̌̌
p

(10.2)

we can define the

Cotangent space T �
pM at p 2M D span

n
dxip j i D 1; : : : ;D

o
(10.3)

• ← Tensor fields (Sections 3.2 to 3.4):

Since there are canonical vector and covector spaces associated to every point of themanifold,
we can consider (reasonably smooth) functions that map every point of the manifold to a
tensor product of p vectors and q covectors; we call such functions ← tensor fields of rank
.p; q/. They are “geometric objects” in that they are independent of coordinate charts;
physical quantities (like the electromagnetic field) must be represented by such fields. Once
we have chosen a coordinate chart, we can encode these fields in terms of their components
wrt. the coordinate basis on tangent and cotangent space. The coordinate independence of
tensor fields translates then into a particular transformation law for their components:

^ Coordinate transformation Nx D '.x/ , x D '�1. Nx/

! .p; q/-Tensor (field) T W,

D NT I
J
. Nx/‚ …„ ƒ

NT
i1:::ip

j1:::jq
. Nx/ D

�
@ Nxi1

@xm1
� � �

@ Nxip

@xmp

�
„ ƒ‚ …

DW @ NxI

@xM

�
@xn1

@ Nxj1
� � �
@xnq

@ Nxjq

�
„ ƒ‚ …

DW @xN

@ NxJ

T
m1:::mp

n1:::nq
.x/„ ƒ‚ …

DTM
N
.x/

(10.4)

(Einstein sum convention = Sums over pairs of up- and down indices are implied.)
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Examples:

.0; 0/-Tensor � Scalar: N̂ . Nx/ D ˆ.x/ (10.5a)

.1; 0/-Tensor � Contravariant vector: NAi . Nx/ D
@ Nxi

@xk
Ak.x/ (10.5b)

.0; 1/-Tensor � Covariant vector: NBi . Nx/ D
@xk

@ Nxi
Bk.x/ (10.5c)

.1; 1/-Tensor � (Mixed) Tensor: NT ij . Nx/ D
@ Nxi

@xk

@xl

@ Nxj
T kl .x/ (10.5d)

• ← Riemannian metric (Section 3.5):

A Riemannian metric is a .0; 2/ tensor field with a few additional properties (symmetry and
non-degeneracy) so that it defines a (pseudo-)inner product on the tangent space at every
point of the manifold. A differentiable manifold equipped with such a metric is called a
← Riemannian manifold. On a Riemannian manifold we can measure angles between tangent
vectors and lengths of curves:

Riemannian (pseudo-)metric ds2 WD
�

Symmetric
non-degenerate
.0; 2/-tensor field

�
(10.6)

More formally:

ds2 W M 3 p 7!
�
ds2p W TpM � TpM ! R

�„ ƒ‚ …
Bilinear & symmetric & non-degenerate

2 T �
pM ˝ T

�
pM (10.7)

with coordinate representation

ds2p D
DX

i;jD1

gij .x/ dxi ˝ dxj � gij .x/ dxidxj (10.8)

where gij D gj i (symmetry) and g D det.gij / ¤ 0 (non-degeneracy).

A Riemannian metric allows us to define the following geometric concepts:

– Angle between two vectors A D Ai@i ; B D B i@i 2 TpM :

hA;Bi � ds2p.A;B/ D gij .p/A
iBj � kAkpkBkp cos � (10.9)

with the norm on TpM

kAkp WD
q

ds2p.A;A/ D
q
gij .p/AiAj : (10.10)

– Length of curve  W Œa; b�!M :

LŒ� WD

Z b

a

s
gij ..t//

d i .t/
dt

dj .t/
dt

dt D
Z b

a

k P.t/k.t/„ ƒ‚ …
“Velocity”

dt : (10.11)
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• ← Pulling indices up and down (Section 3.5):

A symmetric, non-degenerate bilinear form defines a canonical isomorphism between a
vector space and its dual. A special case is a Riemannian metric which provides us with a
isomorphism between tangent and cotangent spaces at every point of the manifold. In tensor
calculus, this isomorphism is applied by“pulling indices up and down”with the metric:

Pulling down: T
i1 : : :� : : : ip � : : : �
� : : : i : : :� j1 : : : jq

WD gikT
i1 : : : k : : : ip � : : : �
� : : :� : : :� j1 : : : jq

(10.12a)

Pulling up: T
i1 : : : ip � : : : j : : : �
� : : :� j1 : : :� : : : jq

WD gjkT
i1 : : : ip � : : :� : : : �
� : : :� j1 : : : k : : : jq

(10.12b)

where gij is the inverse metric defined via gikgkj
Š
D ıij .

• ← Christoffel symbols and covariant derivatives (Section 3.6):

We realized that the partial derivatives of tensor fields are not tensor fields themselves (this
only works for scalars). This motivated the introduction of a “patched up derivative,” the
so called ← covariant derivative that transforms again like a tensor. To define the covariant
derivative, we needed a set of (non-tensorial) functions called ← Christoffel symbols that were
defined by a given Riemannian metric:

# Covariant derivative wrt. k

Scalar: ˆ
Ik WD ˆ;k (10.13a)

Contravariant vector: Ai
Ik WD A

i
;k C �

i
klA

l (10.13b)

Covariant vector: Bi Ik WD Bi ;k � �
l
ikBl (10.13c)

with ˆ;k � @kˆ etc. and the ← Christoffel symbols (of the second kind)

� ikl WD
1

2
gim

�
gmk;l C gml;k � gkl;m

�
: (10.14)

¡! In the following two sections we will revisit, motivate and study the concept of a covariant
derivative in more detail. We will also see where the Christoffel symbols come from and
which role they play geometrically on the manifold.

So if you were not satisfied with the way the covariant derivative and the Christoffel symbols
appeared out of thin air in Section 3.6: Now comes the proper introduction!

• ← Manifest covariance (Section 3.6):

The whole point of our endeavor was to find a mathematical toolbox that allows us to write
down equations that are guaranteed to be form-invariant under arbitrary coordinate transfor-
mations. These equations describe relations between geometric objects on a manifold, such
that their content is independent of the chosen coordinate chart. This toolbox is called ← ten-
sor calculus and consists of rules how to combine/construct tensors (e.g. via multiplication,
contraction of indices, covariant derivatives,…) to form generally covariant equations. The
general covariance of tensorial equations is manifest because their mere structure guarantees
general covariance:

T IJ .x/ D 0
Coordinate trafo: NxD'.x/

 ������������������!
NT I

J . Nx/D @ NxI

@xM
@xN

@ NxJ T
M

N .x/

NT IJ . Nx/ D 0 (10.15)
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2 | Plan:

Differentiable

Manifold

M

Manifold

& Connection

.M; �/

Riemannian

Manifold

.M; g/

Riemannian Manifold

& Levi-Civita connection

.M; g; �g/

general relativity

?

Sec.
10.2

3
Sec. 3.5

?

Sec.
10.3

?
Sec. 10.3

Ch. 11

• Section 10.2:

Introduce and study → connections and the concept of parallel transport and curvature.

• Section 10.3:

Use a Riemannian metric to derive a special connection: the → Levi-Civita connection.

Study properties of this special connection: Riemannian curvature and geodesic curves.

10.2. Affine connections

• An affine connection is an additional structure on a differentiable manifold (no metric needed!) that
allows for the definition of the following concepts:

– Parallel transport

– Covariant derivatives

– Autoparallel curves

– Curvature

“Additional”means that it is not intrinsic or canonical to a manifold; you can add a connection to
obtain more structure. It also implies that typically there are many connections to choose from.

• Terminology:

In modern differential geometry, the term“connection” has a rather broad meaning. Generally
speaking, a connection is a structure that allows one to“parallel transport” objects along curves on
a manifold. The most straightforward objects to move around are vectors taken from the tangent
spaces of the manifold; this type of connection is called an → affine connection, and it is this variety
we use in general relativity.

However, you can also (artificially) attach other spaces to every point of a manifold (e.g., Lie groups
like U.1/). Then you can ask how objects of these spaces are parallel transported around the
manifold. This gives rise to other types of connections that are particularly important in modern
formulations of gauge theories (↑ gauge connections). The gauge field A� of electrodynamics is an
example of a U.1/ gauge connection; it transports U.1/ phases around (not tangent vectors) and is
therefore not an affine connection.

In the following we will often drop the “affine” and simply talk about “connections.” Keep in
mind, however, that we only consider affine connections in this chapter (and this course).

1 | ^ DifferentiableD-dimensional manifoldM ; vector field A D Ai@i ; scalar field ˆ:

@kˆ ! 3 covariant vector field (← Eq. (3.19)) (10.16a)

@kA
i
! 7 no tensor field (← Eq. (3.73)) (10.16b)
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This is a problem because we often need derivatives of tensors to formulate physical models; and
since these equations must be generally covariant ( GRP !), we need them to transform as tensors!

2 | Problem:

i | ^ Directional derivative of A D Ai@i along a curve .�/ with .0/ D p 2M :

dA..�//
d�

ˇ̌̌̌
�D0

‹
D lim
ı�!0

A..ı�// � A..0//

ı�
� lim
ı�!0

�Undefined!‚ …„ ƒ
A.q/ � A.p/

ı�
(10.17)

Note that A.q/ 2 TqM and A.p/ 2 TpM , i.e., these values of the vector field belong to
different vector spaces. Hence their difference is completely undefined!

ii | We can of course try to work with the components of the vector field wrt. a given chart instead.
Since Ai 2 R, the following expression is at least well-defined:

dAi ..�//
d�

ˇ̌̌̌
�D0

D lim
ı�!0

Ai .q/ � Ai .p/

ı�
(10.18)

Unfortunately this does not solve the problem, because these components are given wrt. to
different, coodinate-dependent bases on TqM and TpM , respectively:

A.q/ D Ai .q/@i jq with span
˚
@i jq

	
D TqM (10.19)

A.p/ D Ai .p/@i jp with span
˚
@i jp

	
D TpM (10.20)

iii | To understand why this is a problem, imagine you fix the basis f@i jpg of TpM ; this does not
fix the basis f@i jqg of TqM because choosing different (curvilinear) coordinates can be used
to modify the induced basis f@i jqg without changing f@i jpg:

As a consequence, the components Ai .q/ can be modified arbitrarily without changing the
vector fieldA itself. Thus the differenceAi .q/�Ai .p/, and thereby the directional derivative
above, do not encode a geometric, coordinate independent object! Mathematically, this is
reflected in the non-tensorial transformation of the difference under arbitrary coordinate
transformations

NAi .q/ � NAi .p/ D
@ Nxi .q/

@xk
Ak.q/ �

@ Nxi .p/

@xk
Ak.p/ ¤

@ Nxi .p/

@xk

h
Ak.q/ � Ak.p/

i
(10.21)

This explains why partial derivatives of the form @kA
i (which are simply directional deriva-

tives along coordinate axes) fail to transform as tensors.
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3 | Idea:

The problem is conceptually most transparent in Eq. (10.17) which is mathematically undefined.
However, if we could make it well-defined, we would immediately obtain a geometric, coordinate-
independent object. To make the difference between the two vectors well-defined, they must live
in the same tangent space, though.

Our only way out is to assume that we are given some function �p!q W TpM ! TqM that
establishes a correspondence between the two nearby tangent spaces by“parallel transporting”
vectors between them. We then could “parallel transport” A.p/ from TpM to TqM like so:
�p!q.A.p// 2 TqM . With this new vector, the difference is mathematically well-defined:

DA
D�
WD lim

ı�!0

2TqM‚ …„ ƒ
A.q/ � �p!q.A.p//

ı�
or

DAi

D�
WD lim

ı�!0

Ai .q/ � Ai .p
�
�! q/

ı�
(10.22)

Weuse the capital letterD to indicate that the difference in the numerator of the difference quotient
has been modified by (and depends on) � .

! �p!q is an ⁂ affine connection

(This is not yet very rigorous, we will specify our idea more formally below.)

• As already mentioned, the interpretation of an affine connection � is that it formalizes the
notion of “parallel translating” or “parallel transporting” tangent vectors along curves on
the manifold from one tangent space to another. It is important to realize that the notion of
“parallel transport” is mathematically subtle and not trivial. It must be carefully defined and
can lead to quite surprising results when considering curved manifolds:

Note that the (intuitive) parallel transport on the Euclidean plane (left) is independent of the
path along which the vector is transported. By contrast, intuitively transporting vectors on a
sphere (right) yields different results depending on the chosen path. The fact that there is no
unique“parallel vector” to a given vector, but that the notion of parallelelism depends on
the path taken, is the hallmark of → curvature.

• To be clear: the failure to produce a tensorial object from the directional derivative of a vector
field is a fundamental and not a technical issue. We were neither too naïve when performing
the derivative in Eq. (10.17), nor will our “solution” Eq. (10.22) render it magically tensorial.
It is impossible to define a tensorial derivative on a manifold without specifying an additional
structure (namely an affine connection �).

4 | Motivation:

To understand the properties of parallel transport (and thereby an affine connection �) better, we
consider the simple example of parallel transporting a vector in the affine spaceM D E2 D R2

(the Euclidean plane), described in curvilinear polar coordinates:
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i | ^ M D E2 with Cartesian coordinates Ex D .x; y/ and Cartesian basis f@x; @yg:

^ “Constant” vector field

A D Ax@x C A
y@y with Ax D const, Ay D const: (10.23)

If you are given a differentiable manifold without additional structure, it does not make sense
to ask whether a vector field “is constant.” For example, if we consider M D E2 as a
manifold (forgetting about its Euclidean metric and affine structure), it does not make sense
to call the vector fieldA“constant”; its components are constant wrt. to the basis induced by a
specific coordinate system. However, a coordinate-independent statement likeA.p/ D A.q/
for all p; q 2 M is nonsensical because A.p/ 2 TpM and A.q/ 2 TqM , and there is no
canonical isomorphism connecting TpM and TqM ; without an affine connection� , these are
completely unrelated vector spaces and we do not know how to compare vectors at different
points on the manifold (there is no concept of “parallel” vectors).

ii | ^ Coordinate transformation .x; y/ D '�1.r; �/ to polar coordinates:

x D r cos � (10.24a)

y D r sin � (10.24b)

ı
�! Induced basis change on tangent spaces (← Eq. (3.5)):

@r D cos � @x C sin � @y (10.25a)

@� D �r sin � @x C r cos � @y (10.25b)

ı
�! Components of vector field:

AD Ax@x C A
y@y D A

r@r C A
�@� (10.26)

with (no longer constant!)

Ar.r; �/ D Ax cos � C Ay sin � (10.27a)

A� .r; �/ D 1
r
.Ay cos � � Ax sin �/ : (10.27b)

iii | ^ Two infinitesimally separated points p; q 2 E2 with coordinates

u.p/ D .r; �/ and u.q/ D .r C ır; � C ı�/ (10.28)
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and associated vectors (Ar D Ar .p/ and A� D A� .p/)

A.p/ D Ar@r C A
�@� ; (10.29a)

A.q/ D ŒAr C ıAr �@r C ŒA
�
C ıA� �@� : (10.29b)

Eq. (10.27)
ı
�! (via Taylor expansion)

ıAr D rA�ı� (10.30a)

ıA� D �1
r
.A�ır C Arı�/ (10.30b)

If we now declare the vector field A to be constant, the variations Eq. (10.30) must be “fake”
in the sense that they are caused by our choice of curvilinear coordinates rather an“intrinsic”
variation of the vector field itself.

! This choice specifies an → affine connection.

iv | Now that we specified which changes of the components of vector fields (in our coordinate
system) are considered to be“fake”, i.e., artifacts of the coordinates, we can define the“real”
changes of arbitrary vector fields (which then can be non-constant wrt. our specific notion of
parallel vectors) as their “complete” variation corrected by the“fake” variation ıAi :

^ Arbitrary (“non-constant”) vector field with B i .p/ D B i .r; �/
Eq. (10.30)
������! “True change” due to“intrinsic” variation of the vector field:

ŒBr.q/ � Br.p/� � ıBr D
@Br

@r
ır C

�
@Br

@�
� rB�

�
ı� (10.31a)

ŒB� .q/ � B� .p/� � ıB� D

 
@B�

@r
C
1

r
B�

!
ır C

 
@B�

@�
C
1

r
Br

!
ı� (10.31b)

The idea is to use such“corrected” differences in the numerator of a difference quotient like
Eq. (10.22) to define a derivative of the vector field that transforms like a tensor.

That is, we define

Ai .p
�
�! q/ D Ai .p/C ıAi .p/ : (10.32)
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5 | Generalization:

Drawing from the example and the form of the particular connection Eq. (10.30), we can select
reasonable properties that an general affine connection should satisfy (in terms of components):

(i) Ai .p
�
�! q/ is linear in Ai .p/.

(ii) The variation ıAi .p/ is linear in the first-order variation ıxi of coordinates.

We can satisfy both conditions if the variation has the general form (the minus is convention)

ıAi .p/ D �� ikl .p/A
k.p/ ıxl (10.33)

!

Ai .p
�
�! q/ D Ai .p/C ıAi .p/ D

h
ıik � �

i
kl .p/ ıx

l
i
Ak.p/ (10.34)

with some undetermined set of coefficients � i
kl

that completely specify the affine connection (in
the particular coordinates chosen):

� ikl .x/ W ⁂ (coefficients of the) affine connection � (in x)

Example:

From Eq. (10.30) and Eq. (10.33) it follows for the coefficients of the affine connection of the
Euclidean plane, expressed in polar coordinates (→ Problemset 2):

�rkl .r; �/ D

�
0 0

0 �r

�
kl

and ��kl .r; �/ D

�
0 1

r
1
r

0

�
kl

: (10.35)

6 | Interpretation:

The affine connection establishes a connection (hence the name) between tangent spaces at different
points on the manifold by establishing a notion of parallelism:

2TpM‚…„ƒ
A.p/

Infinitesimal
parallel transport
����������!

2TqM‚ …„ ƒ
�p!q.A.p// D A

i .p
�
�! q/ @i jq (10.36)

D ŒAi .p/C ıAi .p/� @i jq

D Œıik � �
i
kl ıx

l � Ak.p/@i jq
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We say: �p!q.A.p// is the vector in q that is parallel to A.p/ in p.

7 | ⁂ Absolute derivative:

We can now express the absolute derivative using the connection:

DAi

D�

10.22
10.32
WD lim

ı�!0

dAi‚ …„ ƒ
Ai ..�C ı�// � Ai ..�//�ıAi

ı�

10.33
D

dAi

d�
C � iklA

k dx
l

d�
(10.37)

We want the absolute derivative to transform as a contravariant vector:

D NAi

D�
Š
D
@ Nxi

@xk

DAk

D�
(10.38)

A straightforward but cumbersome calculation shows [recall Section 3.6] that this is the case if and
only if the connection coefficients transform as follows:

N� ikl $
@ Nxi

@xm
@xn

@ Nxk

@xo

@ Nxl
�mno„ ƒ‚ …

Tensor 3

C
@ Nxi

@xp
@2xp

@ Nxk@ Nxl„ ƒ‚ …
No tensor 7

(10.39)

! � i
kl

does not transform as a tensor!

• ¡! For a given manifoldM , there are infinitely many choices for an affine connection � .

• ¡! The definition Eq. (10.37) makes sense for any contravariant vectorAi that is defined (and
differentiable) along the curve .�/ [for example, a particle trajectory x�.�/]. Although we
considered a vector field Ai in our discussion, it is not necessary for Ai to be defined in the
neighborhood of the trajectory .�/; i.e., partial derivatives @jAi do not need to be defined
for the definition of the absolute derivative Eq. (10.37). This is why we distinguish between
the absolute derivative and the → covariant derivative.

• The additional term that makes the transformation of the connection coefficients non-
tensorial is needed to compensate for a corresponding non-tensorial term from the total
(non-covariant) derivative dAi

d� .

• Every set of fields � i
kl

that transforms according to Eq. (10.39) can be used to define a
connection (and therefore a notion of what “parallel” means on a manifold). This definition
allows for more solutions than the specific type of connection that we used for our motivation,
namely connections derived from declaring a given vector field as “constant.” Interestingly,
not all connections can be constructed in this way (the ones that can are actually quite boring
because they do not have → curvature), and in Section 10.3 we will find a recipe to construct
a special connection from every Riemannian metric.

8 | Torsion:

In general, the connection coefficients are not symmetric in their lower two indices.!

� ikl D
1

2

�
� ikl C �

i
lk

�
„ ƒ‚ …

�i
.kl/

C
1

2

S i
kl‚ …„ ƒ�

� ikl � �
i
lk

�
„ ƒ‚ …

�i
Œkl�

(10.40)
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Eq. (10.39)
������! (Note that the non-tensorial part in Eq. (10.39) is symmetric in k and l!)

NS ikl D
@ Nxi

@xm
@xn

@ Nxk

@xo

@ Nxl
Smno (10.41)

! Antisymmetric part S i
kl

of connection is a tensor: ⁂ Torsion tensor

• ¡! This is not true for the symmetric part.

• general relativity is based on the assumption that the affine connection of spacetime
is torsion-free. Hence it is sufficient to focus on symmetric, torsion-free connections to
formulate the theory.

• Interpretation:

On a manifold with torsion, infinitesimal parallelograms do not close:

To see this, consider two infinitesimal vectors ıxi1 and ıxi2 at some point p 2 M . Then
parallel transport ıxi1 along ıx

i
2 to produce ı Qxi1 and vice versa:

ı Qxi1 D ıx
i
1 � �

i
kl .ıx

k
1 /.ıx

l
2/ ; (10.42a)

ı Qxi2 D ıx
i
2 � �

i
kl .ıx

k
2 /.ıx

l
1/ : (10.42b)

The amount by which this infinitesimal parallelogram does not close is:

�i WD .ıxi1 C ı Qx
i
2/ � .ıx

i
2 C ı Qx

i
1/ D .ıx

i
1 � ı Qx

i
1/ � .ıx

i
2 � ı Qx

i
2/

10.42
D

�
� ikl � �

i
lk

�
.ıxk1 /.ıx

l
2/

def
D S ikl .ıx

k
1 /.ıx

l
2/ : (10.43)

Non-vanishing torsion therefore implies:

�i D S ikl .ıx
k
1 / .ıx

l
2/ ¤ 0 , S ikl .ıx

k
1 / .ıx

l
2/ ¤ S

i
kl .ıx

k
2 / .ıx

l
1/ (10.44)

! The direction of paths matters: First going along ıxk1 and then parallel to ıxl2 leads to a
different point than doing the opposite. (Similar to the motion of a screw, which is different
for clockwise and counterclockwise rotation.)

• It is possible to extend general relativity by allowing the torsion of spacetime to be
non-zero (and dynamic as well) [131, 132]. In such theories, the ↓ spin of particles becomes
the source of torsion, just as their mass is the source of → curvature. Such theories can predict
additional forces between spinful particles, see Ref. [133] for a review.

• Since torsion is “just another tensor field” (which is not true for the symmetric part of the
connection), it is reasonable to keep a geometric theory of gravity slim and assume torsion
to vanish. If the theory matches observations, we didn’t produce unnecessary clutter by
dragging torsion along (↓ Occam’s razor); however, if there happen to be phenomena that
cannot be explained, we can still “patch” the theory by adding new (tensor) fields (that might
play the role of torsion). In any case, there is no experimental evidence to date that makes a
torsion field necessary.
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! Henceforth we consider only torsion-free connections:

� ikl D �
i
lk

9 | Locally geodesic coordinate systems:

Since we know how the coefficients of a connection transform, we can ask whether there are special
coordinate systems in which the connection looks particularly simple:

Details: → Problemset 2

i | Goal:

Show that for every point p 2 M there is a coordinate system in which the connection
coefficients in this point vanish:

8p 2M 9 Chart u with u.p/ D x0 W � ikl .x0/ D 0 8ikl (10.45)

u: ⁂ Locally geodesic coordinate system

ii | First, show the alternative form of the transformation: (recall Eq. (3.75))

N� ikl $
@ Nxi

@xm
@xn

@ Nxk

@xo

@ Nxl
�mno �

@xm

@ Nxl

@xp

@ Nxk

 
@2 Nxi

@xp@xm

!
(10.46)

This follows from Eq. (10.39) by differentiating @ Nxi

@xk

@xk

@ Nxj D ı
i
j .

iii | ^ Coordinates v with v.p/ D 0 2 RD (in general it is � i
kl
.0/ ¤ 0 in this chart)

! Coordinate transformation Nx D '.x/ D u ı v�1.x/ in vicinity of p 2M :

Nxi D xi C 1
2
C ikl .0/ x

kxl C : : : (10.47)

with (w.l.o.g.) symmetric coefficients C i
kl
D C i

lk
.

iv | ! Partial derivatives at u.p/ D 0 D v.p/:

@ Nxi

@xm

ˇ̌̌̌
xD0

D ıim and
@2 Nxi

@xp@xm

ˇ̌̌̌
xD0

D C ipm .0/ (10.48)

Eq. (10.46)
������! N� i

kl
$ � i

kl
� C i

kl

v | N� i
kl
.0/

Š
D 0 and N� i

kl
D N� i

lk
(torsion-free!) ! C i

kl
.0/ WD � i

kl
.0/ �

Notes:

• ¡! Note that we only showed that the connection coefficients can bemade zero in a single point;
in general one cannot find a coordinate system where the coefficients vanish everywhere.
This also implies that in general the derivatives @m� ikl .0/ do not vanish in p.

• In locally geodesic coordinates, the absolute derivative Eq. (10.37) is simply the“normal”
total derivative. As a consequence, in the context of Riemannian manifolds, the coordinate
lines are local geodesics (“shortest paths”, → later) – hence the name.

• The above argument fails for connections with non-vanishing torsion S i
kl
¤ 0 since the

latter transforms as a tensor and cannot be zeroed by a coordinate transformation (unless it
vanishes in all coordinates).
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• The fact that locally geodesic coordinates exist at every point will be the foundation for the
implementation of Einstein’s equivalence principle EEP in the mathematical framework of
general relativity. Physically, these coordinates will be identified with the free falling,
local inertial frames.
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↓ Lecture 20 [07.05.24]

10.2.1. Covariant derivatives

10 | The definition Eq. (10.37) of the → absolute derivative did not require Ai .�/ to be defined in a
neighborhood of the curve .�/. However, if Ai .�/ � Ai ..�// is defined on the whole manifold
(or at least in a neighborhood of the curve), we can define a more useful derivative:

dAi

d�
D
@Ai

@xk

dxk

d�
)

DAi

D�
10.37
D

 
@Ai

@xk
C � imkA

m

!
dxk

d�
� Ai

Ik

dxk

d�
(10.49)

!⁂ Covariant derivative of a contravariant vector:

8̂<̂
:
DkA

i

rkA
i

Ai
Ik

9>=>;„ ƒ‚ …
Alternative
notations

WD

8̂<̂
:

@Ai

@xk

@kA
i

Ai
;k

9>=>;„ ƒ‚ …
Alternative
notations

C� imkA
m (10.50)

ı
�! Ai

Ik
is .1; 1/-tensor

Proof: Via the ← quotient theorem or by straightforward calculation using Eq. (10.39) (← Section 3.6).

11 | Covariant derivative of a scalar:

ˆIk WD ˆ;k (10.51)

ı
�! ˆIk is .0; 1/-tensor [Proof: Eq. (3.19)]

That the partial derivatives of scalar fields encode geometric objects, and there is no need to use
the additional structure of a connection, is a consequence of the fact that scalar fields map to R

and not TpM . Note that it makes sense to talk about a constant scalar field �.p/ D �.q/ for all
p; q 2M without referring to a particular coordinate system or specifying an additional structure!

12 | One demands that the ↓ Leibniz product rule is valid for covariant derivatives:

.AiBi /Ik
Š
D Ai

IkBi C A
iBi Ik (10.52)

! Covariant derivative of covariant vector:

Bi Ik WD Bi;k � �
m
ikBm (10.53)

Cf. Eq. (10.50): Different summation indices and different sign!
ı
�! B

i Ik
is .0; 2/-tensor
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Proof. First we note that

Ai
IkBi C A

iBi Ik
10.52
D .AiBi /Ik

10.51
D .AiBi /;k D A

i
;kBi C A

iBi ;k (10.54)

since AiBi is a scalar. With the definition Eq. (10.50) it follows

AiBi Ik $ Ai
�
Bi;k � �

m
ikBm

�
: (10.55)

Since this must be true for arbitrary Ai , Eq. (10.53) follows. �

13 | Covariant derivatives of higher-rank tensors:

The above structure can be generalized to tensors of arbitrary rank:

T ik:::rs::: Il WD T
ik:::

rs::: ;l C�
i
ml T

mk:::
rs::: C : : :„ ƒ‚ …

8upper indices

��mrl T
ik:::

ms::: � : : :„ ƒ‚ …
8lower indices

(10.56)

Example:

Covariant derivatives of rank-2 tensors:

T ik
Il D T

ik
;l C�

i
ml T

mk
C�kml T

im
! .2; 1/-tensor (10.57a)

TikIl D Tik;l � �
m
il Tmk � �

m
kl Tim ! .0; 3/-tensor (10.57b)

T ikIl D T
i
k;l C�

i
ml T

m
k � �

m
kl T

i
m ! .1; 2/-tensor (10.57c)

For a proof, see Schröder [2] (p. 53).

10.2.2. Parallel vector fields and autoparallel curves

14 | ^ Vector field A D Ai@i & curve  :

A is a ⁂ parallel (vector field) along 

W,
DAi

D�
D

dAi

d�
C � iklA

k dx
l

d�
Š
D 0 (10.58)

• Given a connection �, Eq. (10.58) is a first-order differential equation for Ai . By solving it
for a given initial value of Ai .� D 0/, one can reconstruct a parallel vector field on the curve
 .
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• For higher-rank tensors, one defines parallelism along a curve analogously:

DT ik:::mn:::
D�

Š
D 0 (10.59)

15 | ⁂ Autoparallel curve: Generalization of a straight line in RD :

Straight line: Curve that “keeps its direction constant.”

We cannot characterize a straight line as “the shortest curve between two points” because we do
not have a metric, only a connection!

^ Curve  with parametrization �.�/ (in some chart)

 is ⁂ autoparallel W, Tangent field A D Ai@i WD
d i

d� @i is ← parallel along  :

Eq. (10.58)
������!

d2 i

d�2
C � ikl

dk

d�
d l

d�
D 0 )  is ⁂ autoparallel (10.60)

• ¡! If a parametrization of a curve satisfies theDGLEq. (10.60), the curve is autoparallel and the
given parametrization is called ⁂ affine. Since Eq. (10.60) is not reparametrization invariant
(→ below), there are other (non-affine) parametrizations of the same autoparallel curve that
do not satisfy Eq. (10.60). Every autoparallel curve has such an affine parametrization (which
is unique up to affine transformations).

• Once we have a metric and a compatible connection (→ Section 10.3), the autoparallel curves
will be identical to the curves of shortest length (→ geodesics).

• Let us assume that an affine parametrization of an autoparallel curve satisfies Eq. (10.60).
Now consider a reparametrization � D f .�/ given by some strictly monotone function f .

The new parametrization is then Q i .�/ D Q i .f .�// WD  i .�/ and satisfies the DGL

d2 Q i

d�2
C � ikl

d Qk

d�
d Q l

d�
$ h.�/

d Q i

d�
with h.�/ D �

d2�

d�2

�
d�
d�

��2

: (10.61)

The definition of h is equivalent to the DGL

d2�

d�2
C h.�/

�
d�
d�

�2
D 0 : (10.62)
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If � is an affine parameter, the transformation f yields another affine parameter � if and only
if h.�/ � 0, i.e.,

d2�

d�2
D 0 ; (10.63)

which is solved by reparametrizations of the affine form � D f .�/ D a�C b. That is, affine
parametrizations are unique up to affine reparametrizations.

• This problem does not affect the definition of a parallel vector field because Eq. (10.58) is
reparametrization invariant.

10.2.3. The curvature tensor

Now that we have a formal concept of the parallel transport of vectors from one tangent space to another,
we can ask whether the result of such a transport depends only on the final destination, or whether the
path of the transport also plays a role. The answer will be that, for a generic connection, parallel transport
indeed is path dependent, and that this path dependence is a manifestation of the intrinsic curvature of
the manifold (more precisely: its connection).

16 | ^ Parallel transport of vector A D Ai@i from q to q0 via different paths 1 and 2:

! It is easier (and sufficient) to study an infinitesimal parallelogram.

17 | ^ Path p
p1
�! p0:

The first parallel transport along ıx1 yields:

Ai .p
ıx1
��! p1/

10.34
D Ai .p/C ı1A

i .p/„ ƒ‚ …
�Ai Cı1Ai

D Ai .p/ � � ikl .p/A
kıxl1 (10.64)

The subsequent parallel transport along ıx2 yields:

Ai .p
ıx1
��! p1

ıx2
��! p0/ D Ai .p

ıx1
��! p1/C ı2A

i .p
ıx1
��! p1/ (10.65a)

D Ai C ı1A
i
� � inm .p1/

�
An C ı1A

n
�
ıxm2 (10.65b)

Our goal is to express everything in the initial point p.!

� inm .p1/ � �
i
nm .p/C @l�

i
nm .p/ ıx

l
1 (10.66)
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(Since we consider an infinitesimal parallelogram, we only need linear variations of all quantities.)

With this expansion, we find for the parallel vector in p0:

Ai .p
ıx1
��! p1

ıx2
��! p0/ $ Ai �� iklA

kıxl1„ ƒ‚ …
ı1Ai .p/

�� inmA
nıxm2„ ƒ‚ …

ı2Ai .p/

C � inm�
n
klA

k ıxl1 ıx
m
2 � @l�

i
nmA

n ıxl1 ıx
m
2

C O
�
.ıx/3

�
(10.67)

In this expression, all connection coefficients and fields are evaluated in p!

18 | ^ Path p
p2
�! p0: Same expression with ıx1 $ ıx2:

Ai .p
ıx2
��! p2

ıx1
��! p0/ $ Ai �� iklA

kıxl2„ ƒ‚ …
ı2Ai .p/

�� inmA
nıxm1„ ƒ‚ …

ı1Ai .p/

C � inm�
n
klA

k ıxl2 ıx
m
1 � @l�

i
nmA

n ıxl2 ıx
m
1

C O
�
.ıx/3

�
(10.68)

19 | ! Path dependence:

�Ai WD Ai .p
ıx1
��! p1

ıx2
��! p0/ � Ai .p

ıx2
��! p2

ıx1
��! p0/

D

�
Change of Ai after parallel transport along
closed path p ! p1 ! p0

! p2 ! p.

�
Drop O

�
.ıx/3

�
terms.

� RiklmA
k ıxm1 ıx

l
2 (10.69)

with the ⁂ curvature tensor

Riklm $ @l�
i
km � @m�

i
kl C �

i
nl �

n
km � �

i
nm�

n
kl : (10.70)

Although � i
kl

is no tensor, this particular combination is a .1; 3/-tensor (Proof: → next).

20 | Covariant derivatives are defined by an infinitesimal parallel transport. As parallel transport is path
pendent, the subsequent application of two covariant derivatives in different directions cannot be
commutative. Indeed:

AkŒIlIm� � AkIlIm � AkImIl $ RiklmAi ⁂ Ricci identity (10.71)

! Covariant derivatives of tensors are not commutative (in general)!

[Eq. (10.71) is valid in this form only for torsion-free connections.]

AkIlIm is .0; 3/-tensor
← Quotient theorem
�����������! Ri

klm
is .1; 3/-tensor 3

• Alternatively, you can prove the tensorial transformation of Ri
klm

manually using the ex-
pression Eq. (10.70) and the transformation of the connection coefficients Eq. (10.39) and
partial derivatives Eq. (3.5).
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• Compare the non-commutativity of the covariant derivative of tensorswith the commutativity
of conventional partial derivatives:

AkŒ;l;m� � Ak;l;m � Ak;m;l D @m@lAk � @l@mAk D 0 : (10.72)

21 | Notes:

• The curvature tensor can be interpreted geometrically as follows:

Since curvature is the property that vectors parallel transported around infinitesimal loops
change their direction, one can encode all features of curvature in an object that tells you
how an arbitrary vector is transformed if transported around any infinitesimal parallelogram
in theml-plane. This object is the curvature tensor, and from this perspective it is clear that
it must be of rank four (two indices to specify the plane, two for the transformation of the
vector).

• (A manifold with) a connection is called flat iff the curvature tensor is identically zero
everywhere: Ri

klm
.p/ � 0. In particular, this means (for a torsion-free connection) that

in a neighborhood of every point on the manifold (and not just the point itself!) you can
find a coordinate system in which the connection coefficients vanish identically (i.e., these
neighborhoods behave like flat Euclidean space).

In summary, the following statements are equivalent:

– The curvature tensor vanishes identically.

– The manifold is flat.

– Parallel transport is path-independent.

– Covariant derivatives are commutative.

• Whether a space is curved or not is a property of its connection and not of its topology! For
example, here are two topologically equivalent (↑ homeomorphic) tori (“donuts”):
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The left one is defined by identifying opposite edges with each other and inherits the connec-
tion of the Euclidean plane. The right torus is embedded in 3D Euclidean space and inherits
the metric of R3 and its induced connection. Both spaces are topological tori, but the left
one is flat whereas the right one is not [as illustrated by the path(in)dependence of parallel
transport].

So if someone asks you whether a torus is flat or curved, the correct answer is that this is
an undefined question unless a particular connection is specified! (Interestingly, this is not
true for the two-dimensional sphere S2. While there are many connections you can assign
to a 2D sphere, none of them is flat! This is a corollary of the ↑ Gauss-Bonnet theorem or,
alternatively, the ↑ hairy ball theorem.)

10.3. Affine connections on Riemannian manifolds

Wealready know the benefits of aRiemannianmanifold .M; g/, i.e., amanifold equippedwith a (pseudo-)Rie-
mannian metric g. In the previous section, we studied another type of structure that lives on a manifold:
a connection � . In this section we bring both (a priori independent) concepts together by asking whether,
among all possible connections, there are distinguished ones on a Riemannian manifold. This will lead us
to a connection that can be constructed directly from the metric and plays a central role in general
relativity.

10.3.1. The Levi-Civita connection

1 | Motivation:

In Euclidean space, the parallel transport of two vectors does not change their inner product (in
particular, their norm/length remains constant):

! It makes sense to generalize this property to general Riemannian manifolds with a connection.

2 | ^ Riemannian manifold .M; g/ with (pseudo-)Riemannian metric gij .x/

A connection � is called a ⁂ metric-compatible

W,
d
d�
hA;Bi

def
D

d
d�
.gikA

iBk/
10.51
D

D
D�

.gikA
iBk/

Š
D 0

along any curve .�/ for all parallel vector fields A and B along  .

(10.73)

Recall that for a scalar the total and absolute derivative are identical.
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A and B parallel vector fields: DAi

D� D 0 D
DBk

D� !

Eq. (10.73) ,
Dgik
D�

Š
D 0 , 8i;k;l W gikIl

Š
D 0 (10.74)

Use the Leibniz product rule Eq. (10.52) to show this.

! gij .x/ is covariantly constant

3 |
Eq. (10.57b)
�������!

@lgik � �
m
il gmk � �

m
kl gim

Š
D 0 (10.75)

Since Eq. (10.74) holds for arbitrary indices, we also have equations with cyclic permutations:

@kgli � �
m
lkgmi � �

m
ikglm

Š
D 0 ; (10.76a)

�@igkl C �
m
ki gml C �

m
li gkm

Š
D 0 : (10.76b)

Adding up the three equations yields

�i.kl/ � �
m
.kl/gmi

Š
D
1

2
.@lgik C @kgli � @igkl /C

1

2

�
Smli gmk C S

m
ki gml

�
D
1

2
.@lgik C @kgli � @igkl /C S.kl/i (10.77)

with torsion Sm
li
D �m

li
� �m

il
and the symmetrized coefficient �m

.kl/
WD

1
2

�
�m

kl
C �m

lk

�
and torsion tensor S

.kl/i
WD

1
2

�
S
kli
C S

lki

�
.

If we assume a torsion-free connection, it is �i.kl/ D �ikl and S.kl/i D 0 so that

�ikl D
1

2
.@lgik C @kgli � @igkl / : (10.78)

These are the connection coefficients of the unique Levi-Civita connection.

4 | Use symmetry � i
kl
D � i

lk
(torsion-free!) and definition �ikl WD gim�

m
kl

Eqs. (10.75) and (10.76)
�������������!

⁂ Christoffel symbols
(of the first kind) �ikl $

1

2
.@lgik C @kgli � @igkl/

⁂ Christoffel symbols
(of the second kind) � ikl D

1

2
gim .@lgmk C @kgml � @mgkl/

(10.79a)

(10.79b)

¡! You cannot pull indices up/down inside partial derivatives because the metric itself depends on
the coordinates. For example: gim@lgmk ¤ @l .gimgmk/ D @lıik D 0.

This torsion-free, metric-compatible connection is unique and called the Levi-Civita connection:

Christoffel symbols � ikl = Connection coefficients of the ⁂ Levi-Civita connection

• In general relativity, we only work with the Levi-Civita connection; i.e., when we
use the symbols � i

kl
, we always refer to the Christoffel symbols Eq. (10.79) (and not to

generic coefficients of a [metric-compatible] connection, → below).
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• For a given metric, there are many compatible connections (→ next). However, if we demand
in addition that the connection is symmetric (= torsion-free), there is only one possible choice:
the Levi-Civita connection (↑ Fundamental theorem of Riemannian geometry).

• The Christoffel symbols are sometimes written as [132, 133]�
i

kl

�
D
1

2
gim .@lgmk C @kgml � @mgkl / : (10.80)

(Einstein used an“upside down” version of this notation in his original work on general
relativity, e.g., in Ref. [12].)

Then it follows from Eq. (10.77) that a general metric-compatible connection can be written
as

� ikl D �
i
.kl/ C �

i
Œkl� D

�
i

kl

�
C
1

2

�
S ikl � S

i
l k C S

i
kl

�„ ƒ‚ …
DW�Ki

kl

; (10.81)

with� i
Œkl�
D

1
2
S i
kl

; the tensorKi
kl

is known as ↑ contorsion tensor (“Verdrehungstensor”).

The torsion-free Levi-Civita connection is the special case where

� ikl D

�
i

kl

�
: (10.82)

Because we use only the torsion-free Levi-Civita connection in general relativity,
we don’t make use of this notation and only write � i

kl
.

5 | Interpretation:

For the special case of a 2D manifold embedded in 3D Euclidean space, the Levi-Civita connection
can be geometrically interpreted as follows:

¡! This illustration is based on an embedding of themanifold into an ambient Euclidean space (which
induces a metric on the manifold). Note, however, that the Levi-Civita connection is intrinsically
defined and does not require such an embedding.
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↓ Lecture 21 [14.05.24]

6 | Corollaries:

• Working with a metric-compatible connection has the benefit that one can pull indices up
and down within a covariant derivative:

Ti Ik D
�
gimT

m
�
Ik
D gimIk„ƒ‚…

D0

Tm C gimT
m
Ik

10.74
D gimT

m
Ik (10.83)

• The inverse metric is also covariantly constant:

gik
Il D 0 (10.84)

To show this, note that ıi
j Il
D 0 [Eq. (10.57b)] and use the Leibniz product rule:

0 D ıij Il D .g
ikgkj /Il D g

ik
Ilgkj C g

ikgkj Il

10.74
D gik

Ilgkj : (10.85)

7 | Local inertial coordinates: (Details: → Problemset 2)

i | ^ Levi-Civita connection in ← locally geodesic coordinates at p 2M :

(For simplicity, we assume that the point p has the coordinates u.p/ D 0.)

@lgik.0/
10.75
D �mil .0/„ ƒ‚ …

D0

gmk C �
m
kl .0/„ ƒ‚ …
D0

gim D 0 (10.86)

! In these coordinates, the metric tensor is constant in linear order:

gij .x/ D gij .0/C
1

2
@˛@ˇgij .0/ x

˛xˇ CO.x3/ (10.87)

ii | ^ Affine coordinate transformation: Nxi DM i
j x

j C bi
Eq. (10.39)
������! N� i

kl
D 0

Note that under affine/linear coordinate transformations, the connection coefficients trans-
form like tensors! In particular, if the connection coefficients vanish in one (geodesic) coor-
dinate system, they vanish in all coordinates that can be reached by affine transformations;
i.e., geodesic coordinates are not unique!

! Use linear transformation to bring metric of signature .r; s/ into the form

Ngij .0/ D diag.C1; : : : ;C1„ ƒ‚ …
� r

;�1; : : : ;�1„ ƒ‚ …
� s

/ : (10.88)

That this is possible follows from ↑ Sylvester’s law of inertia: First, use the symmetry of the
metric to diagonalize the matrix gij .0/ by an orthogonal transformation, then use another
non-singular transformation to normalize the eigenvalues to˙1.

iii | ^ Special case .r D 1; s D 3/ = Lorentzian manifold!

Metric in ⁂ locally inertial coordinates:

Ng��. Nx/
Nx!0
� ��� C

1

2
N@˛ N@ˇ Ng��.0/ Nx

˛
Nxˇ (10.89)
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• In words: For every point of a Lorentzian manifold there exist coordinate systems such
that the metric in this point takes the Minkowski form ��� and is constant in linear
order; we call such charts locally inertial coordinates.

• Recall that Lorentz transformations are linear and leave the Minkowski metric invariant
[← Eq. (4.21)]. This implies that locally inertial coordinates are also not unique: You can
use arbitrary Lorentz transformations without changing the structure of Eq. (10.89).

8 | Useful relations:

Here we list a few identities that will be useful for many calculations in general relativity.

You prove these relations in → Problemset 2.

• The trace of the Christoffel symbols simplifies to

� iki $
1

2
gimgim;k : (10.90)

• With the determinant of the metric g D det.gim/, the inverse metric can be written as

gim $
1

g

@g

@gim
: (10.91)

• With Eqs. (10.90) and (10.91), the trace of the Christoffel symbols takes the simple form

� iki D
1

2g
g;k D

�
ln
p
˙g

�
;k
; (10.92)

such that˙g > 0.

Note: In general relativity it is det.g��/ < 0 (because of the Lorentzian signature)
and we redefine g WD � det.g��/ > 0 to simplify expressions.

• The other trace of the Christoffel symbols can also be written in a compact form:

gkl� ikl $ �
1
p
g

�p
ggim

�
;m
: (10.93)

• It is straightforward to show the following useful identity:

gik.g
kl /;m $ � .gik/;m gkl : (10.94)

• The ⁂ covariant divergence of a contravariant vector field is defined as one would expect:

Ai Ii
10.92
D Ai ;i C A

l .ln
p
g/;l D

1
p
g

�p
gAi

�
;i

(10.95)

• For the covariant divergence of an antisymmetric .2; 0/-tensor there is a similar expression:

Aik
Ik $

1
p
g

�
p
gAik

�
;k

with Aij D �Aj i : (10.96)

• Eq. (10.95) can be used to rewrite the covariant Laplacian (divergence of a gradient) of a
scalar:

�� � �
Ii

Ii D
1
p
g

�
p
ggik�;k

�
;i
: (10.97)

The differential operator � maps scalar functions onto scalar functions and is known as
↑ Laplace-Beltrami operator.
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• Generalized divergence theorem:

i | ^ Coordinate transformation Nx D '.x/

!D-dimensional (oriented) volume element (more precisely: volume form) transforms
as (← Eq. (3.39))

dDNx D det
�
@ Nx

@x

�
dDx (10.98)

with ↓ Jacobian determinant det
�
@ Nx
@x

�
.

ii | The determinant of the metric transforms in the opposite way (← Eq. (3.54)):p
Ng D

ˇ̌̌̌
det

�
@x

@ Nx

�ˇ̌̌̌
p
g (10.99)

(Note the absolute value of the Jacobian determinant!)

iii | Hence the product of metric determinant and (oriented) volume element transforms
like a pseudo scalar: p

Ng dDNx D sign
�
det

�
@ Nx

@x

��
p
g dDx : (10.100)

Here sign
h
det

�
@ Nx
@x

�i
denotes the sign of the Jacobian determinant, which encodes

whether the coordinate transformation is orientation preserving (C1) or not (�1). This
makes

p
g dDx transform like a pseudo scalar.

If we are only interested in non-oriented volume elements, or restrict ourselves to
orientation-preserving coordinate transformations, Eq. (10.100) simplifies to a true
scalar transformation: p

Ng dDNx D
p
g dDx : (10.101)

This subtlety will not be important in the following and we use Eq. (10.101) henceforth.

iv | Eq. (10.101) is the reason why integrals over scalar quantities N�. Nx/ D �.x/ are form-
invariant under arbitrary coordinate transformations if we use the“modified” volume
element

p
g dDx for integration:

Z
dNx

p
g.x/„ ƒ‚ …

Scalar

�.x/„ƒ‚…
Scalar„ ƒ‚ …

Scalar

NxD'.x/
D

Z
dN Nx

p
Ng. Nx/ N�. Nx/ (10.102)

v | Using the covariant divergenceEq. (10.95) and themodified volume elementEq. (10.101),
we find the generalized form of the divergence theorem

Z
V

dDx
p
g Ai Ii

10.95
D

Z
V

dDx @i
�p
gAi

� Gauss
D

I
@V

d�i
p
g Ai ; (10.103)

where @V is the surface of V and d�i denotes theD � 1-dimensional surface element.
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10.3.2. TheRiemann curvature tensor

Now that we identified the special Levi-Civita connection (which can be computed from the metric), we
can also express its curvature tensor (then called Riemann curvature tensor) in terms of the metric as well:

Detailed calculations: → Problemset 3

9 | ^ Locally geodesic coordinates LG:

fRiklmg
LG
D
˚
giaR

a
klm

	LG 10.70
D gia

�
@l�

a
km � @m�

a
kl

�
(10.104)

Recall that the connection coefficients – but not their derivatives – vanish in these coordinates!

10 | Now use the explicit form of the Levi-Civita connection to find an expression in terms of the metric:

fRiklmg
LG 10.79
D

1

2

�
gim;k;l C gkl;i;m � gil;k;m � gkm;i;l

�
(10.105)

• Recall that gij;k D 0 in locally geodesic coordinates [← Eq. (10.86)].

• This expressions tells us that curvature prevents us from finding coordinates in which the
second derivatives of the metric vanish.

11 | In general coordinates, the expression becomes more complicated:

Riklm $ fRiklmgLG C gab
�
�akl �

b
im � �

a
km�

b
il

�
(10.106)

To show this, start from Eqs. (10.70) and (10.79) and use Eqs. (10.75) and (10.94).

12 | Algebraic identities:

• Eqs. (10.105) and (10.106)!

Riklm D �Rkilm ; Riklm D �Rikml ; Riklm D Rlmik (10.107)

In words: the Riemann tensor is antisymmetric in the first two and last two indices, but
symmetric if both pairs of indices are swapped.

• ⁂ First/Algebraic Bianchi identity:

The cyclic sums of Riemann tensors vanish identically:

Rihklmi � Riklm CRilmk CRimkl $ 0 (10.108)

The same is true for the cyclic sums of arbitrary triples of indices.

The relations Eqs. (10.107) and (10.108) are identities, i.e., their validity follows directly from the
definition of the Riemann curvature tensor, independent of the specific metric. This means that a
Riemann tensor inD-dimensions has less independent components as the naïve countD4 suggests.

For example, on theD D 4-dimensional spacetime of general relativity, at most 20 (and
not 44 D 256) numbers are needed to specify Riklm in every point of the spacetime manifold
(→ Problemset 3). [Beware: This does not mean that there are 20 physical degrees of freedom
in general relativity! Riklm is still a tensor and can be modified by arbitrary coordinate
transformations without changing its physical content. We will see → later that general rela-
tivity has a large gauge group (→ diffeomorphism invariance) so that there are way less physical
degrees of freedom than the 20 alluded to above.]
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13 | ⁂ Second/Differential Bianchi identity:

The cyclic sums of covariant derivatives of the Riemann tensor vanish identically:

RakhlmIni
� RaklmIn CR

a
kmnIl CR

a
knlIm $ 0 (10.109)

Proof. A neat trick to prove tensor relations is to choose a coordinate system in which their deriva-
tion is simple, and then use the tensor character of the involved objects to infer the validity of the
relation in general coordinates.

Both the Riemann tensor and covariant derivatives are particularly simple in locally geodesic
coordinates: n

RaklmIn

oLG 10.70
10.56
D �akm;l;n � �

a
kl;m;n : (10.110)

Adding up the cyclic permutations of this expression yields:n
RakhlmIni

oLG
D

n
RaklmIn

oLG
C

n
RakmnIl

oLG
C

n
RaknlIm

oLG
(10.111a)

D �akm;l;n � �
a
kl;m;n C �

a
kn;m;l � �

a
km;n;l C �

a
kl;n;m � �

a
kn;l;m

(10.111b)

D 0 (10.111c)

Now, sinceRa
khlmIni

is a tensor and vanishes in one coordinate system, it vanishes in all coordinate
systems (because tensor components transform linearly under coordinate transformations); thus
Ra

khlmIni
D 0 and we are done. �

Notes:

• Remember that commutators ŒA; B� D AB � BA satisfy the ↓ Jacobi identity:

ŒA; ŒB; C ��C ŒB; ŒC;A��C ŒC; ŒA;B�� D 0 : (10.112)

But the ← Ricci identity Eq. (10.71) relates the curvature tensor (not necessarily a Riemannian
one, but the connection must be torsion-free) to the commutator of covariant derivatives:

AkŒIlIm� D AaR
a
klm : (10.113)

Using this, one can derive the second (and also the first) Bianchi identity from the Jacobi
identity; seeNakahara [134] (p. 269).

14 | Derived tensors:

The following tensors can be derived from the Riemann tensor and will play an important role in
the formulation of general relativity:

i | The only non-trivial contraction of the Riemann tensor sums one index of the first pair with
one index of the second pair (all other contractions vanish due to symmetries):

⁂ Ricci tensor: Rkl WD R
a
kla D �R

a
kal (10.114)

ii | The Ricci tensor is symmetric:

Rkl D Rlk (10.115)
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To show this, contract the first Bianchi identity Eq. (10.108),

Rakla CR
a
lak CR

a
akl D 0 ; (10.116)

and useRa
akl
D 0 due to the antisymmetry of the Riemann tensor.

! InD D 4 dimensions, the Ricci tensor has 10 algebraically independent components.

iii | We can contract the Ricci tensor to obtain a curvature scalar:

⁂ Ricci scalar: R WD gabRab D R
a
a (10.117)

iv | ⁂ Contracted Bianchi identity:

Ricci tensor and -scalar obey an identity that derives from the second Bianchi identity:

RanIa D
1

2
RIn (10.118)

Proof. To show this, contract the differential Bianchi identity Eq. (10.109) over a andm:

RklIn �RknIl �R
a
k nlIa D 0 : (10.119)

Tracing out k and l (recall that our connection is metric-compatible, i.e., we are allowed to
pull indices up/down inside covariant derivatives) yields:

0 D gklRklIn � g
klRknIl � g

klR a
k nlIa (10.120a)

10.117
D RIn �R

l
nIl �R

la
nlIa (10.120b)

10.114
D RIn �R

l
nIl �R

a
nIa (10.120c)

D RIn � 2R
a
nIa : (10.120d)

�

v | As preparation for general relativity, we define another tensor using the Ricci tensor,
Ricci scalar, and metric:

⁂ Einstein tensor: Gij WD Rij �
1

2
gijR (10.121)

ForD D 4 on a Lorentzian manifold, this tensor will be used as the left-hand side of the
→ Einstein field equations.

vi | The form of Eq. (10.121) is structurally similar to the contracted Bianchi identity. Indeed,
Eq. (10.118) immediately implies:

Eq. (10.118) ) Gai Ia D 0 (10.122)

• Eq. (10.122) will be crucial for the consistency of the → Einstein field equations with
energy momentum conservation.
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• ForD D 4 one can show that the Einstein tensorG�� (besides the metric tensor g��)
is the only rank-2 tensor with vanishing (covariant) divergence that one can construct
from the metric and its first and second derivatives [135, 136]. This result is known
as ↑ Lovelock’s theorem and states under which conditions the field equations of gen-
eral relativity (including the cosmological constant) are unique (→ later). The
uniqueness of G�� and Lovelock’s theorem impose important constraints on possible
extensions (or modifications) of general relativity.

10.3.3. Geodesics

In Section 10.2 we defined“straight lines” as curves that keep their direction constant, and formalized
this notion as ← autoparallel curves. Now that we have a metric at hand, we can also define“straight lines”
as the shortest curves connecting two points. We will show now that these two concepts coincide for the
metric-compatible, torsion-free Levi-Civita connection induced by the metric:

15 | ^ Length of curve  connecting two points P2 and P2 [← Eq. (3.55)]:

LŒ� D

Z


ds D
Z �2

�1

d�
q
gij Pxi Pxj (10.123)

Here, xi .�1=2/ are the coordinates of P1=2 in some chart. The right expression is independent of
both the parametrization xi .�/ of the curve and the coordinate system.

To see the latter, recall that for a coordinate transformation Nx D '.x/ it is

d Nxi

d�
D
@ Nxi

@xm
dxm

d�
and Ngij D

@xk

@ Nxi
@xl

@ Nxj
gkl : (10.124)

Remember that the directional derivatives Pxi@i along a curve are vectors in the tangent space TpM
and transform accordingly. Thus, in the expression Eq. (10.123), the total derivative wrt. � is im-
portant! In contrast to the special coordinate transformations of special relativity (Lorentz
transformations), the coordinates xi themselves do not transform as tensors (they transform like
Nx D '.x/, which is non-linear in general).

16 | “Straight line” from P1 to P2 � Shortest curve � (⁂ Geodesics) from P1 to P2

¡! Strictly speaking, we will not study globally shortest curves, but curves that locally extremize the
length functional Eq. (10.123). For now, you can think of geodesics as “shortest curve” connecting
two points, but keep in mind that this is not necessarily true (→ comments below).

! Extremize length over curves starting at P1 and terminating at P2:

ıL D ı

Z P2

P1

ds Š
D 0 (10.125)
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17 | ^ Strictly monotonic, differentiable function � & Class of “Lagrangians”

L�.x; Px/ WD �
�
gkl.x/ Px

k
Pxl„ ƒ‚ …

DWy

�
(10.126)

For example: �.x/ D
p
x yields the integrand of Eq. (10.123) as Lagrangian.

!More general variation principle:

ı

Z P2

P1

d�L�.x; Px/ D 0 (10.127)

Depending on �, this “action” is no longer reparametrization invariant in general.

18 | ! Euler-Lagrange equations:

d
d�

�
@L�

@ Pxi

�
�
@L�

@xi
D 0 ,

d
d�

�
�0.y/2gik Px

k
�
� �0.y/

@gkl

@xi
Pxk Pxl D 0 (10.128)

19 | ^ Parametrization with y D gij .x/ Pxi Pxj � k Pxk2x
Š
D 1 D const

This choice fixes an affine parametrization � D s of the curve  where the “velocity” k Pxkx is
constant. Since we require k Pxkx D 1, the “time” � is equal to the length s of the curve from the
start to xi .�/ (up to a constant offset).

Later, on the (pseudo-Riemannian) Lorentzian manifolds of general relativity, we will also
consider space-like geodesics with y < 0; for such curves, you must add an additional minus in the
square root of Eq. (10.123) and choose y D �1 D const instead. The rest of the derivation is then
completely analogous.

! �0.y/ D const ¤ 0 (strict monotonic!) !

Eq. (10.128) , gik Rx
k
C gik;l Px

k
Pxl �

1

2
gkl;i Px

k
Pxl D 0 (10.129)

Note that this differential equation is independent of �!

Eq. (10.129) , gik Rx
k
C
1

2

�
gil;k C gik;l � gkl;i

�„ ƒ‚ …
�ikl

Pxk Pxl D 0 : (10.130)

20 | Identify Christoffel symbols Eq. (10.79)
ı
�!

d2xi

d�2
C � ikl

dxk

d�
dxl

d�
D 0 ⁂ Geodesic equation (10.131)

Solutions of this DGL are called ⁂ (affinely parametrized) Geodesics.

21 | Notes:

• ¡! We derived the Geodesic equation by a variational principle extremizing the length between
two points. This means that geodesics are not necessarily the shortest curves between two
points. Ignoring the peculiarities of pseudo-Riemannian metrics for now (→ Section 11.1),
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Geodesics are only locally the shortest connections between close by points, but not neces-
sarily globally. Put differently: Every shortest path connecting two points is a geodesic, but
not every geodesic connecting two points is a shortest path.

An example is a great circle on a sphere connecting two points (→ below), say the north pole
and a point on the equator. The great circle satisfies the geodesic equation everywhere, and
is therefore a geodesic. The shortest path connecting the two points is part of the great circle
(and therefore also a geodesic). But the “long way around” is certainly not the shortest path
(but still a geodesic, as it is also part of the great circle).

• With our derivation we showed that the curves (Geodesics) that solve the geodesic equation
Eq. (10.131) not only extremize the length Eq. (10.123), but themore general class of“actions”
defined by the “Lagrangian” Eq. (10.126). This will be useful → later when we study the
classical mechanics of points on the Lorentzian manifolds of general relativity.

• As already discussed previously (in Section 10.2.2), Eq. (10.131) is not invariant under
arbitrary but only affine reparametrizations � D a�C b. The geodesic equation therefore
not only picks out the locally shortest (more precisely: extremal) curves on the manifold, but
selects also a particular way to parametrize them (namely a parameter that is proportional to
the length of the curve, i.e., an affine parametrization).

• The geodesic equation is a second-order differential equation. As such it has a unique
solution xi .�/ for any point p of the manifold and tangent vector in vp D vip@i 2 TpM ; in
coordinates:

xi .0/ WD xip

Pxi .0/ WD vip

)
Eq. (10.131)
������! Geodesic xi .�/ through p in direction vp . (10.132)

This is reminiscent of classical mechanics where, given some potential V.Ex/, Newton’s law
determines a unqiue trajectory for every initial position Ex0 and initial velocity Ev0 of a test
particle by solving the second-order differential equation

mEx00
CrV.Ex/ D 0 : (10.133)

However, there is a subtle difference between Eq. (10.133) and Eq. (10.131):

Solutions of Newton’s equation of motion are not invariant under affine reparametrizations
in general. That is, if Ex.t/ is a solution of Eq. (10.133), the rescaled trajectory Ey.t/ WD Ex.˛t/
is no longer a solution (check this!). Note that the effect of the time rescaling ˛ is to scale the
initial velocity: Ey0.0/ D ˛ Ex0.0/ D ˛Ev0. Physically, this makes sense: If you throw a ball in
the same direction with different velocity, its trajectory will look different in a generic potential.

In conclusion, the solutions of Eq. (10.133) form a family of curves through every point, with
many different curves going off in the same direction:

Compare this to the geodesic Eq. (10.131):
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Given an (affinely parametrized) geodesic xi .�/, which shoots of from xi .0/ in direction
Pxi .0/ D vip, the reparametrized curve yi .�/ WD xi .˛�/ is again a solution (check this!).
This new curve has again a rescaled tangent vector at p (“initial velocity”), namely Pyi .0/ D
˛ Pxi .0/ D ˛vip . But the two curves xi .�/ and yi .�/ trace out the same curve on themanifold,
only with a different parametrization (“speed”).

The affine reparametrization symmetry of the geodesic equation therefore leads to a unique
geodesic shooting off in every direction vp 2 TpM at every point p 2 M . Rescaling vp
produces the same geodesic, only with a different parametrization (left sketch):

Note that geodesics emanating from a point can meet and cross each other at other points of
the manifold (this depends on the curvature, and therefore the metric).

An example is the sphere (right sketch); its geodesics are great circles. At every point of the
sphere there is a unique great circle for every direction. But two great circles shooting off
in different directions eventually cross again at the antipode of the point where the started
from.

• You may wonder: If we know all (unparametrized/projected) geodesics through all points
in all directions, do we then know the metric of the manifold? This question is actually
of physical significance in general relativity, where the geodesics of spacetime
correspond to the trajectories of free falling bodies (→ later). In the language of general
relativity, the question then asks whether one can reconstruct the metric of spacetime
by observing enough free falling bodies (asteroids, stars, etc.).

In its strictest sense, the answer to the question is negative. This is easy to see: Consider
R2 and equip this manifold with (1) the Euclidean metric ıij , and (2) the Minkowski metric
�ij . Since both metrics are constant, their Christoffel symbols vanish identically and the
solutions of the geodesic Eq. (10.131) are all straight lines for both metrics. On says that the
two metrics are ↑ geodesically equivalent.

However, in general it turns out that this is a quite subtle question to answer, see Ref. [137].
Note that one must carefully distinguish between unparametrized geodesics (you know only
the traces of geodesics on the manifold), and (affinely) parametrized geodesics (where you
know also the lengths along the traces). Despite the example above, it turns out that generic
metrics can be characterized by their geodesics (even unparametrized ones); i.e., two metrics
being geodesically equivalent is not the norm but the exception.

• Imagine you are given a Riemannian manifold and a machine that, input two nearby points
on the manifold, spits out the affinely parametrized geodesic through these points (i.e., a
curve with “distance ticks” on it). Using this device, you can reconstruct the Levi-Civita
connection on the manifold (i.e., you can use it to parallel transport tangent vectors) via a
geometric construction known as ↑ Schild’s ladder [↑Misner et al. [3] (§10.2, pp. 248–249)].

Fun fact: There is also a science fiction novel called Schild’s Ladder [138] by the Australian
mathematician andHugo Award winning authorGreg Egan. If you are a fan of hard, mind-
bending science fiction à la Lem, Asimov andHeinlein (and not afraid to encounter
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concepts from your physics courses in a work of fiction), you might give his novels a try.

• On a Riemannian manifold with a generic metric-compatible connection, that is not neces-
sarily the torsion-free Levi-Civita connection, the coefficients � i

kl
in Eq. (10.131) are still

the Christoffel symbols (which no longer equal the connection). So the geodesic equation
on such a manifold still reads (now with the alternative notation for Christoffel symbols to
distinguish them from the connection coefficients):

d2xi

d�2
C

�
i

kl

�
dxk

d�
dxl

d�
D 0 : (10.134)

This equation determines the“shortest lines” (geodesics) on the manifold.

By contrast, the“straightest lines” (autoparallels) are determined by the autoparallel equation
Eq. (10.60):

d2xi

d�2
C � ikl

dxk

d�
dxl

d�
10.81
D

d2xi

d�2
C

��
i

kl

�
�Kikl

�
dxk

d�
dxl

d�
D 0 : (10.135)

Here we used the general form of a metric-compatible connection Eq. (10.81) with the
← contorsion tensor Ki

kl
. Introducing the symmetric partKi

.kl/
$ 1

2
.S i
l k
C S i

k l
/ of the

contorsion tensor yields (for reference see e.g. [139])

d2xi

d�2
C

�
i

kl

�
dxk

d�
dxl

d�
D Ki.kl/

dxk

d�
dxl

d�
: (10.136)

The geodesic equation and the autoparallel equation are therefore equivalent if and only if
the symmetric partKi

.kl/
of the contorsion tensor vanishes (a sufficient, but not necessary,

condition is that the torsion S i
kl

vanishes).

In conclusion, knowing all the geodesics on a manifold only conveys information about the
symmetric part of the connection; the geodesics know nothing about torsion (but autoparallels
do, at least partially). Thus, for a generic metric-compatible connection, there is a difference
between“shortest lines” (geodesics) and“straightest lines” (autoparallels).

In general relativity, where we only use the torsion-free Levi-Civita connection, we
do not have to make this distinction, so that autoparallels and geodesics are the same.

• If the metric gij .x/ is independent of a coordinate xi , Eq. (10.128) implies for the allowed
choice �.x/ D x=2

pi WD gik Px
k
D const : (10.137)

This“constant of motion” corresponds to the ↓ cyclic variable xi and can be used to simplify
the solution of the geodesic equation.

22 | Geodesic deviation:

Details: → Problemset 3

i | ^ Continuous family of nearby (non-crossing) geodesics  is .t/:
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Define two vectors fields:

T i WD
@ is .t/

@t
(“Velocity”) and S i WD

@ is .t/

@s
(“Deviation”) : (10.138)

^ Relative acceleration of nearby geodesics:

Ai WD
D2S i

Dt2
10.49
D T n

�
TmS iIm

�
In
: (10.139)

The covariant accelerationAi measures whether two infinitesimally close geodesics“attract”
or “repel” each other.

ii | Using the ← geodesic equation and the ← Ricci identity, one finds:

Eqs. (10.71) and (10.131)!

D2S i

Dt2
$ RijklT

jT kS l ⁂ Geodesic deviation equation (10.140)

Proof: → Problemset 3

(Note that the geodesic equation can be written as T kT i
Ik
D 0.)

! Curvature makes parallel geodesics attract/repel each other!

iii | But this looks very much like gravity (more precisely: the tidal effects of gravity):

(Note that this sketch is a projection of geodesics from spacetime to space.)

! Reasonable approach to a geometric theory of gravity:

• Free-falling bodies follow geodesics in spacetime: → Chapter 11
• Masses create curvature of spacetime: → Chapter 12
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↓ Lecture 22 [28.05.24]

11. Classical physics on curved spacetime

Ourmathematical toolbox is now fully equipped to formulategeneral relativity. In this chapter, we
start by assuming a spacetime metric as given, and study how relativistic mechanics and electrodynamics
can be formulated on this (curved) spacetime. Where the metric actually comes from will be discussed in
the next Chapter 12.

11.1. Spacetime

1 | Setting the stage:

Here are some facts:

• We live in 3 spatial and 1 time dimension.

For an argument why 3C 1-dimensional spacetimes are special, recall Section 4.4.

• The EEP requires the existence of ← locally inertial coordinates (← Section 10.3.1).

Recall that in such coordinates the metric locally looks like the Minkowski metric.

! Spacetime is a ← 4D Lorentzian manifold:

Spacetime � 4D Lorentzian manifold .M; g/

with pseudo-Riemannian metric g of signature .1; 3/

• Henceforth all manifolds are of this type. We indicate this by using Greek indices�; �; : : : D
0; 1; 2; 4 for tensors; Latin indices i; j; : : : D 1; 2; 3 are now reserved for the spatial compo-
nents of tensors.

• With the metric g we can measure lengths of curves on the spacetime manifold and norms
of and angles between vectors in the tangent bundle. There is also a lot of bonus structure:
The metric defines a Levi-Civita connection, which, in turn, defines concepts like parallel
transport, covariant derivatives, and curvature.

• Note that the global topology ofM is not specified by general relativity, e.g., whether
M is compact in all or some dimensions. For example, the universe could be periodic in one
or more spatial dimensions, i.e., it could be a torus. While currently there are no observations
that indicate a non-trivial topology, such topologies are also not conclusively ruled out and
subject to ongoing research [140]. (Note that even assuming a completely flat universe –
which is consistent with observations – does not rule out non-trivial topologies; recall the
flat torus in Section 10.2.3.)

2 | Geodesics on Lorentzian manifolds:

In Section 10.3.3 we considered generic (pseudo-)Riemannian manifolds. We are now interested in
D D 4-dimensional Lorentzian manifolds of signature .1; 3/ (“Spacetime”). This comes along
with a few peculiarities concerning geodesics on this spacetime:
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i | Null cones:

^ Tangent space TpM with basis f@�g induced by ← locally inertial coordinates:

! The ⁂ null cone is the subset of tangent vectors v D v�@� 2 TpM with

kvk2p D ds2p.v; v/ D ���v
�v�„ ƒ‚ …

locally inertial
coordinates

Š
D 0 : (11.1)

• That the null vectors of theMinkowskimetric � form a conewas discussed in Section 1.6.

• Recall [← Eq. (4.16)] that all other vectors with strictly positive (negative) Minkowski
norm are called ← time-like (← space-like). We adopt this nomenclature for vectors in
the tangent spaces of Lorentzian manifolds.

• We call the cone“null cone” and not “light cone” because the latter term is reserved
for a similar but distinct structure on the manifold (→ below).

! A Lorentzian metric induces a “null cone texture” on the manifold (→ below).

This means that you can think of a Lorentzian manifold as being covered with little null cones
that vary smoothly from point to point (not only their orientation, but also their “opening
angle” can vary!). The null cones live in the tangent spaces and indicate which directions on
the manifold are time-like, light-like (null), or space-like.

ii | Classification of geodesics:

^ Geodesic �.t/ in an arbitrary coordinate system and parametrization

We can use the null cone structure to classify geodesics on a Lorentzian manifold. To this
end, consider the sign of the norm (squared) of the “velocity vector” of a geodesic:

^ Sign of norm of tangent at geodesics:

sign k P.t/k2.t/ D sign
�
g��..t// P.t/

�
P.t/�

�
(11.2)

ı
�! Eq. (11.2) is…

• … independent of the coordinate system.

The tangent vectors P.t/� contracted with the metric tensor yield a scalar.

• … constant along the geodesic.

It is easy to check by straightforward calculation that the norm of the tangent vector is

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → CLASSICAL PHYSICS ON CURVED SPACETIME

282
PAGE

constant along a geodesic:

dk Pk2
d�

D g��;� P
�
P� P� C 2g�� P

�
R� (11.3a)

D 2g��;� P
�
P� P� � g��;� P

�
P� P� C 2g�� P

�
R� (11.3b)

D 2 P�
�
g��;� P

�
P� �

1

2
g��;� P

�
P� C g�� R

�

�
(11.3c)

10.129
D 0 (11.3d)

!k Pk2 D const along a geodesic  .

This of course immediately follows from our observation that geodesics are autoparallel
curves, together with the metric-compatibility of the Levi-Civita connection.

• … invariant under reparametrizations.

The independence of the sign on the parametrization of the curve is easy to show if one
remembers that a reparametrization Q.�/ D .t/ is given by a strictly monotone function
� D �.t/:

sign
�
d.t/�

dt
d.t/�

dt

�
D sign

�d Q.�/�
d�

d Q.�/�

d�

�
d�
dt

�2
„ ƒ‚ …
>0

�
D sign

�d Q.�/�
d�

d Q.�/�

d�

�
:

(11.4)

Note that the norm of the “velocity vector” itself (without the sign) does depend on
the parametrization! This makes sense if you think of the parameter as time: Changing
how you measure time of course changes how you measure velocity.

! sign k Pk2 characterizes geodesics:

 time-like

 light-like (or null)

 space-like

9>=>; W, sign k Pk2 D

8̂<̂
:
C1

0

�1

(11.5)

Hence there are three types of geodesics on a Lorentzian manifold.

• We adopt the same nomenclature also for spacetime curves that are not geodesics. In
this case, the claim that the sign is constant along the curve is not (necessarily) the
consequence of some dynamical law, but simply a feature of a particular curve.

• On the D D 4-dimensional spacetime of general relativity, the time-like
geodesics correspond to possible trajectories of free-falling bodies (also: possible time
axes). The light-like geodesics are the trajectories of, well, light rays. Space-like
geodesics are the analog of “straight lines” in space.

• There is a subtlety regarding light-like/null geodesics: Since their “velocity” vanishes
(by definition), their length Eq. (10.123) vanishes as well. As a consequence, we cannot
use their length s as an affine parameter �. To see what goes wrong, note that for
�.y/ D

p
y setting y D k Pk2 D 0 in Eq. (10.128) is undefined (division by zero).

Luckily, this is only a technical inconvenience. Recall that in our setting, the equations
for autoparallel curves Eq. (10.60) and geodesics Eq. (10.131) are identical. While the
norm k Pk2 of a null vector vanishes, the vector itself P i is a perfectly normal vector in
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the tangent space (courtesy of g�� being a pseudo-metric). We then can simply fall back
to the autoparallel equation Eq. (10.60) to describe null geodesics. The only difference
is then that the affine parameter of light-like solutions of Eq. (10.60) (or, equivalently,
Eq. (10.131)) cannot be interpreted as the length along the geodesic anymore.

iii | Light cones:

^ Point/Event E 2M ; Draw all null geodesics emanating from E

!⁂ Light cone of E:

Notes:

• Null geodesics remain null everywhere, i.e., their tangent vectors at every point lie on
the null cone of the corresponding tangent space. Since the metric is Lorentzian (but
otherwise arbitrary) the null cones can point in“different directions” at different points,
so that the light cone can be warped and deformed.

In summary: The null cones live in the tangent spaces attached to the manifold, the
light cone lives on the manifold itself and warps according to the local null cones (and
thereby the metric).

• Note how all null cones on the future light cone point “inward”, whereas all null cones
on the past light cone point “outward”. They act like unidirectional “pores” in a
membrane that allow time-like trajectories (not necessarily geodesics) to leave the past
light cone and enter the future light cone (but not to other way around).

• All time-like geodesics throughE stay within its past- and future light cone. Conversely,
all space-like geodesics remain outside of this light cone.

Note that because of curvature in the metric [← Eq. (10.140)], geodesics can“attract”
each other; in particular, two time-like geodesics emanating from a common eventmight
cross again at another event! (Example: Imagine two satellites orbiting earth on the
same orbit in opposite directions. Both are falling freely and – according to general
relativity– follow geodesics in spacetime. But they periodically meet each other,
i.e., their geodesics cross in spacetime repeatedly.)

• Not every time-/light-/space-like curve is a time-/light-/space-like geodesic! Here is an
example of a completely light-like curve on Minkowski space (in inertial coordinates):

�.�/ D .�; cos.�/; sin.�/; 0/ : (11.6)
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Indeed:

k Pk2 D ��� P
�
P� D 1 �

h
sin2.�/C cos2.�/

i
D 0 : (11.7)

OnMinkowski space, all geodesics are straight lines in inertial coordinates (because the
Christoffel symbols vanish in them); the helical curve above clearly isn’t a straight line,
i.e., it is no geodesic but still null everywhere.

• The null cone texture (also called a ↑ cone field) induces a ← partial order of events, which
encodes a ← causality structure on the spacetime manifold (recall Section 1.6 for the case
of Minkowski space). Up to a local (conformal) deformation of time- and length scales,
this structure is essentially equivalent to the Lorentzian metric [141]! This suggests
the intriguing possibility that the null cone texture (equivalently: the causal structure
of events) might be the truly fundamental field of general relativity, and the
Lorentzian metric is just a convenient tool to encode it.

(Note that a local“stretching”of themetric by a strictly positive scalar field,�.x/g��.x/,
does neither alter the null cone texture nor angles between tangent vectors, thus it is a
↑ conformal transformation. This is why one says that the null cone texture determines
the ↑ conformal class of the Lorentzian metric.)

For more details on Lorentzian manifolds, null cones, light cones, and the causal struc-
ture of spacetime, see the monograph [142].

• By comparison, in flat Minkowski space all geodesics are straight lines and never cross
twice:

Note how the null cone (which lives in the tangent space) of the reference event coincides
with its light cone (which lives on the manifold). Mathematically, Minkowski space R1;3

is not just a Riemannian manifold (with Minkowski metric �) but also an ↓ affine
space; this allows for a natural embedding of its tangent spaces into the manifold itself.
Minkowski space is therefore a rather “degenerate” case of a generic spacetime and is
not well suited to carve out the essential features of general relativity.

• Remember that there are locally inertial coordinates for every point of the manifold
where (1) the Christoffel symbols vanish and (2) the metric has the Minkowski form
(Section 10.3.1). This concept can be generalized:

For every geodesic, there is a coordinate system (defined in a“tube” around the geodesic)
such that on the geodesic, the metric takes the Minkowski form and the Christoffel
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symbols vanish (and so do the first derivatives of the metric). Such coordinates are
called ↑ Fermi normal coordinates [143] and are useful for a freely falling observer to
describe physics along (and close to) its time-like geodesics (which is then the time-axis
of these coordinates).

iv | Extremal properties of geodesics:

We defined geodesics by a variational principle Eq. (10.125). Hence they extremize their
Riemannian length locally. Since null geodesics have vanishing length, we focus here on
time-like and space-like geodesics.

^ Length of time/space-like geodesics  :

Proper time: LTimeŒ� D

Z


q
Cg��dx�dx�„ ƒ‚ …

� c2dt2�.dx2Cdy2Cd´2/>0

(11.8a)

Proper distance: LSpaceŒ� D

Z


q
�g��dx�dx�„ ƒ‚ …

� .dx2Cdy2Cd´2/�c2dt2>0

(11.8b)

Recall that the metric has signature .1; 3/ D .C;�;�;�/. The expressions below the
integrals are valid approximately in locally inertial coordinates.

^ Local variations (in locally inertial coordinates; geodesic w.l.o.g. along coordinate axis):

!

Time-like geodesics are local maxima of proper time.

Space-like geodesics are local saddle points of proper distance.

3 | Proper time:

Which quantitiy corresponds to the time interval�� (proper time) measured by an ideal clock in
general relativity?

Requirements:

• Correspondence principle:

general relativitymust reduce to special relativity if the spacetime manifold
is flat Minkowski space: .M; g/ D .R4; �/ D R1;3.
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Remember that we established in Section 2.4 that the time measured by a clock moving
along an arbitrary time-like trajectory � W Œ�a; �b�! R1;3 in Minkowski space is given by
[Eqs. (2.25) and (4.14)]

��Œ� D
1

c

Z �b

�a

d�
p
��� P� P� : (11.9)

This expression is valid in global inertial coordinate systems.

• General covariance:

Following GRP , the expression for�� must be a geometric property of the trajectory  that
depends on the metric of the spacetime manifold, but not on the chosen coordinates and/or
parametrization of the curve.

These conditions suggest the following definition of the propert time in general relativity:

^ Clock following time-like trajectory  W Œ�a; �b�!M on arbitrary spacetime .M; g/:

¡!  is not required to be a geodesic.

!⁂ Proper time measured by this clock:

��Œ� WD
1

c

Z �b

�a

d�
q
g��..�// P� P� �

1

c

Z


q
g��.x/dx�dx� (11.10)

• Note that, because  is a time-like curve by assumption, the expression under the squareroot
is always strictly positive.

• That Eq. (11.10) is the correct expression for the reading of ideal clocks following arbitrary
time-like trajectories on arbitrary spacetimes is reasonable, but it is not a “mathematical
necessity” – it is a prediction of general relativity that can be experimentally assessed
by its physical implications (→ later).

This is actually a rather subtle point: What is an ideal clock? The only sensible thing to do is
to declare any dynamic physical process that counts time according to Eq. (11.10) as an ideal
clock. That ideal clocks measure Eq. (11.10) becomes then a tautology and physically vacuos.
That physical systems exist that (up to some limiting acceleration) measure Eq. (11.10) as
predicted by general relativity is not, however. Atomic clocks, for instance, turn out
to be rather good and robust approximations of ideal clocks, whereas pendulum clocks are
very sensitive to accelerations and quickly deviate from Eq. (11.10). This deviation, however,
is not a feature of time itself, but a consequence of the particular dynamical law governing
the motion of a pendulum under accelerated motion. Conversely, to verify that atomic clocks
do not suffer from such effects, and therefore are good proxies for measuring proper time,
one can check whether their readings match the predictions of general relativity for
�� in various situations, e.g., in the presence of gravitational fields (→ later). There are also
more direct, operational procedures (using light rays and freely falling test particles) to assess
how closely a physical process resembles an ideal clock [144] (→ below).

• Here is an analogy to demystify clocks: The voltage Uab between two points Era and Erb is
given by the line integral of the electric field EE.Er/:

Uab D �

Z Erb

Era

EE � dEr : (11.11)
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A ↓ voltmeter is a measurement device that exploits electrodynamic processes to measure
Uab , and thereby a particular property of the electromagnetic field. Voltmeters are no
magical devices that, by decree, always measure the quantity Eq. (11.11) (this would be an
ideal voltmeter, which, unfortunately, you cannot buy). A“good” voltmeter is a device that
exploits a physical process such that its output correlates with Eq. (11.11) for a wide range of
voltages; however, if you exceed its voltage ratings, this is no longer true and the readings are
no longer reliable.

Similarly, clocks are measurement devices that exploit some physical process to produce
outputs that correlate with the quantity Eq. (11.10), and thereby measure a property of the
metric field g��.x/. An ideal clock does so for all curves  in all conceivable metric fields
g��; a “good” clock (like an atomic clock) does so approximately under a wide variety of
circumstances, while a “bad” clock (like a pendulum clock) has only a very narrow range of
applicability (e.g., unaccelerated trajectories).

• According to our discussion above, time-like geodesics correspond to trajectories of clocks
along which they run fastest. This generalizes our discussion of the twin “paradox” in
Section 2.4, where we concluded that the twin staying home (in an inertial system, we ignore
the gravitational effects of Earth) ages quicker than the one following an accelerated trajectory
with his rocket. In our new reading, the earth-bound twin follows a geodesic in Minkowksi
space; by contrast, the rocket-twin follows a non-geodesic time-like curve in Minkowski space.

• In specific coordinate systems, the integral Eq. (11.10) can look simpler.

For example, one can always choose a coordinate system Ox� with the clock fixed in the
origin E0 (recall the discussion in Section 9.2 about the role of coordinates in general
relativity). In such coordinates, the proper time integral simplifies to

��Œ� D
1

c

Z x0
b

x0
a

d Ox0
q
Og00. Ox0; E0/ �

Z �b

�a

d� ; (11.12)

so that the proper time interval is given by

d� D
1

c

p
Og00 d Ox0 with Og00 > 0 : (11.13)

But why stop there? Nothing prevents you from locally “stretching” and“squeezing” the
time coordinate d Qx0 WD

p
Og00d Ox0 to absorb the time-dependence of the metric so that

d� D
1

c
d Qx0 ; (11.14)

and thereby

��Œ� D
1

c

Z Qx0
b

Qx0
a

d Qx0 : (11.15)

Such coordinates can be systematically constructed (↑ proper reference frames) for clocks on
arbitrary time-like trajectories (“observers”); seeMisner et al. [3] (§13.6, pp. 327–332) for
details.

Note that the evaluation of�� is not simplified by Eq. (11.15) in general because you must
know the integral boundries Qx0

a;b
in these coordinates (which is tantamount to knowing��).

4 | Radar coordinates:

In general relativity, coordinates are mathematical artifices that are used to catalog events,
while preserving their local causal relations (“continuity”). In contrast to the inertial coordinate
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systems of special relativity, there is no operational meaning associated to most coordinates!
To find special coordinate charts that have a physical interpretation (at least in some region of
spacetime) one can proceed the other way around: Define an operational procedure that assigns
four numbers to events in spacetime; this procedure then defines a particular kind of coordinate
system that can be identified with measurable quantities by construction. A particularly simple
example of such coordinates are radar coordinates:

This discussion is based on Ref. [145].

i | ^ Observer� Clock following a time-like trajectory .t/ W Œa; b�!M

¡! The trajectory does not need to be a geodesic. The clock displays t along  – but the
parameter t is not required to be an affine parameter (in particular: proper time). If t does
equal proper time Eq. (11.10) along  (up to some offset), we call the clock an ← ideal clock.

ii | ^ Event E 2M
^ Light signals emitted at .t1/ & reflected at E & received at .t2/:

!⁂ Radar coordinates .T;R; �; '/:

T WD 1
2
.t2 C t1/ ⁂ Radar time (11.16a)

R WD c
2
.t2 � t1/ ⁂ Radar distance (11.16b)

� WD h↓ Altitude of reflection at .t2/i (11.16c)

' WD h↓ Azimuth of reflection at .t2/i (11.16d)

To define the altitude and azimuth, one must fix a smooth orthonormal ↑ tetrad along  .

Note that one can really measure .T;R; �; '/: Think of E as a point on the trajectory of a
space probe flying away from Earth. You can periodically send directional radar pulses –
that are reflected by the space probe – and use your Earth-bound clock to measure t1 and t2
(together with the angles � and ' of the received reflection).

iii | Radar coordinates cannot cover all of spacetime in general!

The method can fail to assign coordinates to eventsE that are “shadowed” by other objects,
or because  andE are separated by an event horizon (e.g., a ↑ Rindler horizon). It can also
happen that the assignment is not unique if there are different null geodesics from .t1/

toE and/or fromE to .t2/; this can happen due to spacetime curvature (→ gravitational

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → CLASSICAL PHYSICS ON CURVED SPACETIME

289
PAGE

lensing). However, one can show that there is always a finite “tube” around  where these
peculiarities can be excluded.

! Radar coordinates cover a “tube” around  :

iv | Now that we can construct radar coordinates in the vicinity of a clock  , we can perform the
following experiment to check whether this clock is an ← ideal clock [i.e., the parameter t
measures proper time Eq. (11.10)] [144]:

a | Eject two free falling space probes along trajectories � and N� at t0.

b | Track their trajectories with radar pulses!

� D .R.T /; T / and N� D . NR. NT /; NT / (11.17)

(We omit the polar coordinates.)

c |  is an ideal clock at t0 iff k P.t0/k.t0/ D c since [← Eq. (11.10)]

d� �
1

c
ds D

1

c

q
g��dx�dx� D

1

c

p
g�� P� P�dt D

1

c
k Pk„ƒ‚…
c

dt D dt : (11.18)

One can show [144, 145] that this is the case if and only if�
R00
T

1 � .R0
T /
2

�
TDt0

D �

"
NR00

NT

1 � . NR0
NT
/2

#
NTDt0

(11.19)

with the shorthand notationR0
X �

dR
dX .

This provides an operational procedure to check (in principle) that atomic clocks indeed
measure the proper time Eq. (11.10) and are therefore ideal clocks.
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5 | Simultaneity:

i | ^ Two nearby clocks  and Q :

We assume that they are within each others “tube” where radar coordinates can be defined.

We say:

B is ⁂ Einstein synchronous to A W, T .Qt / D 1
2
.t2 C t1/ D Qt

A is ⁂ Einstein synchronous to B W, QT .t/ D 1
2
.Qt2 C Qt1/ D t

(11.20a)

(11.20b)

• Note that Qt is measured by clock B while T .Qt / is computed from t2 and t1 which are
measured by clock A.

• This is simply ← Einstein synchronization in special relativity (← Section 1.1 and
→ Problemset 1 last semester) generalized to arbitrary spacetimes. The synchronization
constraint Eq. (11.20) is also known as ⁂ Radar synchronization.

• Recall that Einstein synchronization in special relativity (i.e., on Minkowski
space) could be proven to be symmetric and transitive for clocks at rest in the same
inertial frame (→ Problemset 1 last semester). In the more general situation considered
here, Einstein synchronization is neither symmetric nor transitive (note that, in general,
there is no inertial frame that encompasses both clocks), see [145].

• One can show [145] that if the synchronization is symmetric (as any good synchronization
should be), then the radar distances R.Qt / from A to B and QR.t/ from B to A are
necessarily constant and equal: R.Qt / � QR.t/ � const.

ii | We now want to study possible obstructions to synchronizing clocks in curved spacetimes.
For simplicity, we consider two infinitesimally separated clocks (right sketch).

This calculation follows Landau & Lifshitz [146] (§84, pp. 233–236).

^ Two infinitesimally close clocks A and B separated by dEx D fdxng:

A synchronous to B
Eq. (11.20)
(HHHH) x0 C ıx0„ƒ‚…

Offset

D
1
2
. Qx02 C Qx

0
1/ (11.21)

• We assume that the position of the clocks is labeled by xm and their reading corresponds
to the coordinate x0, i.e., these are coordinate clocks. They are not required to be ideal
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clocks ticking off proper time; the following argument therefore applies to arbitrary
coordinate systems with time-like coordinate x0 and space-like coordinates x1;2;3.

We say that a coordinate x0 is time-like (at a given point p 2 M ) if the curve onM
defined by varying x0 and keeping xm constant is a time-like curve in p (in a similar
way we define xm to be space-like). Mathematically, this means that @0 � @

@x0 2 TpM

is a time-like vector:

k@0k
2
p D gp.@0; @0/ D g��.p/ dx

�.@0/„ ƒ‚ …
ı

�
0

dx�.@0/„ ƒ‚ …
ı�

0

D g00 > 0 : (11.22)

Not every coordinate system has this property, but because of the Lorentzian signature
of g, there are always (many) such coordinate systems. These coordinate systems are
useful because their time-axis corresponds (at least locally) to possible trajectories of
physical bodies (not necessarily free-falling ones). Thus one can think of the coordinate
x0 as the time (not necessarily proper time) measured by some (not necessarily free-
falling) clock tracing out the time-axis through spacetime. Note that a coordinate can be
time-like in one region of spacetime, become null at some point, and then space-like in
another region. So the“type” of a coordinate is not fixed like that of a geodesic. Note
also that not every coordinate system is guaranteed to have a time-like coordinate at all
(this is possible for non-orthogonal coordinates which are rarely used).

• Note that the offset ıx0 could be absorbed into one of the clocks by shifting its reading
(corresponding to a coordinate transformation). But we can also simply agree that two
events at A and B are simultaneous iff their local clocks differ by ıx0 (→ below). This
is a generalization of the synchronization condition Eq. (11.20) with no downsides, at
least for the comparison of two clocks.

Let w.l.o.g. Qx0i � x
0 C dx0i !

x0 C ıx0 D x0 C 1
2
.dx02 C dx01/„ ƒ‚ …

ıx0

(11.23)

iii | For the light signals used to synchronize the clocks we have:

ds2 D g00
�
dx0

�2
C 2g0mdx0dxm C gmndxmdxn

Š
D 0 (11.24)

Here we separated the temporal from the spatial components n;m D 1; 2; 3.

Solve for dx0 � dx0i
ı
�!

dx0i D
1

g00

h
�g0mdxm �

p
.g0mg0n � gmng00/dxmdxn

i
(11.25)

The minus sign corresponds to dx01 < 0.

iv | Eq. (11.23)
Eq. (11.25)
������!

ıx0 D �
g0m

g00
dxm , g00ıx

0
C g0mdxm D 0 (11.26)

• Interpretation: ıx0 is the difference of the reading of two infinitesimally nearby clocks
A at Ex and B at Ex C dEx that indicates the time of two events happening simultaneously
according to Einstein synchronization.
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• You can think of ıx0 as a ← connection relating nearby clocks (cf Eq. (10.34)): If A
displays the time x0, we consider the time x0 C ıx0 D 1

2
. Qx02 C Qx

0
1/ displayed by B

as “equal” (in the terminology of connections: “parallel”, here better: simultaneous).
If ıx0 ¤ 0, the change in reading of nearby clocks is considered“fake”; this is not a
problem in principle: If you have two clocks where the reading t of one always coincides
with the reading t C�t of another, you don’t loose anything and can consider them
as being synchronized (as long as you know what�t is). However, there is a problem
coming from ıx0 ¤ 0 if you consider different paths in space to synchronize your clocks
(→ next).

v | ^ Closed path in space:

! g0m ¤ 0 ) ıx0
eD.ij /

¤ 0 ) �x0 �
P
e2Loop ıx

0
e ¤ 0 /

Only in coordinates with g0m D 0 , ıx0 D 0 the synchronization of clocks is path-
independent. (Example: Minkowski space with clocks corresponding to inertial coordinates
where ��� D diag .1;�1;�1;�1/.) If not, synchronizing clocks along a closed path can lead
to the identification of different times x0 and x0 C�x0 of the same clock as simultaneous!

• In the vicinity of every space-like slice (“hypersurface”) of an arbitrary spacetime it is
possible to construct a coordinate system in which g0m D 0. Because of Eq. (11.26), on
such slices the synchronization of clocks is consistently possible (= path-independent).
Furthermore, it is possible to tweak the coordinates such that g00 D 1 so that stationary
coordinate clocks (dEx D 0) measure proper time (= are ideal clocks): d�2 D 1

c2 ds2 D
g00dt2 C 0; such coordinates are called ↑ synchronous, seeMisner et al. [3] (§27.4,
p. 717).

• The above argument shows that, in general, it is possible to fill space with ideal clocks
and synchronize all of them. The question is whether they stay synchronized for all
times (i.e., whether is it possible to synchronize clocks throughout spacetime).

The answer turns out to be negative because the synchronous coordinates, while being
defined throughout space around a particular space-like hypersurface, cannot be ex-
tended to encompass all of spacetime (except for special cases like flat Minkowski space);
they necessarily form“time singularities” [147]. This conclusion is reasonable if one
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thinks of synchronous coordinates as being constructed by ejecting free-falling ideal
clocks from the hypersurface (with arbitrary spatial coordinates .x1; x2; x3/):

These clocks (the “time axes” of the synchronous coordinate system) follow geodesics.
But we already know that, in generic spacetimes with curvature, geodesics tend to
attract/repel each other and, eventually, cross. At this point the coordinate system
becomes singular because the map between events (= points on the spacetime manifold)
and coordinates is no longer unique.

6 | Spatial distances:

i | ^ Space-like curve  W Œ�a; �b�!M on arbitrary spacetime .M; g/:

¡!  is not required to be a geodesic.

!⁂ Proper distance:

LŒ� WD

Z �b

�a

d�
q
�g��..�// P� P� �

Z


q
�g��.x/dx�dx� (11.27)

The minus is necessary because k Pk2 < 0 for a space-like curve.

¡! While mathematically the proper distance is defined completely analogous to the proper
time Eq. (11.10), its operational/physical role is very different: Whereas proper time can
be immediately identified as the time displayed by an ideal clock that follows a time-like
trajectory, there is nothing that“follows” a space-like trajectory; hence there is no immediate
physical interpretation associated to the proper distance defined above.

ii | To obtain an operationally meaningful concept of distance, it is reasonable to use the ← radar
distance R defined in Eq. (11.16) as a distance measure of spatially separated points.

To this end, consider again the two infinitesimally close clocks A and B from above:

! Coordinate time needed by radar pulse from B to A back to B:

dx0� WD Qx
0
2 � Qx

0
1 D dx02 � dx01

11.25
D

2

g00

p
.g0mg0n � gmng00/dxmdxn (11.28)

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → CLASSICAL PHYSICS ON CURVED SPACETIME

294
PAGE

! Proper time elapsed at position B during round trip:

d�2� D
1

c2
ds2� D

1

c2
g00

�
dx0�

�2
D

4

c2

�
g0mg0n

g00
� gmn

�
dxmdxn (11.29)

Note that B is stationary in the considered coordinates so that dxm� D 0 form D 1; 2; 3.

! Infinitesimal distance between A and B:

dl2 WD
�
cd��

2

�2
D

�
�gmn C

g0mg0n

g00

�
„ ƒ‚ …

DW Qgmn

dxmdxn

� Qgmn.x/dxmdxn

(11.30a)

(11.30b)

Qgmn: metric of three-dimensional space (in vicinity of B)

iii | Notes:

• It is straightforward to show that

�glm Qgmn $ ıln (11.31)

so that the inverse spatial metric is the negative of the spatial part of the inverse metric:

Qglm D �glm with Qglm Qgmn D ı
l
n : (11.32)

• In general, it is operationally meaningless to integrate dl over a spatial curve �:
R
�
dl .

While every infinitesimal distance element dl does make sense for some observer
(becausewe constructed it as the radar distance), this does notmean that adding different
such elements along a curve � with constant coordinate time x0 makes sense. This
is only reasonable if one can establish an unambiguous notion of simultaneity along
the spacetime curve defined by � and x0 D const – which is not always possible (as
discussed above). Thus, in general relativity, there is no general concept of a
“distance” between bodies that has objective and operational meaning.

(Note that we are not claiming that the length of a curve in space somehow depends on
“how fast it is traversed”: The spacetime curves we are considering are space-like, one
cannot “traverse” them in any meaningful way! Only for the special cases where the
metric g��.x/ is independent of time x0, the length of a spatial curve � can be defined
by
R
�
dl and has a meaning that is independent of coordinates.)

7 | Speed of light:

Let us briefly comment on the role played by the speed of light in general relativity.

• Recall (Section 1.5):

In the global inertial systems of special relativity, light always propagates with the
same velocity vmax D c, and no signal can move faster.

• Problem:

“Velocity” is an observer-/coordinate-dependent quantity that depends on the choice of
time and space coordinates. Objective statements about velocity therefore require the choice
of a distinguished class of coordinate systems.
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Note that this was also the case in special relativity: The coordinate velocity is only
constant c in inertial coordinates (where the coordinate velocity corresponds to a physical
velocity because inertial coordinates are, by definition, Cartesian). By contrast, in the Rindler
coordinates of an accelerated observer, the coordinate speed of light is only c locally, but can
be less or more than c away from the observer.

! ^ Local inertial coordinates:

The EEP suggests: !

The speed of light is constant (c) in locally inertial coordinates

at any point of spacetime (= as measured in a freely falling laboratory).

• ¡! Remember that in special relativity we went to great lengths to link the abstract
notion of an inertial coordinate system to an operationally defined contraption of synchronized
clocks and rods forming a Cartesian lattice. Observing (or measuring) events was then defined
via this information-gathering contraption, and, as stressed previously, is different from seeing
events (i.e., waiting for light signals to reach the camera of someone sitting in the origin of
the rod lattice; recall the ← Penrose-Terrell effect mentioned in Section 2.1 and→ Problemset 3
of last semester). Since, in special relativity, inertial systems were assumed to be
global, covering all of spacetime (i.e., the rod lattice was assumed to cover all of space and
the clocks remained synchronized for all of times) we could measure events (times, distances,
speeds) everywhere in spacetime, in particular: far away. Thus a statement like “the velocity
of a light signal at Alpha Centauri was measured to be c”makes sense because we have a
(magical) grid of synchronized clocks that reaches from Earth to Alpha Centauri (note that
synchronized is short for “synchronized for all times”, i.e., in particular, the clocks tick with
the same rate).

In Section 8.2 we argued that global inertial systems do not survive the presence of gravity:
they shrink to small, local patches on spacetime, namely free falling laboratories that are
small enough to be not affected by tidal forces. But this means that we also cannot construct
a universe-encompassing latticework of synchronized clocks, and, as a consequence, there is
no longer a well-defined concept of observing/measuring distant events! In particular, there
is no well-defined way for an observer located on Earth to measure the speed of a light signal
at Alpha Centauri, we can only point a telescope into the direction and watch (= see). This
is what astronomers do (it is all they can do) and they call it observing (they do it even in
observatories); but keep in mind that this is not what we refereed to as observing in the context
of special relativity! We will adopt this new terminology henceforth.

Thus, in general relativity, we can only measure the speed of light locally (if one
manages to setup a pair of synchronized clocks). The speed of distant light signals can only
be observed, not measured. The constancy of the speed of light above refers only to local
measurements, not to remote observations; the observed speed of light can be both smaller an
larger than c!

(Whether the lab in which a local measurement of the speed of light is performed is inertial
or accelerated actually doesn’t matter: one always measures c. This is so because accelerated
observers can describe physics locally by Rindler coordinates (→ Problemset 3), and in these
the local (coordinate) speed of light is also c.)

• ¡! If you calculate the speed of light in non-inertial coordinates, the result is not necessarily c.
For example, in the → Schwarzschild metric of a spherically symmetric mass, the (coordinate)
speed of light in Schwarzschild coordinates decreases when approaching the → Schwarzschild
radius. This corresponds to the well-known phenomenon that an observer far away from a
black hole sees light freeze when approaching the event horizon.
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Similarly, in Rindler coordinates (a useful coordinate system for observers with constant
proper acceleration, → Problemset 3), the (coordinate) velocity of distant light signals can be
less or more than c, depending on their position.

• Recall our discussion ← above on the cone field on Lorentzianmanifolds that encodes the local
causal structure of spacetime. The light cones are locally generated by null cones which, by
definition, are spanned by the tangent vectors of light rays. Thismakes the statement that“the
speed of light is constant in local inertial systems” a tautology in general relativity:
There is no fixed background of distinguished coordinates with respect to which you could
measure that c is constant. It is the finiteness of the speed of information propagation (e.g.,
by light) that guarantees a local causality structure on spacetime; this causality structure can
be encoded by the cone field. One can then, without loss of generality, choose units of time
and length such that, locally, the signals that span the null cones propagate with constant
velocity c.

We already touched this topic in Section 1.4 where we derived the Lorentz transformation.
There we realized that it is not somuch the constancy of the speed of light that is important but
its finiteness (the constancy follows from the finiteness, recall Eq. (1.73)). It is the finiteness
of the speed of information propagation that induces a local causal structure of events.

8 | Implementing Einstein’s Equivalence Principle EEP :

To implement the EEP into the physical models that are defined on the spacetime of general
relativity, one can employ the following procedure:

§ Principle 3: Minimal-Coupling Principle MCP (“Comma-goes-to-Semicolon Rule”)

i | Take a physical model (equation) in manifestly Lorentz covariant form.

The model is of course assumed to be valid in special relativity (i.e., describe
the laws of nature correctly in the globally inertial coordinates of flat Minkowski space).

ii | Convert it into a generally covariant form by the following substitutions:

@� 7! r� (or ; 7! I) and ��� 7! g��.x/ (11.33)

If the physical model is given by a Lagrangian density (i.e., in an integral form), onemust
also ensure that the integrand transforms as a scalar by the substitution d4x 7! d4x

p
g

as discussed in Section 10.3.1.

iii | Assert the validity of this model in the curved spacetimes of general
relativity.

Examples: → Sections 11.2 and 11.3.

• The MCP has a similar status as ↓ canonical quantization in quantum mechanics: It provides
a (mathematically supported) guiding principle to “update” an “old” physical model to a
“new” form that adapts the model to a more fundamental theory, while respecting some sort
of correspondence principle (which is necessary because the outdated model works well in
some domain).

Furthermore, the MCP ensures (at least in the cases relevant to us, → below) that the con-
structed models respect the EEP , in that it asserts the absence of explicit (non-minimal)
couplings to the curvature tensor (which, if present, would allow local experiments to detect
the presence of a gravitational field, → below).
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• Just as canonical quantization works for most situations encountered in physics – but fails in
certain edge cases (↑ Weyl quantization, ↑ Groenewold’s theorem) –, the MCP works for most
relativistic theories (in particular, all problems that we encounter in this course), but has
some subtle ambiguities that prevent a unique outcome. The problem is that higher-order
covariant derivatives do not commute, whereas higher-order partial derivatives do:

: : : @�@� : : : D : : : @�@� : : : (11.34a)

‹ # # ‹

: : :r�r� : : :
10.71
¤ : : :r�r� : : : (11.34b)

Depending on which order of covariant derivatives you pick, you end up with theories that
are equivalent in special relativity (i.e., on flat Minkowski space), but differ by a
curvature-dependent term ingeneral relativity. Thus the MCP is only a unique recipe
for first-order differential equations [148]. (Luckily, we are physicist and can experiments let
decide which generally covariant model describes the laws of nature correctly.) For more
details on this ordering ambiguity, seeMisner et al. [3] (pp. 388–389, §16.3 and pp. 390–391,
Box 16.1).

• Here is an example to illustrate the MCP and contrast it to non-minimal coupling. The example
also shows that non-minimal coupling typically leads to a violation of the EEP (put differently,
the EEP lends credence to the MCP ):

The real Klein-Gordon field is given by the Lorentz covariant action (in ← Section 7.1 we
discussed the complex Klein-Gordon field)

SŒ�� D

Z
d4x

�
���.@��/.@��/ �m

2�2
�
D

Z
d4x

�
�;��;� �m

2�2
�
; (11.35)

the Euler-Lagrange equations of which are the Klein-Gordon equation�
@2 Cm2

�
�.x/ D 0 : (11.36)

If we want to study the Klein-Gordon field in the curved spacetime of general relativ-
ity, the MCP tells us to construct the generally covariant action (→ Problemset 4)

Sg Œ�� D

Z
d4x

p
g.x/

�
g��.x/.r��/.r��/ �m

2�2
�

(11.37a)

D

Z
d4x
p
g
�
�I��I� �m

2�2
�
; (11.37b)

which reduces to Eq. (11.35) on flat Minkowski space (g D �). The corresponding equation
of motion is the generally covariant Klein-Gordon equation�

�Cm2
�
�.x/ D 0 ; (11.38)

where � is the ← Laplace-Beltrami operator Eq. (10.97). In locally inertial coordinates,
Eq. (11.38) reduces to Eq. (11.36), realizing the EEP (check this!).

Now let us couple the Klein-Gordon field in a non-minimal way to gravity by adding a scalar
interaction with the Ricci scalarR.x/ [← Eq. (10.117)] to the action (green):

QSg Œ�� D

Z
d4x
p
g
�
�I��I� �m

2�2 � �R.x/�2
�
; (11.39)

where � 2 R is a coupling constant. The generally covariant equation of motion is clearly�
�Cm2 C �R.x/

�
�.x/ D 0 ; (11.40)
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whereR.x/ depends on the metric g��.x/.

But Eq. (11.40) does not reduce to the Klein-Gordon Eq. (11.36) of special relativity
in local inertial frames! This is so because the term �R.x/ is a scalar that does not vanish on a
curved spacetime in any coordinate system (in particular, locally inertial coordinates). Thus
Eq. (11.40) explicitly violates the EEP because, using local measurements of the evolution of
the Klein-Gordon field �, a local observer can detect the presence of curvature (and thereby
gravity).

• Be careful when making statements about higher-order covariant derivatives! For example, on
a flat Minkowski space in globally inertial coordinates, all covariant derivatives in a generally
covariant equation become partial derivatives:

T :::
I˛Iˇ

g��!���

�������! T :::;˛;ˇ : (11.41)

This is true because the Christoffel symbols are identically zero everywhere, so that all their
derivatives vanish as well.

By contrast, on a curved spacetime in locally inertial coordinates [with metric as in Eq. (10.89)],
this is not true:

T :::
I˛Iˇ

g��! Ng��

�������! ����T :::;˛;ˇ : (11.42)

To see this, note that the left-hand side contains derivatives of the Christoffel symbols – which
do not necessarily vanish in locally inertial coordinates (because coordinate transformations
cannot make curvature go away).

This also follows from the Ricci identity Eq. (10.71):

TkIlIm � TkImIl D R
i
klmTi : (11.43)

On a curved space, the right-hand side does not vanish in any coordinate system, so that
covariant derivatives do not commute; in particular, they cannot become partial derivatives.

This line of reasoning leads to a peculiar conclusion: Applying the MCP to higher-order
differential equations can lead to generally covariant equations that contain curvature terms,
and thereby violate the EEP (in its strictest form)! (Note that they do obey a correspondence
princple in the sense that they reproduce the physics of special relativity on flat
Minkowski space.) This phenomenon is of course rooted in the fact that in locally inertial
coordinates themetric is onlyMinkowskian to first order. Formore details on this predicament
(that most textbooks seem to be silent about) see Ref. [149]. Carroll argues that curvature
terms (from non-minimal or higher-order minimal coupling) may actually be present, but
should be supressed by the Planck scale (↑ Ref. [4], §4.7, pp. 179–181).
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↓ Lecture 23 [04.06.24]

11.2. Classical mechanics in the gravitational field

We now apply the MCP to obtain a formulation of the classical mechanics of points on a given spacetime
with Lorentzian metric g�� .

1 | ^ Free particle of mass m

! EOM in local inertial system according to EEP and special relativity(←Eq. (5.46)):

m
du�

d�
D 0 (11.44)

u� D dx�

d� : 4-velocity (in local inertial coordinates)
� : Proper time of particle

Note that you can multiply the massm on the left-hand side, but it cancels anyway! This reflects
the fact that, in special relativity, the trajectory of a free particle is independent of its
(inertial) mass.

2 | In local inertial coordinates it is ���� D 0!

Eq. (11.44)
�D0
, m

Du�

D�
10.37
D m

d2x�

d�2
Cm����

dx�

d�
dx�

d�
D 0„ ƒ‚ …

Generally covariant geodesic equation

(11.45)

! Eq. (11.45) valid in arbitrary coordinates ( GRP ) on arbitrary spacetimes ( MCP / EEP )!

With this we mean that the MCP suggests that the correct equation of motion for a free particle
on an arbitrary (potentially curved) spacetime of general relativity is Eq. (11.45), i.e., the
← geodesic equation!

!

In general relativity free particles follow geodesics in spacetime.

It is important to fully grasp what just happened (the procedure is deceptively simple but subtle):

i | We know from special relativity that Eq. (11.44) describes the movement of free
particles correctly (and globally) on flat Minkowski space. The Christoffel symbols of the
Minkowski metric in (globally) inertial coordinates vanish everywhere, so that Eq. (11.44)
is trivially equivalent to Eq. (11.45). But Eq. (11.45) is the (unique) generally covariant
tensor equation that reduces to Eq. (11.44) in (globally) inertial coordinates. Eq. (11.45) still
describes the physics of a free, relativistic particle on Minkowski space, but now in arbitrary
coordinates. To reiterate: As long as you fix the metric of spacetime as the Minkowski metric
(which therefore plays the role of a ← background), Eq. (11.45) is simply a more general (but
equivalent) formulation of classical mechanics in special relativity, i.e., there is no
new physics contained in the equation!

What you witnessed is the transition from a coordinate-specific formulation of a physical model
to a generally covariant formulation. This is the principle of general relativity GRP in action,
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and, as we discussed in Section 9.2, it is physically vacuous (in particular, it is not specific
to general relativity). Nonetheless we already gained something: Since Eq. (11.45)
holds in arbitrary coordinates, you can use this equation to obtain the relativistic equations
of motion in curvilinear coordinates (e.g., accelerated Rindler coordinates, → Problemset 3).
Just compute the Christoffel symbols of the Minkowski metric in these coordinates, and you
are good to go!

ii | general relativity enters the stage in the next step (which is purely interpretational
since Eq. (11.45) is already given and does not need to be modified):

The EEP claims that, even in the presence of gravity, the laws of special relativity
remain valid locally. Thus Eq. (11.44)must be valid in every local inertial frame of a potentially
curved spacetime. Eq. (11.45) implements this demand because, for every point of spacetime
and in locally inertial coordinates, the equation reduces to Eq. (11.44). That this happens is
the motivation behind the MCP .

[Note that the local inertial coordinates x� are different from point to point! That is, as-
tronauts in different space stations all can use Eq. (11.44) to describe free moving particles
in their small labs, but their coordinate systems are not the same (and typically not even
overlapping).]

The physically non-trivial claim, coming from EEP and built into MCP , is now that Eq. (11.45)
describes the trajectories of free particles correctly on all spacetimes (and not only on flat
Minkowski space). This claim is far from vacuous as it makes empirical statements about the
motion of free particles in the presence of gravity (= curvature), something that special
relativity had nothing to say about. Whether Eq. (11.45) is correct in the presence of
gravity is an empirical claim (as the validity of the EEP is) that needs to be tested experimen-
tally.

Notes:

• We can rewrite Eq. (11.45) in the form

m
du�

d�„ƒ‚…
“4-acceleration”

D �m���� u
�u�„ ƒ‚ …

“4-force”

; (11.46)

which suggests the interpretation of the right-hand side as the “gravitational 4-force” acting
on the test particle. The connection coefficients ���� then play the role of the“gravitational
field strength” and (since � / @g) the metric g��.x/ can be identified as the “gravitational
potential”. In the Newtonian limit (→ below) this identification is indeed reproduced.

However, use these identifications with a grain of salt; the whole point of general rel-
ativity is to identify the effect of gravity as spacetime curvature (which we will finally
do in Chapter 12), and not as a classical force (which can be present in addition to gravity,
→ below). Note also that the“4-acceleration” in Eq. (11.46) is a coordinate acceleration and
not a tensor, i.e., it cannot be identified with a physical acceleration [this is in contrast to the
4-acceleration in special relativity, ← Eq. (4.49)].

The reason is that the coordinates x� in the definition of u� are arbitrary; in particular, they
do not convey metric information on their own (recall our discussion of the role played by
coordinates in Section 9.2). Hence the “4-force” on the right-hand side (which is also not a
tensor!) does not correspond to a coordinate-independent, physical force; it is a fictitious
“coordinate force”, similar to the fictitious Coriolis force in classical mechanics (which is
purely a consequence of a particular choice of coordinates). There is a difference, though: In
Newtonian mechanics you can always find a coordinate system (corresponding to an inertial
frame) where theCoriolis force vanishes everywhere. By contrast, the“4-force” in Eq. (11.46)
can only be made vanish locally (in locally geodesic coordinates, that is) but not globally (if
this is possible, the Christoffel symbols vanish everywhere and spacetime is flat).

• Please appreciate howelegant the implementation of the universality of free fall (= equivalence
of gravitational and inertial mass, WEP ) in this formalism is: In Eq. (11.45) there is only one
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place to put a mass (in front of the absolute derivative). Only when we write the absolute
derivative as sum of two terms, this single mass starts to play two (seemingly) different roles,
namely that of inertial mass on the left-hand side of Eq. (11.46), and that of gravitational
mass on the right-hand side. But the two are necessarily identical, a fact that Newtonian
mechanics cannot explain! It is this natural emergence of the WEP that corroborates (and
historically motivated) a metric theory of gravity.

• Non-minimal coupling:

It is instructive to study what happens if we ignore the MCP and produce a non-minimally
coupled, generally covariant equation. For example, we could postulate the following equation
that (supposedly) describes the motion of a free particle in general relativity:

m
Du�

D�
‹
D �RI�u

�u� (11.47)

with � 2 R some coupling constant. This equation…

– … is generally covariant (! implements GRP ).

– … reduces to Eq. (11.44) on flat Minkowski space
(! consistent with special relativity).

The problem is that, on a generic curved spacetime, the curvature-related tensor RI� does
not vanish in locally inertial coordinates, so that Eq. (11.47) takes the locally inertial form

m
d Nu�

d�
D � NRI� Nu

�
Nu� ; (11.48)

which does not reproduce the physics of special relativity [namely Eq. (11.44)], and
therefore violates the EEP . Had we adhered to the MCP , we would have never added the
curvature term in the first place, and this violation would not occur.

3 | External forces:

In special relativity we not only discussed free particles but also ones that are acted upon
by some external force [← Eq. (5.6)]. Using the MCP we immediately obtain the generally covariant
form of our relativistic equation of motion:

m
du�

d�
D K�

MCP
���! m

Du�

D�
D m

�
d2x�

d�2
C ����

dx�

d�
dx�

d�

�
D K� (11.49)

HereK� is a placeholder for some force that transforms as a contravariant tensor and acts locally
on the particle. We will find an explicit example → later when we discuss the electromagnetic field.

!

Forces make trajectories deviate from geodesics. (11.50)

For example, the force pushing you into your seat right now is the phenomenological consequence
of not following a geodesic in spacetime. (A geodesic trajectory corresponds to free fall, but your
seat is in the way!)

4 | Some relations:

i | u� D dx�

d� is a tensor

u� is not a tensor field as it is only defined along the trajectory x�.�/, but u�@� 2 TM so
that it transforms as a .1; 0/ tensor.
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! kuk2 D g��u
�u� is a scalar:

k Pxk2 D g��u
�u� D

˚
g��u

�u�
	LI
D ��� Nu

�
Nu�

4.48
D
EEP

c2 > 0 (11.51)

(LI = Locally inertial coordinates)

! Physical trajectories x�.�/ of massive particles must be time-like!

This is the generalization of Eq. (4.48).

ii | With this we find:

0 D
dc2

d�
D

D.g��u�u�/
D�

D 2g��u
�Du

�

D�
(11.52)

Here we used the metric-compatibility of the Levi-Civita connection Eq. (10.74) and the
product rule for covariant/absolute derivatives.!

Du�

D�
u� D 0 (11.53)

This is the generally covariant analog of Eq. (4.50).

iii | Eq. (11.49)
Eq. (11.53)
������!

u�K
�
D 0 (11.54)

This means that the 4-velocity u� of a physical trajectory is always orthogonal to the 4-
acceleration Du�

D� and hence the 4-forceK�.

iv | The ← 4-momentum is defined as previously:

p� D mu� (11.55)

Eq. (11.51)!

kpk2 D g��p
�p� D m2c2 (11.56)

This is the generalization of Eq. (5.4).

5 | Variational principle (for a free particle):

As usual, the equation of motion can be found via a variational principle from an action. Since
Eq. (11.45) is generally covariant, the Lagrangian must be a scalar. An application of the MCP to the
action Eqs. (5.41) and (5.43) of a free particle in special relativity immediately yields the
correct result:

Eq. (5.41)
Eq. (5.43)

MCP
���! Sg Œx� D �mc

Z
x

ds D �mc
Z
x

q
g��dx�dx� (11.57)

with

ıSg Œx�
Š
D 0 , Eq. (11.45) (11.58)

We do not need to prove this! This is exactly the variation that we used to derive the geodesic
equation (which we now interpret as the equation of motion for a free particle!); ← Section 10.3.3.
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6 | Newtonian approximation:

i | ^ Non-relativistic particle in a Newtonian gravitational potential � D �MG
r

:

L D �mc2 C
1

2
mv2 �m� (11.59)

! Non-relativistic (�) action:

Sg �

Z
dtL D �mc

Z
dt
�
c �

v2

2c
C
�

c

�
(11.60)

To understand where Lagrangian & action come from, recall Eq. (5.42):

S� D �mc
2

Z
dt
p
1 � v2=c2 � �mc2

Z
dt
�
1 �

v2

2c2

�
(11.61)

!Non-relativistic approximation of Lagrangian in special relativity:

L D �mc2 C
1

2
mv2 (11.62)

Above we simply added an additional Newtonian gravitational potential.

ii | Identify the line element in the fully relativistic action:

Eqs. (11.57) and (11.60) ! ds �
�
c �

v2

2c
C
�

c

�
dt (11.63)

Use dEx D Evdt and drop terms/ v2=c2 (slow particle) and/ �2=c4 (weak field)
ı
�!

g��dx�dx� D .ds/2 �
�
1C

2�

c2

�
.cdt /2 � .dEx/2 (11.64)

This allows us to identify the Newtonian potential as 00-component of the metric tensor:

g00 � 1C
2�

c2
with � D �

MG

r
(11.65)

• Note that this result is consistent with our previous interpretation of the metric as the
analog of a gravitational potential in general relativity.

• This result demonstrates that the dominant effect of a weak gravitational field is the
modification of the time-component of the metric, i.e., a modification of the tick-rate of
clocks as a function of height (→ gravitational time dilation).

11.3. Electrodynamics in the gravitational field

Now we use the MCP to generalize ← classical electrodynamics to curved spacetimes:

1 | Remember: (Section 6.2)

• Field strength tensor: F�� D A�;� � A�;�
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• Homogeneous Maxwell equations: (Eqs. (6.42) and (6.50a))

QF ��;� D 0 , Fh��;�i D F��;� C F��;� C F��;� D 0 (11.66)

These equations are identities if F�� is expressed in terms of a gauge field A�.

• Inhomogeneous Maxwell equations: (Eq. (6.50b))

F ��;� D �
4�

c
j� (11.67)

2 | The field strength Lorentz tensor can be generalized to a proper tensor via the MCP :

F�� D A�;� � A�;�
MCP
���! F�� D A�I� � A�I� $ A�;� � A�;� (11.68)

This follows from the symmetry of the Christoffel symbols.

! No covariant derivatives needed!

Put differently: Our old field strength Lorentz tensor was a proper .0; 2/ tensor all along!

3 | Homogeneous Maxwell equations (HME):

The homogeneous Maxwell equations follow directly with the MCP :

Eq. (11.66)
MCP
���! Fh��I�i $ Fh��;�i D 0 (11.69)

! The HME have the same form as in special relativity

• If F�� is expressed in terms of the gauge field A�, this is again an identity, i.e., it is true
for all gauge fields A� and hence does not impose constraints on A�. To see this without
calculations, note that F�� does not contain connection coefficients due to Eq. (11.68). This

means that in locally geodesic coordinates we have immediately
˚
Fh��I�i

	LG
D Fh��;�i D 0;

since Fh��I�i is a tensor, it is Fh��I�i D 0 in all coordinate systems. As this line of reasoning
never imposes any constraint on A�, Eq. (11.69) is an identity.

• In coordinate-free notation, the homogeneous Maxwell equations read dF D 0, with the
2-form F D dA and the 1-form A (gauge connection); ← Eq. (6.70). That Eq. (11.69) is an
identity simply follows from ddA D 0 since d2 D 0 for the exterior derivative. The fact
that all connection coefficients drop out, and the equations do not depend on the metric, is
reflected by the fact that dF D 0 is a well-defined expression on any differentiable manifold
– neither connection nor metric required (e.g., in form of a Hodge dual).

Note that the equations are completely identical to ← Eq. (6.70), where we discussed the
coordinate-free notation in the context of special relativity. This emphasizes once
more that general covariance is not a characteristic feature of general relativity.

4 | Current:

Before we can discuss the inhomogeneous Maxwell equation, we must revisit the charge current:

i | Remember (Section 6.2): Charge dq D � d3x in volume dV D d3x is scalar quantity:
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� d3x D N� d3Nx ) � d3x„ƒ‚…
Scalar

dx�„ƒ‚…
4�vector„ ƒ‚ …

4�vector

D � d3x dt
dx�

dt
D

p
g

c
d4x„ ƒ‚ …

Eq: (10.101)
+

Scalar

�
p
g

dx�

dt„ ƒ‚ …
+

4�vector

(11.70)

Recall that not d4x but
p
gd4x transforms as a scalar [Eq. (10.101)]; in special relativ-

ity, we only considered Lorentz transformations (which have g D 1) so that we didn’t have
to make this distinction.

This implies that the 4-current must be defined as follows to be a contravariant vector:

J� WD
�
p
g

dx�

dt
6.18
D

j�
p
g

(11.71)

ii | Charge conservation is encoded by the covariant continuity equation:

J
�
I� $ 0 (Continuity equation) (11.72)

To show Eq. (11.72), use Eqs. (10.95) and (11.71) to rewrite the covariant divergence as

J�I�

10.95
D

1
p
g

�p
gJ�

�
;�

11.71
D

1
p
g
j�;� : (11.73)

At every point we can transform into locally inertial coordinates where we know that˚
J�I�

	LI
D j�;�

6.24
D

EEP
0 (11.74)

Because J�I� is a scalar, Eq. (11.72) follows in all coordinate systems.

5 | Inhomogeneous Maxwell equations (IME):

We can now use the MCP to construct the IME valid on arbitrary spacetimes:

Eq. (11.67)
Eq. (11.71)

MCP
���! F

��
I�

10.96
D

1
p
g

�p
gF ��

�
;�
D �

4�

c
J� (11.75)
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• Using the form of the covariant divergence in the middle (which follows from Eq. (10.96) for
an antisymmetric tensor), it is easy to verify that in locally inertial coordinates the special
relativistic form Eq. (11.67) is recovered so that the EEP is satisfied. (To show this, use that
in locally inertial coordinates first derivatives of the metric vanish.)

• In contrast to the HME in Eq. (11.69), the IME Eq. (11.75) are not identical to their Lorentz
covariant counterparts Eq. (11.67) but true covariant extensions thereof. In particular, the
metric makes an appearance in the equations. This means that, because of the IME, classical
electrodynamics is not a topological but a geometrical field theory, in that its solutions depend
on the geometry of spacetime. This is not surprising: One would expect the solutions for
the electromagnetic field to be different if space were a sphere, for example. Put differently,
the electromagnetic field reacts in a non-trivial way to curvature in spacetime. As we want
a theory that reproduces the observed deflection of light in the vicinity of heavy masses
(← Section 8.2), and we would like gravity to be completely encoded in the metric, this is
certainly nice to see!

• That the current must satisfy the continuity equation Eq. (11.72) for Eq. (11.75) to have
solutions is straightforward to show in a local inertial frame:

�
4�

c

˚
J�I�

	LI 11.75
D

�
1
p
g

�p
gF ��

�
;�

�
;�

D
1
p
g

�p
gF ��

�
;�;�
D 0 : (11.76)

Here we used that in locally inertial coordinates first derivatives of the metric vanish and
partial derivatives commute, together with the antisymmetry of F�� . (Note that you cannot
– without additional input – conclude that F ��I�I� D 0 since covariant derivatives in general
do not commute! Here this is true because F�� is antisymmetric, as shown above.)

• In coordinate-free notation, also the IME looks the same as in special relativity:

?d.?F / �
D J , Eq. (6.70b) (11.77)

with the 1-form J D 4�
c
J�dx� and the 2-form F D 1

2
F�� dx� ^ dx� . To derive this, one

must use the definition of theHodge star operator on arbitrary pseudo-Riemannianmanifolds
to show that ?d.?F / �

D F �
� I� dx

�.

The fact that the IME knows about the metric is reflected by the Hodge star operator in
Eq. (11.77) (which is defined via the metric). That the equation looks the same as in special
relativitymight be surprising at first, but this is the whole point of the MCP : the coupling
to gravity is postulated to be minimal – and what is more minimal than not changing the
equation at all? (Beware: That the equation looks the same does not mean that the EM
field does not couple to the metric! What changed between special relativity and
general relativity is that, previously, the metric to define the Hodge star was fixed as
the Minkowski metric, now it is a dynamical field with its own dynamics.)

6 | Action:

The covariant action of electrodynamics follows via the MCP from the old Maxwell action, and by
replacing the old current by the new contravariant one:

Eq. (6.56)
MCP

������!
Eq. (11.71)

Sg ŒA� D

Z
d4xL.A; @A; g/

D

Z
d4x
p
g

�
�

1

16�
F��F

��
�
1

c
J�A�

�
(11.78)
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Note that the metric g�� is also hidden in the two contractions between the field strength tensors!
ı
�! Euler-Lagrange Equations:

@L

@A�
� @�

@L

@.@�A�/
D 0 , F

��
I� D �

4�

c
J� (11.79)

7 | Using the action it is possible to trace the continuity equation (= charge conservation) back to the
invariance of the action under gauge transformations of the form QA� D A� C @��. To this end,
consider the local gauge variation ıA� D @��, generated by a compactly supported scalar �.x/
(meaning: �.x/ vanishes everywhere except for a finite region of spacetime), and compute the
variation of the action:

ıSg D �
1

c

Z
d4x
p
gJ�@�� D �

1

c

Z
d4x@�

�p
gJ��

�
„ ƒ‚ …

Gauss
D 0

C
1

c

Z
d4x�@�

�p
gJ�

�
: (11.80)

Here we used that ıF�� D 0 sinceF�� is gauge invariant (this is true whether or notA� extremizes
the action). The first summand on the right vanishes because �.x/ is compactly supported and
vanishes on the surface the integration volume.

If A� solves the IME, and therefore extremizes the action, the variation vanishes: ıSg D 0. Since
this must be true for arbitrary compactly supported �.x/, the continuity equation follows:

@�
�p
gJ�

�
D 0 , J�I� D 0 : (11.81)

8 | Charged particle in an electromagnetic field:

It is now straightforward to write down a generally covariant equation that describes the motion o a
charged particle in an electromagnetic field in an arbitrary gravitational field (= metric g��).

Recall Section 6.4!

Eq. (6.130)
MCP

������!
Eq. (11.49)
Eq. (11.68)

Dp�

D�
D

dp�

d�
Cm���� u

�u� D
q

c
F �� u

� (11.82)

Here we used the definition of the particle momentum Eq. (11.55).

From our discussions in Sections 11.2 and 11.3, it is clear that this covariant equation reduces to
Eq. (6.130) in locally inertial coordinates, and thus obeys the EEP .

9 | Energy-momentum tensor:

The symmetric ← Belinfante-Rosenfeld energy-momentum tensor (BRT) of the general covariant
theory Eq. (11.78) follows immediately:

Eq. (6.110)
MCP
���! T ��em D

1

4�

�
g�˛F˛ˇF

ˇ�
C
1

4
g��F˛ˇF

˛ˇ

�
(11.83)

This tensor will describe the effect of energy and momentum carried by the electromagnetic field
on the gravitational field (metric) of general relativity; i.e., Eq. (11.83) shows up on the
right-hand side of the → Einstein field equations as a source of gravity.
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↓ Lecture 24 [11.06.24]

11.4. The Hilbert Energy-Momentum Tensor

We have now discussed two covariant generalizations of classical theories that are valid on arbitrary
spacetimes, specified by a given Riemannian metric g�� . In this chapter, we study the implications of
the general covariance of such theories to understand under which circumstances they feature conserved
quantities. As a bonus, the central results of this chapter will be crucial for the derivation of the Einstein
field equations in the next Chapter 12.

1 | ^ Generally covariant theory describing matter fields �:

Sg Œ�� D

Z
d4x
p
g„ ƒ‚ …

Scalar

L.�; @�; g; @g/„ ƒ‚ …
Scalar

�

Z
d4xL.�; @�; g; @g/„ ƒ‚ …

Scalar density

(11.84)

Recall Section 3.4 for the definition of ← tensor densities.

• The following is valid for arbitrary families of matter fields f�kg; we omit the index k. In
particular, we do not assume that the fields transform as scalars, they can be arbitrary tensor
fields. The only important thing is that they are combined appropriately to a Lagrangian L
that transforms as a scalar.

• “Matter” here refers to all degrees of freedom that are not the metric g�� . So one example
for � would be the gauge fieldA� of classical electrodynamics, discussed in Section 11.3 with
the action Eq. (11.78).

• We use the subscript g do indicate that the action depends on the metric (e.g., through
covariant derivatives). If we consider these theories “stand alone”, i.e., on a fixed spacetime
background, the metric plays the role of a parameter (not a dynamical field), which motivates
the subscript notation.

• The expression in Eq. (11.84) actually requires an additional prefactor 1
c
for dimensional

reasons because we measure time coordinates in units of length (x0 D ct); we omit the
prefactor because it is irrelevant in the following and would cancel anyway.

2 | Diffeomorphism invariance:

^ Arbitrary coordinate transformation Nx D '.x/ , x D '�1. Nx/!

N�. Nx/ WD F�.�.x// , N�.x/ WD F�.�.'
�1.x/// (11.85a)

Ng. Nx/ WD Fg.g.x// , Ng.x/ WD Fg.g.'
�1.x/// (11.85b)

F is shorthand for the transformation of the field components (e.g., F D 1 for a scalar).

(Note that in x is a dummy variable in the right column; you can call it whatever you like.)

For example, the metric tensor transforms as

Ng. Nx/ D Fg.g.x// , Ng��. Nx/ D
@x˛

@ Nx�
@xˇ

@ Nx�
g˛ˇ .x/ : (11.86)
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By definition, Sg describes a generally covariant theory iff

L. N�. Nx/; N@ N�. Nx/; Ng. Nx/; N@g. Nx//
11.85
D L.�.x/; @�.x/; g.x/; @g.x// : (11.87)

This is a non-trivial constraint on the functional form of L that can be satisfied by constructing it
from proper tensorial expressions to form a scalar.

For example, the Lagrangian of Maxwell theory (in vacuum) Eq. (11.78) satisfies

L. NA�. Nx/; N@� NA�. Nx/; Ng
��. Nx// D �

1

16�
Ng�˛. Nx/ Ng�ˇ . Nx/ NF��. Nx/ NF˛ˇ . Nx/ (11.88a)

Use tensor transformation laws.

D �
1

16�
g�˛.x/g�ˇ .x/F��.x/F˛ˇ .x/ (11.88b)

D L.A�.x/; @�A�.x/; g
��.x// (11.88c)

with NF��. Nx/ D N@� NA�. Nx/ � N@� NA�. Nx/.
ı
�!

S Ng Œ N��
def
D

Z
d4x

p
Ng.x/L. N�.x/; @ N�.x/; Ng.x/; @ Ng.x// (11.89a)

Rename dummy variables from x to Nx (no substitution!).

D

Z
d4Nx

p
Ng. Nx/L. N�. Nx/; N@ N�. Nx/; Ng. Nx/; N@ Ng. Nx// (11.89b)

Variable substitution: Nx D '.x/
11.87
10.101
D

Z
d4x

p
g.x/L.�.x/; @�.x/; g.x/; @g.x// (11.89c)

def
D Sg Œ�� (11.89d)

! Sg is ⁂ diffeomorphism invariant

• ¡! This means that any generally covariant theory has a symmetry in that the value of the
action functional does not change under the substitution of fields .g; �/ 7! . Ng; N�/ defined in
Eq. (11.85) for arbitrary diffeomorphisms '. Note that we must replace both the metric g
and the matter fields � for this to work despite the fact that g is not (yet) a dynamical field.

• What happened above is similar to what we did in Section 1.2, where we rephrased the
invariance under Galilei transformations as an active symmetry of a dynamical equation.

So far, we interpreted the map Nx D '.x/ as a passive coordinate transformation, i.e., both
x and Nx are thought to describe the same point on the manifold. In this reading, the fields
�.x/ and N�. Nx/ describe the same physical state in different frames of reference. However,
we can also interpret Nx D '.x/ as an active transformation in that ' actively moves the point
corresponding to x to a new point corresponding to Nx (in the same coordinates!). In this
interpretation, one calls ' a ↑ diffeomorphism (here in a particular chart), and we interpret N�
as a new function, defined on the same coordinates, describing a different state of the system.

3 | Diffeomorphism invariance is a continuous symmetry:

^ Infinitesimal diffeomorphisms:

Nx�" D '".x
�/ D x� C ı"x

�
D x� C "�.x/ with j"�j � 1 (11.90)
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You should think of the vector field "�@� 2 TM generating the infinitesimal diffeomorphism:

N�".x/
11.85
D �.'�1

" .x//
11.90
D �.x � "/

Taylor
D �.x/ � "�.x/@��.x/CO."2/ (11.91)

(here for a scalar field) so that

ı"�.x/ � N�".x/ � �.x/ D �"
�@��.x/ (11.92)

is the infinitesimal variation of the field (at the same point) due to the diffeomorphism; ← Eq. (6.79).

Remember ↓ Noether’s (first) theorem: (← Eqs. (6.84) and (6.85))

Global continuous symmetry! Conserved current

What are the consequences of diffeomorphism invariance?

Note that there are two peculiarities that prevent us from applying Noether’s (first) theorem to
diffeomorphism invariance:

• Diffeomorphism invariance is a local symmetry.

(Since the transformation "�.x/ can depend on the spacetime point x, one can consider
transformations where "�.x/ D 0 everywhere except for a compact subset of the manifold.)

• For the action to be invariant, we must also replace the metric g 7! Ng (which is not a
dynamical field but a parameter).

4 | Thus let us proceed carefully and step by step:

i | ^ N�".x/ and Ng".x/ defined by Eqs. (11.85) and (11.90)!

ı"S WD S Ng"
Œ N�"� � Sg Œ��

11.89
D 0 (11.93a)

D

Z
d4x

�
L. N�"; @ N�"; Ng"; @ Ng"/ �L.�; @�; g; @g/

�
(11.93b)

ii | We can split the variation into two parts in lowest order of ":

ı"S D S Ng"
Œ�� � Sg Œ��„ ƒ‚ …

DWıgS

CSg Œ N�"� � Sg Œ��„ ƒ‚ …
DWı�S

CO
�
"2
�
D 0 (11.94)

iii | ^ Solutions � of the equations of motion,

8"�.x/ W ı�S D Sg Œ N�"� � Sg Œ�� D 0 (11.95)

So that!

0 D ı"S
:
D S Ng"

Œ�� � Sg Œ�� (11.96a)

D

Z
d4x ŒL.�; @�; Ng"; @ Ng"/ �L.�; @�; g; @g/� (11.96b)

Here “ :D” indicates an equality that is only valid “on shell”, i.e., when the matter fields
satisfy the matter equations of motion; for arbitrary fields, there are additional terms to be
added. One can also say that “the equation is valid modulo EOMs”.
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iv | Let us write the variation of the metric as follows:

Ng".x/ � g.x/C ı"g.x/ with jı"g.x/j 2 O."/ (11.97)

We derive an explicit expression for ı"g.x/ → below.

Eq. (11.96b)!

L.�; @�; Ng"; @ Ng"/ �L.�; @�; g; @g/
O."/
D

@L

@g��
ı"g

��
C

@L

@g
��

;�

ı"g
��

;�
(11.98a)

D

"
@L

@g��
� @�

@L

@g
��

;�

#
ı"g

��
C @�

 
@L

@g
��

;�

ı"g
��

!
(11.98b)

Here we are sloppy and write g��
;�
� g

��

;�
to streamline the notation. In the second step we

used @�.ı"g��/ D ı"g
��

;�
.

v | ^ Compact variation "�.x/! ı"g
�� D 0 on boundary of spacetime:

Eqs. (11.96b) and (11.98b)
Gauss
���! 0 D ı"S

:
D

Z
d4x

ıL

ıg��
ı"g

�� (11.99)

with ⁂ variational derivative

ıL

ıg��
WD

@L

@g��
� @�

@L

@g
��

;�

: (11.100)

vi | We now want to find an explicit expression for the variation ı"g�� of the metric:

a | The metric transforms as a .2; 0/ tensor:

Ng��" . Nx"/
11.85b
D

@ Nx
�
"

@x˛
@ Nx�"

@xˇ
g˛ˇ .x/ (11.101a)

11.90
D g��.x/C "�;˛g

˛�.x/C "�;ˇg
�ˇ .x/CO

�
"2
�

(11.101b)

Wedropped higher powers in the variation "� and its derivatives. Note that we implicitly
assume that derivatives of "� are also infinitesimal; this is a restriction on reasonably
smooth variations "� (which we are free to impose).

b | On the other hand, we can also simply expand the new metric:

Ng��" . Nx"/ D Ng
��
" .x C "/ D Ng��" .x/C g

��

;�
"� CO

�
"2
�

(11.102)

In the second term we replaced Ng by g because their difference is of order " which,
together with the "�, can be absorbed in O

�
"2
�
.

c | Eqs. (11.101) and (11.102)!

ı"g
��.x/ D Ng��" .x/ � g��.x/ D "

�

;�
g�� C "�;�g

��
� "�g

��

;�
(11.103)

d | We can use covariant derivatives and metric-compatibility to simplify this expression:

Eqs. (10.50), (10.56) and (10.74)!

ı"g
�� $ "

�

I�
g�� C "�

I�g
�� (11.104)

This is the variation of the metric under the infinitesimal diffeomorphism '".
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5 | Eq. (11.99)
Eq. (11.104)
�������! (Use the symmetry of g�� .)

0
:
D

Z
d4x

ıL

ıg��

h
"
�

I�
g�� C "�

I�g
��
i
D

Z
d4x
p
g„ ƒ‚ …

Scalar

2
p
g

ıL

ıg��„ ƒ‚ …
! Tensor

"
�

I�
g��„ ƒ‚ …

Tensor

(11.105)

This motivates the definition of the… (recall the scalar Lagrangian L � Lp
g
)

⁂ (Hilbert) Energy-Momentum Tensor (HEMT):

T�� WD
2
p
g

ıL

ıg��
D

2
p
g

ı.
p
gL/

ıg��
(11.106)

This tensor is always symmetric: T�� D T��.

¡! At this point it is unclear what T�� has to do with energy and momentum, and whether it relates
to the EMT/BRT derived in Sections 6.3.1 and 6.3.2 from Noether’s first theorem.

6 | With this new notation, we have:

0
:
D

Z
d4x
p
g T �

� "
�

I�
D

Z
d4x
p
g
h�
"�T �

�

�
I�„ ƒ‚ …

Surface term

�"�T �
� I�

i
(11.107)

Here we used the Leibniz product rule for covariant derivatives in reverse.

Compact variation "�.x/
Eq. (10.103)
�������!Z

d4x
p
g "�T �

� I�

:
D 0 (11.108)

Valid for all local variations "�.x/! T �
� I�

:
D 0

! (use that we can pull indices up under the covariant derivative)

T
��

I�

:
D 0 (11.109)

Thus the covariant divergence of the HEMT vanishes for solutions � of the matter EOMs and an
arbitrary metric g.

• Eq. (11.109) is the generally covariant form of the current conservation Eq. (6.92) that follows
from translation invariance for the (symmetric = Belinfante) energy-momentum tensor:
T
��

;�
D 0. This suggests that the name“energy-momentum tensor” is warranted, though

the exact relation between the previously defined BRT Eq. (6.106) is as of yet unclear. See
also the → next two points.

• ¡! If you think of it, Eq. (11.109) looks like free lunch! We didn’t specify any special properties of
the matter theory Sg Œ�� – except for its general covariance, which, as argued in Section 9.2, is
physically vacuous. This immediately implies that it cannot be possible to derive conserved
quantities from Eq. (11.109) in general because these would be conserved in any reasonable
theory of (fundamental) physics, independent of its symmetries!

We will study this in more detail in → Section 11.5.
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• Diffeomorphism invariance is a local symmetry in that its transformations can affect fields
on compact regions of spacetime only; this makes it a gauge symmetry (→ Hole argument).
Noether’s first theorem applies to global symmetries and guarantees the existence of a
conserved charge for each generator of the symmetry. By contrast, Noether’s second theorem
applies to local (gauge) symmetries (like diffeomorphism invariance) and implies the existence
of constraint equations that reduce the number of degrees of freedom constrained by the Euler-
Lagrange equations. From this angle, Eq. (11.109) is a product of Noether’s second theorem;
in particular, it does not come with conserved Noether charges (which come with Noether’s
first theorem).

7 | Useful relations: (→ Problemset 4)

The following relations are useful to compute the HEMT T�� for a specific Lagrangian L:

• With Eq. (10.91) it follows

@.
p
g/

@g��
D
1

2

p
gg�� : (11.110)

Note that this is a derivative wrt. g�� and not g��!

• Because of g��g�� D ı
�
� one finds for the derivative

@g˛ˇ

@g��
$ �g˛�gˇ� (11.111)

and with this

@.
p
g/

@g��
D
@.
p
g/

@g˛ˇ

@g˛ˇ

@g��
D �

1

2

p
gg�� (11.112)

Note the additional minus!

8 | Example: Maxwell theory:

Details: → Problemset 4

i | Recall the scalar Lagrangian Eq. (6.56) of electrodynamics on curved spacetimes:

L.@A; g/ D �
1

16�
F˛ˇF��g

�˛g�ˇ with F˛ˇ D @˛Aˇ � @ˇA˛ : (11.113)

ii | The variational derivative Eq. (11.100) simplifies because L is independent of derivatives of
the metric:

ı.
p
gL/

ıg��
11.100
D

@.
p
gL/

@g��
11.112
D �

1

2

p
gg��LC

1

8�

p
gF��F

�
� (11.114)

iii | Eq. (11.106)
ı
�!

T�� D
1

4�

�
F��F

�
� C

1

4
g��F˛ˇF

˛ˇ

�
(11.115)

• This is indeed the “old” Belinfante-Rosenfeld energy momentum tensor (BRT) of
the electromagnetic field discussed in Eq. (6.110), only for an arbitrary metric g��
in arbitrary coordinates instead of the Minkowski metric ��� in inertial coordinates.
This suggests that the Hilbert energy momentum tensor is the generally covariant
generalization of the symmetric BRT to arbitrary spacetimes.
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• One can show rigorously that the Hilbert energy momentum tensor (HEMT), de-
fined above, and the symmetric Belinfante-Rosenfeld energy momentum tensor (BRT),
defined in Section 6.3.2, lead to the same expressions [79]. So our result for electrody-
namics is no coincidence.

• Therefore one can use Eq. (11.106) as an alternative to compute the symmetric energy
momentum tensor for relativistic theories on Minkowski space (as an alternative to the
symmetrization procedure discussed in Section 6.3.2). To do so, use the MCP to make a
Lorentz invariant Lagrangian generally covariant, then assume that the coordinates are
arbitrary for the computation, and specialize to inertial coordinates at the end (in which
the metric takes the form ���).

9 | Example: Klein-Gordon field:

Details: → Problemset 4

i | ^ Real Klein-Gordon field �, Eq. (11.37):

L.�; @�; g/ D
1

2
g��.@��/.@��/ �

m2

2
�2 (11.116)

Note that this is a scalar Lagrangian; the covariant derivatives equal partial derivatives
because � is a scalar: @�� D �;� D �I� D r��.

ii | The variational derivative Eq. (11.100) simplifies because L is again independent of deriva-
tives of the metric:

ı.
p
gL/

ıg��
11.100
D

@.
p
gL/

@g��
11.112
D �

1

2

p
gg��LC

1

2

p
g.@��/.@��/ (11.117)

iii | Eq. (11.106)
ı
�!

T�� D �;��;� �
1

2
g��

�
�;˛�;˛ �m

2�2
�

(11.118)

This is the HEMT of the real Klein-Gordon field.

iv | Let us verify that it satisfies Eq. (11.109):

T ��I� D .�
;��;�/I� �

1

2
g��

�
�;˛�;˛ �m

2�2
�

I�
(11.119a)

D �;��;�I� C�
;�

I��
;�
� g���;˛�;˛I�„ ƒ‚ …
10.53
D 0

Cm2�;�� (11.119b)

D �;�
�
�;�I� Cm

2�
�„ ƒ‚ …

11.38
D 0

:
D 0 : (11.119c)

Here we used g��I� D 0 since the connection is metric-compatible. Note that we had to
invoke the equation of motion in the last step to show that the divergence vanishes.

11.5. ‡ Killing vector fields and conservation laws

As noted previously, Eq. (11.109) cannot be used to define conserved quantities in general. Here we
discuss this in more detail and characterize the conditions under which conserved quantities actually do
exist.

Killing (vector) fields are named after German mathematician ↑ Wilhelm Karl Joseph Killing (1847–1923).
Note that this is a situation were case sensitivity is of paramount importance: Killing fields and the ↑ Killing
Fields are not related whatsoever; luckily, we’re only concerned with the former.
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1 | Problem: (Compare this to Eq. (6.85) which implies Eq. (6.87).)

T
��

I�
10.57a
D T ��;� C �

�
��T

��
C ����T

��
11.109:
D 0 (11.120a)

10.92
(H)

1
p
g

�p
gT ��

�
;�
C ����T

��„ ƒ‚ …
No surface term/

:
D 0 (11.120b)

! Cannot be integrated by Gauss to define conserved charge!

!Question: Are there conditions under which conserved quantities can be defined?

2 | Let "�.x/ � " ��.x/ with "� 1; ^ Eq. (11.104) and demand

ı"g
��
D "

�
�
�

I�
g�� C ��

I�g
��
�
Š
D 0 (11.121)

For a given metric, this is a differential equation to be solved for vector fields ��.x/.

Pull indices down!

��I� C ��I� D 0 ⁂ Killing equation

, ��.x/ ⁂ Killing (vector) field

(11.122)

• Whether the Killing Eq. (11.122) has solutions depends on the metric g��; it can have none /
one / multiple solutions. One then says that the metric has no / one / multiple Killing fields.

• At this point it is unclear howKilling fields can help us to find conserved quantities. However,
it is intuitively clear what Killing fields are: They generate a continuous group of diffeomor-
phisms that do not change the metric! Such special diffeomorphisms are called ↑ isometries
of the Riemannian manifold; i.e., the infinitesimal generators of the isometry group of a
Riemannian manifold are the Killing fields. This group obviously depends on the geometry
of the manifold, and thus its metric. Killing fields therefore characterize the symmetries of a
spacetime manifold. A generic spacetime will have “bumps” and“twists”, and therefore no
symmetries/Killing fields.

• Example: Minkowski space:

On Minkowski space we can use global inertial coordinates, so that the covariant derivatives
become partial derivatives everywhere:

��;� C ��;� D 0 : (11.123)

It is straightforward to check that the most general solution reads

��.x/ D a� C b��x
� with b�� D �b�� (11.124)

with a� and b�� arbitrary integration constants. There are 4 linearly independent solu-
tions parametrized by a�, and 6 solutions parametrized by the antisymmetric b��; so in
total Minkowski space has 10Killing vector fields. These correspond to 4 translations (the
a�-solutions), 3 spatial rotations and 3 boosts (the b��-solutions). The isometric diffeomor-
phisms of Minkowski space are the ← Poincaré transformations! Recall our discussion of the
Lorentz group in Section 4.3.

• One can show that a 3 C 1-dimensional spacetime can have at most 10 Killing fields. In
general, aD-dimensional Riemannian manifold can have at most 1

2
D.D C 1/ Killing fields;

such manifolds are called ↑ maximally symmetric spaces. Minkowski space is an example of a
maximally symmetric space. For more details: ↑ Carroll [4] (§3.8 & §3.9, pp. 133–144).
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3 | Conserved quantities:

We show now that Killing fields can be used to construct conserved quantities:

i | ^ Spacetime with Killing vector field ��! Define the 4-current

J
�

�
WD T ���� : (11.125)

Then it follows for the covariant divergence of this current:

1
p
g

�
p
gJ

�

�

�
;�

10.95
D J

�

�I�
D
�
T ����

�
I�

11.122
D ��T

��
I�

:
D

11.109
0 (11.126)

Here we used that the contraction of a symmetric with an antisymmetric tensor vanishes.

ii | Then the charge

Q� WD

Z
d3x
p
gJ 0� is conserved:

dQ�
dx0

:
D 0 : (11.127)

This is true if J i
�
D 0 on the boundary of space; i.e., if one considers closed systems.

Proof. From Eq. (11.126) we have

0
:
D

Z
d3x

�
p
gJ

�

�

�
;�
D

Z
d3x

�
p
gJ 0�

�
;0
C

Z
d3x

�
p
gJ i�

�
;i

(11.128)

and therefore

dQ�
dx0

D

Z
d3x

�
p
gJ 0�

�
;0

:
D �

Z
d3x

�
p
gJ i�

�
;i

Gauss
D �

Z
@

d�i
p
gJ i� D 0 : (11.129)

Here we used the assumption that the current vanishes on the spatial surface @: J i
�
D 0. �

iii | For the special case of point mechanics, one finds a more explicit expression:

^ Free particle described by the equation of motion:

Du�

D�
D 0 with 4-velocity u� D

dx�

d�
. (11.130)

!With the Killing vector �� it follows:

d.��u�/
d�

D
D.��u�/

D�
D u�

D��
D�„ ƒ‚ …

D0

C��
Du�

D�„ƒ‚…
D0

$ 0 (11.131)

The second summand vanishes because of Eq. (11.130) and the first one because of the Killing
Eq. (11.122):

u�
D��
D�

10.49
D u���I�u

�
D 0 : (11.132)

Here we used that the Killing equation tells us that ��I� is an antisymmetric tensor and that
the contraction of a symmetric with an antisymmetric tensor vanishes.

! Conserved quantity:

��u
�
D const (11.133)

This can be useful to integrate the geodesic equation on symmetric spacetimes.
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4 | Stationary & Static spacetimes:

Using Killing fields, we can define two special classes of spacetimes with useful properties:

i | We can define the following special class of metrics g:

g is ⁂ stationary W, g has (asymptotically) time-like Killing vector

“Asymptotically time-like”means that there is a Killing vector field that becomes time-like at
infinity. It is possible that the Killing field becomes space-like in some finite region of space.

ii | ^ Time-like Killing field �� (i.e., ���� > 0)

! Choose w.l.o.g. coordinates where �� D .1; 0; 0; 0/

This means that we choose the x0-axis such that it points along the Killing field.

!

Killing Eq. (11.122)
Eq. (11.103)
(HHHHH)

@g��

@x0
D 0 (11.134)

! g��.x/ D g��.Ex/ independent of the time-like coordinate x0 � t !

! In these coordinates, a stationary metric has the general form:

ds2 D g00.Ex/dt2 C g0i .Ex/dtdxi C gi0.Ex/dxidt C gij .Ex/dxidxj

(11.135)

• Interpretation: A stationary spacetime“does exactly the same thing at every time” [4].

• Example: The ↑ Kerr metric of a rotating black hole is stationary.

iii | There is an interesting subclass of stationary spacetimes:

^ Stationary metric g. Iff there exists a coordinate system such that g0i .Ex/ D 0,

ds2 D g00.Ex/dt2 C gij .Ex/dxidxj (11.136)

the metric is called ⁂ static.

• Interpretation: A static spacetime“doesn’t do anything at all” [4].

• Example: The (exterior) → Schwarzschild metric of a non-rotating black hole is static.

• The feature that distinguishes a stationary (non-static) metric Eq. (11.135) from a static
metric Eq. (11.136) is that the latter is invariant under reversal t 7! �t of the time-like
coordinate.

This makes sense if you compare the static Schwarzschild metric (non-rotating black
hole) with the stationary Kerr metric (rotating black hole): If you invert time, a non-
rotating black hole looks exactly the same, so also its metric should not change; hence it
has the form Eq. (11.136) and is static. By contrast, the angular momentum of a rotating
Kerr black hole changes sign under t 7! �t , so that it looks different in a time-reversed
world; hence its metric should change as well, which necessitates the off-diagonal terms
of a stationary (non-static) metric Eq. (11.135). (Note that the Kerr black hole still
describes a stationary system in that its angular momentum doesn’t change in time, and
consequently the metric “does the same thing at every time”.)
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iv | In summary:

Static spacetime )
º Stationary spacetime

• Counterexample: The ↑ Kerr metric is stationary but not static.
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↓ Lecture 25 [18.06.24]

12. The Einstein Field Equations

We are only one step away from completing the theoretical framework of general relativity.

In the previous Chapter 11 we studied how matter fields are affected by the metric of spacetime. What
we are missing is the converse: How is the metric of spacetime determined in the first place? This is the
question we will answer in this chapter, and it will lead us to the most important result of this course: The
Einstein field equations.

12.1. Derivation of the Einstein field equations

In the following, we make the following general (and rather weak) assumptions:

§ Assumptions 2

3P1 Spacetime is a 3C 1-dimensional Lorentzian manifold.

MTR There exists a dynamical metric field g.

FLD All other degrees of freedom (“matter”) are described by fields �.

Note that we write � as placeholder for a family of (not necessarily scalar) fields.

VAR The classical dynamics of all fields can be described by a variational principle.

LOC All actions are given by integrals over local Lagrangians.

COV All theories are generally covariant ( GR ).

Follow the arguments below carefully; each step is quite simple, so that the derivation borders on magic:

1 | The action of Everything:

MTR + FLD + VAR ! ^ “Action of Everything”:

SŒg; �� D SŒg�„ƒ‚…
Only metric

C Sg Œ��„ƒ‚…
Rest

(12.1)

Without loss of generality, we can divide the action into a purely metric part and a “rest”, all terms
of which contain at least one matter field.

Combining general relativity with the Standard Model of particle physics tells us what
this action actually looks like (at least in the infrared limit), recall the ← Core Theory mentioned in
Section 0.4. These details are not relevant for what follows, though.

2 | Equations of motion of Everything:
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As usual, the physical solutions extremize the action (variational principle):

VAR ! ıSŒg; ��
Š
D 0 ,

8<: ıgSŒg; �� D ıgSŒg�C ıgSg Œ��
Š
D 0

ı�SŒg; �� D ı�Sg Œ��
Š
D 0

(12.2)

To extremize the action, both equations on the right must be satisfied simultaneously:

• EOMs for matter fields:

ı�Sg Œ��
Š
D 0 (12.3)

These equations describe the dynamics of matter fields on a given“background”metric g.

! Already kown & understood! (← Chapter 11)

An example is the Maxwell action (11.78), the variation of which leads to the Maxwell
Eq. (11.79).

• EOMs for metric field:

ıgSŒg�
Š
D �ıgSg Œ�� (12.4)

These equations describe the dynamics of the metric and its interaction with matter.

! New! What can we say about this equation of motion?

3 | LOC !

Because of locality, we can write both parts of the action as integrals of Lagrangian(densities):

SŒg� D

Z
d4x
p
gLMetric.g; @g/ (12.5a)

Sg Œ�� D

Z
d4x
p
gLMatter.�; @�; g; @g/ (12.5b)

These expressions actually require an additional prefactor 1
c
for dimensional reasons because we

measure time coordinates in units of length (x0 D ct); we omit these prefactors because they are
irrelevant in the following and drop out in the next step anyway.

Eq. (12.4) is then equivalent to!Z
d4x
p
g„ ƒ‚ …

Scalar

2
p
g

ı.
p
gLMetric/

ıg��„ ƒ‚ …
DW ���(unknown)

ıg��„ƒ‚…
Variation

Š
D �

Z
d4x
p
g„ ƒ‚ …

Scalar

2
p
g

ı.
p
gLMatter/

ıg��„ ƒ‚ …
11.106
D T��

ıg��„ƒ‚…
Variation

(12.6)

Here we used the variational derivative Eq. (11.100), multiplied the equation by 2 and inserted
p
g

to identify the Hilbert energy-momentum tensor Eq. (11.106) on the right-hand side.

Eq. (12.6) valid for all variations ıg��.x/!

ıgSŒg; ��
Š
D 0 , ���

Š
D �T�� (12.7)

4 | What do we know about ���?

• ��� depends on metric g and its derivatives @g, @2g,…

Note that ��� does not contain matter fields � by construction.
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• COV !��� is .0; 2/-tensor

This follows from the definition in Eq. (12.6) with the same arguments as for T�� in Sec-
tion 11.4.

• ��� is symmetric

This follows from the definition in Eq. (12.6) with the same arguments as for T�� in Sec-
tion 11.4.

• COV !��� is identically divergence-free: ���
I� � 0

An often heard argument for this condition is the following: Since T�� satisfies T
��

I�
:
D 0

[recall Eq. (11.109)], Eq. (12.7) implies that ���
I� D 0. This argument is sloppy at best

because of the little dot over the equal sign in T ��I�
:
D 0; recall that this indicates that the

equation is only true for special matter fields, namely those that satisfy the equation of motion
Eq. (12.3). Thus, from this line of argument, one can only conclude that ���

I�
:
D 0, i.e.,

��� is divergence-free for solutions .g; �/ of the equations of motion.

But our claim – which is crucial for the next step – is much stronger: ���
I� � 0 is an

identity (that’s why we use� and notD), i.e., it is valid for arbitrary metric fields. That this
must be true follows from our derivation in Section 11.4: Note that, because of Eq. (12.6),
��� plays formally (not physically, → later) the role of T�� for a purely gravitational theory
SŒg� D Sg Œ�� without matter fields. One can then retrace our derivation in Section 11.4
with the simplification that ı�Sg Œ�� � 0 is trivially satisfied (because there are no fields
�). Instead of ���

I�
:
D 0, one finds the identity ���

I� � 0. This unconditional identity
is therefore a consequence of the general covariance (= diffeomorphism invariance) of the
gravitational action SŒg� and the fact that it does not depend on any other fields. ���

I� � 0

is an example of a so called ↑ Noether identity that follows, via Noether’s second theorem,
from a group of local (gauge) symmetries (here: diffeomorphisms) [150].

These are all necessary properties of ���; no discussions!

5 | We now make one (and the only) simplifying assumption, namely:

§ Assumptions 3

2ND The tensor ��� depends on g, @g, @2g (but not on higher-order derivatives).

• This is the only simplicity assumption we use in our derivation. If you drop it, you can
construct (more complicated) modifications of general relativity (→ later).

• Can you think of any equation of motion (classical or quantum, doesn’t matter) that con-
tains third- or even higher-order derivatives? No? Nothing? So our assumption isn’t that
outlandish after all…

6 | Lovelock’s theorem:

We already know two tensors that satisfy all these properties:

Metric g�� : g
��

I�
10.74
D 0 (Metric-compatibility) (12.8a)

Einstein tensor G�� : G
��

I�
10.122
D 0 (Bianchi identity) (12.8b)

Recall that the Einstein tensor depends linearly on the curvature tensor which, in turn, depends on
second (and first) derivatives of the metric.
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3P1 + 2ND
↑ Lovelock’s theorem
�����������! This list is exhaustive!

Lovelock’s theorem states that, inD D 4 spacetime dimensions, the only divergence-free rank-2
tensors that can be constructed from the metric and its first and second derivatives are the Einstein
tensorG�� and the metric g�� itself (for details see notes → below).

• Since Lovelock’s theorem is just a mathematical fact with a technical proof [135, 136], we
take it at face value. Note that this does not open a conceptual gap in our derivation. We do
not push any assumptions under the rug! See alsoMisner et al. [3] (§17.1, pp. 407–408).

• Consider rank-2 tensors Aij that are…

(a) … functions of the metric and its first two derivatives: Aij D Aij .g; @g; @2g/.

(b) … divergence-free: Aij
Ij D 0.

(c) … symmetric: Aij D Aj i .

(d) … linear in @2g.

The statement of Lovelock’s theorem is the following:

The only tensors with the properties (a)-(d) areGij and gij .

(This result is actually not due to Lovelock butCartan,Weyl and Vermeil, see
references in [136].)

Note that this statement is independent of the spacetime dimensionD!

However, if one presumes that spacetime is D D 4-dimensional (which we did anyway
starting from Chapter 11), Lovelock showed [136] that the assumptions of symmetry (c)
and linearity in the second derivative (d) are superfluous and can be dropped!

Thus we are left with the only non-trivial assumption that the EOM of the metric field does not
contain higher than second derivatives of the metric.

!Most general form of Eq. (12.7):

��� D ˛G�� C ˇg��
Š
D �T�� (12.9)

Note all conditions above are preserved by linear combinations.

7 | ⁂ Einstein field equations (EFE):

Let us reshuffle and rename the unkown constants ˛ and ˇ a bit:

G��‚ …„ ƒ
R�� �

1

2
Rg�� Cƒg��„ ƒ‚ …

“Geometry”

D � �T��„ƒ‚…
“Matter”

(12.10)

Two unknown parameters:

• ⁂ Einstein gravitational constant �

• ⁂ Cosmological constant ƒ

We will discuss these two parameters → below.

Notes:
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• The minus on the right-hand side of Eq. (12.10) depends on the convention; here we follow
Schröder [2] (who follows the original convention by Einstein). There is a plethora of
sign conventions in the literature, in some of which the minus in Eq. (12.10) is not present
[↑ Misner et al. [3] (first page)].

• If one removes the inconsistency of the linearized tensor gravity discussed in Section 8.2
(cf. Eq. (8.10), see also → Problemset 1), one inevitably ends up with the Einstein field
Eq. (12.10) [102]. Recall that we identified the linearity of Eq. (8.10) as the root cause for
its inconsistency; in Section 8.2 we then argued on very general grounds that a relativistic
theory of gravity must be non-linear in the gravitational field. Eq. (12.10) satisfies this: the
Einstein tensor is non-linear in the metric (and its derivatives).

!

The superposition principle is not valid for the EFE!

This makes solving the EFE extremely hard in general.

• The above derivation of the EFEs used surprisingly few (and simple) assumptions. This
makes the EFEs very“generic,” and one shouldn’t be surprised that there are many different
routes to derive them. An overview over alternative derivations (or axiomatizations) of the
Einstein field equations can be found inMisner et al. [3] (pp. 417–428).

• The EFEs are the Euler-Lagrange equations that come from the variation of an action (which
we don’t knowyet); i.e., we formulategeneral relativity in the↓Lagrangian formalism.
There is also a ↓ Hamiltonian formulation of general relativity, the so called ↑ ADM
formalism [151], which plays an important role as a starting point for some theories of quantum
gravity.

• The Einstein field equations are both very simple and very complicated:

They are simple in the sense that their derivation doesn’t need much physical input; as we
have seen above, under very general assumptions (like general covariance), the EFEs are
inevitable. In that sense, general relativity is a very “cheap” theory (we don’t have
to “pay” with a lot of assumptions about reality).

On the other hand, because of their non-linearity, the EFEs are mathematically extremely
complicated and hard to solve (→ below). This sounds bad, but is actually their greatest
strength: because of their complexity, they predict and describe a plethora of non-trivial,
unanticipated phenomena [black holes, gravitational waves, gravitational lenses, an expanding
universe,…; all of this is hidden in the innocuous-looking Eq. (12.10)].

Good physical theories have a high“compression ratio” of input vs. output: they describe
a variety of phenomena with little input. This makes the EFEs (and thereby general
relativity) one of the most successful physical theories of all time.

It is almost too good, at least as a starting point for a “theory of everything” (presumably a
theory of quantum gravity). To find such a theory, we need input: features and phenomena
of reality that we can use as starting points for an “inductive bootstrap” towards a more
fundamental theory. The problem is that general relativity tells us that a big chunk
of the crazy stuff happening in our world (black holes etc.) can be traced back to Eq. (12.10),
which, as we have seen, is implied by rather generic assumptions about reality. Thus, while
every viable theory of quantum gravity must necessarily lead to Eq. (12.10) in a classical
regime, this might not be such a distinguishing feature as one might hope. Put differently: it
might turn out to be hard to write down reasonable theories of quantum gravity that do not
lead to Eq. (12.10).
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• Some historical notes:

– A precursor to general relativity was developed by Einstein and his friend and
colleague Marcel Grossmann (a mathematician who introduced Einstein to differential
geometry) already in 1913, the so called“Entwurftheorie” [123]; it contained essentially
all parts needed to formulate general relativity, but not yet the correct field
Eq. (12.10).

– Einstein developed general relativity, culminating the EFEs Eq. (12.10), in a
sequence of papers between October and November 1915 in the“Sitzungsberichte der
Preussischen Akademie der Wissenschaften zu Berlin”:

* On 4. November 1915, Einstein publishes “Zur allgemeinen Relativitätstheorie”
[12] (extended by an addendum), where he proposed the (not yet quite correct)
field equations R�� D ��T�� . That is, he still missed the term �1

2
g��R that

convertsR�� into the Einstein tensorG�� (which satisfies the necessary condition
G
��

I� � 0). (Beware: Einstein denoted the Ricci tensor byG�� ,/.)

* On 25. November 1915, Einstein published in“Die Feldgleichungen der Gravita-
tion” [13] finally the correct field equations (without cosmological constant).

(Beware: Einstein’s notation differs from the modern notation, so be careful when
comparing Ref. [13] with Eq. (12.10); → Problemset 4.)

* On 8. Februar 1917, Einstein introduces the cosmological termƒg�� in“Kosmolo-
gische Betrachtungen zur allgemeinen Relativitätstheorie” [15] [Eq. (13a) on p. 151].

– The Germanmathematician David Hilbert arrived at the Einstein field equations almost
at the same time as Einstein (↑ p. 8 in Ref. [152]). Hilbert introduced the HEMT
Eq. (11.106) and obtained Eq. (12.10) (without cosmological constant) directly via the
variation of an action (the → Einstein-Hilbert action), derived from a Lagrangian (which
Hilbert called“Weltfunktion”, essentially our “Action of Everything”).

– Afirst comprehensive account ofgeneral relativity, summarizing all his previous
results that had appeared in many different papers, was provided by Einstein in“Die
Grundlage der allgemeinen Relativitätstheorie” in 1916 [21].

– Details on the historical genesis of the Einstein field equations can be found in Ref. [153].

8 | Trace-inverted form:

Let T WD T �� be the trace of the energy-momentum tensor
ı
�!

Eq. (12.10) , R�� D ��

�
T�� �

1

2
g��T

�
Cƒg�� (12.11)

This is the (completely equivalent) trace-inverted form of the Einstein field equations.

Proof. Taking the trace on both sides of Eq. (12.10) yields

R�� �
1

2
Rı�� Cƒı

�
� D ��T

�
� , R D �T C 4ƒ (12.12)

where we used ı�� D 4. We can now apply Eq. (12.12) to replaceR in Eq. (12.10),

R�� �
1

2
.�T C 4ƒ/g�� Cƒg�� D ��T�� ; (12.13)

which can be reshuffled to Eq. (12.11). �
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9 | Vacuum field equations:

The cosmological constant has the interpretation of a vacuum energy (→ below). If we assume this
contribution to be absent, “vacuum”means“no energy & momentum”:

Eq. (12.11)
ƒD0; T��D0
���������! R�� D 0 (12.14)

! Vacuum solutions = ⁂ Ricci-flat spacetime manifolds

• ¡! Note thatR���� D 0 impliesR�� D 0 but not the other way around!
Ricci-flat spacetimes are therefore not necessarily flat (= Minkowskian).

• Note thatR�� D 0 is equivalent toG�� D 0.

• Simplest solution: Minkowski space g�� D ���

There are also more complicated, non-trivial solutions; e.g., the → Schwarzschild solution,
which describes the exterior geometry of a spherically symmetric mass, or gravitational wave
solutions (note that these waves propagate through vacuum: T�� D 0).

• Eq. (12.14) looks simple, right? Well, not so much:

0
Š
D R�� (12.15a)
10.105
10.106
10.114
D

1
2
g��

�
g��;�;� C g��;�;� � g��;�;� � g��;�;�

�
Cg��

�
�����

�

��
� �����

�

��

� (12.15b)

10.79
D

1
2
g��

�
g��;�;� C g��;�;� � g��;�;� � g��;�;�

�
C

1
4
g��g��

�
g��;� C g��;� � g��;�

� �
g��;� C g��;� � g��;�

�
�
1
4
g��g��

�
g��;� C g��;� � g��;�

� �
g��;� C g��;� � g��;�

�
(12.15c)

D
1
2
g��

�
g��;�;� C g��;�;� � g��;�;� � g��;�;�

�

C
1
4
g��g��

2666666664

g��;�g��;� C g��;�g��;� � g��;�g��;�

Cg��;�g��;� C g��;�g��;� � g��;�g��;�

�g��;�g��;� � g��;�g��;� C g��;�g��;�

�g��;�g��;� � g��;�g��;� C g��;�g��;�

�g��;�g��;� � g��;�g��;� C g��;�g��;�

Cg��;�g��;� C g��;�g��;� � g��;�g��;�

3777777775

(12.15d)

Happy solving! ,/!

Even the vacuum EFEs are extremely complicated and only a few exact solutions are known.

• If one allows for a finite cosmological constantƒ ¤ 0, and considers an otherwise empty
universe (T�� D 0), one finds the more general vacuum EFE

R�� D ƒg�� : (12.16)

Solutions of this equation are called ⁂ Einstein manifolds.

Note that flat Minkowski space does not solve this equation for ƒ ¤ 0; since interstellar
space (= vacuum) is very close to flat Minkowski space (special relativity is valid to
good approximation), this already tells us that the cosmological constant, if nonzero, cannot
be very large in our universe. This is why the cosmological constantƒ is often set to zero for
non-cosmological calculations (e.g., for tests in the solar system).
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10 | Properties:

• How many independent EFEs are there?

The Einstein field Eq. (12.10) in vacuum (without cosmological constant)

G�� D 0 (12.17)

is a set of second-order partial differential equations (PDEs) that determine the evolution of
the metric tensor field g��.x/. Thus, for a three-dimensional spatial slice at time coordinate
x0�, you can provide initial data g� � g��.x

0
�; Ex/ and Pg� � g��;0.x

0
�; Ex/, and the EFE

should provide you with a solution g��.x/ defined on the full spacetime (ignoring issues with
singularities). SinceG�� is symmetric, the EFEs correspond to 10 PDEs, which matches the
10 independent components of the metric g�� (which is also symmetric).

There is a catch, though: The four Bianchi identities G��I� � 0 (� D 0; � � � ; 3) tell us that
not all of these 10 PDEs are independent. Due to these constraints, we actually loose four
of the 10 equations, which makes the EFEs underconstrained. That is, we should expect
that solutions g�� of the EFEs retain four unconstrained degrees of freedom that can be
changed arbitrarily. This reflects of course our freedom to change coordinates! Viewed
as an active transformation, this freedom corresponds to the diffeomorphism invariance
of the Einstein-Hilbert action, which must be interpreted as a gauge symmetry (with four
generators): different solutions g�� and Qg�� that are related by a coordinate transformation /
diffeomorphism describe the same physics! The Bianchi identitiesG��I� � 0 can then be
interpreted as ↑ Noether identities, following from Noether’s second theorem.

• Degrees of freedom:

So how many physical degrees of freedom do the EFEs then actually describe? Subtracting
the 4 gauge DOF from the 10 DOF of the metric yields 6 DOF; but, as we will later see in our
discussion of → gravitational waves, this cannot be the end of the story because gravitational
waves have only two polarizations and not 6 (just like photons)! What is going on?

To solve this puzzle, we must first recognize that all dynamical degrees of freedom of a
deterministic theory, described by a second-order PDE, are encoded in the initial data .g�; Pg�/.
Since the EFEs describe a gauge theory, they are only deterministic if we throw all gauge-
equivalent solutions into a common“gauge equivalence class”; thus let Œg�; Pg�� denote the
class of field configurations on the spatial slice at x0� that are equivalent modulo coordinate
transformations (diffeomorphisms). The physical degrees of freedom are then the DOF that
parametrize these gauge classes; and – according to our argument above – there should be 6
such degrees of freedom (in configuration space, not in phase space).

The problem is that not all initial field configurations Œg�; Pg�� are allowed (= yield solutions)
because the initial data must satisfy four constraint equations:

G�0 D f .g; Pg; @ig; @
2
i g/

Š
D 0 for � D 0; : : : ; 3 : (12.18)

These equations are just part of the EFEs Eq. (12.17); the point is that theG0� are functions
of only first time derivatives of the metric. Hence they are not evolution equations at all –
they are constraint equations that must be satisfied by the initial data Œg�; Pg��. Put differently:
You cannot hand in an arbitrary initial configuration Œg�; Pg�� and expect the EFEs to spit out
a solution. Only the special subclass of initial configurations that satisfy Eq. (12.18) yield
solutions. As Eq. (12.18) provides four constraints, this cuts down the physical DOF by
another 4. So in summary there are only 10 � 4 � 4 D 2 physical DOF described by the
EFEs per point of space, which matches the two polarizations of gravitational waves.

How to see that Eq. (12.18) is correct? We want to avoid an expansion of the Einstein tensor
in terms of the metric (because it is ugly). To this end, expand the Bianchi identity:

G��I�
10.57a
D G

�0
;0 CG

�i
;i C : : : � 0 (12.19)
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where the : : : part does not contain derivatives of G. So we have

G
�0
;0 � �G

�i
;i � : : : : (12.20)

But the right-hand side contains at most second time derivatives of the metric. Since this
is an identity,G�0 can only contain at most first time derivatives of the metric. This is the
statement of Eq. (12.18).

• Quite surprisingly, the equations of motion for the matter fields Eq. (12.3) are already con-

tained in the integrability constraint T ��I�
Š
D 0 that follows from the identity G��I� � 0

(↑ Ref. [154]). Put differently:

The Einstein field Eq. (12.10) are not only the differential equations that determine the geometry
of spacetime in response to the energy and momentum of the matter fields, but, at the same time,
determine the evolution of the matter fields themselves!

This is possible because the EFEs are non-linear [154].

To understand how strange this is, recall our theory in Section 6.4 that described the joint
evolution of an electromagnetic field coupled to charged, massive particles. There we derived
two equations of motion: the“matter EOM”Eq. (6.130) describes the motion of particles
in response to the EM field, and the “field EOM” Eq. (6.125) describes the evolution of
the EM field in response to the current produced by the charged particles. To describe the
evolution of the full system, one needs both EOMs – one cannot derive the Lorentz force
law Eq. (6.132) from the inhomogeneous Maxwell Eq. (6.125) (at least not without assuming
conservation of total energy and momentum).

Naïvely, the Einstein field Eq. (12.10) parallel the inhomogeneous Maxwell Eq. (6.125) in
that they describe the response of a field (the metric) to a source (energy &momentum). The
difference is that the EFEs are so restrictive (due to their non-linearity), that they already
contain (local) conservation of energy and momentum, and thereby the matter EOMs! Thus,
in general relativity, the geometry of spacetime and the evolution of matter are so
tightly interwoven, that one can only solve them together (which makes solving the EFEs in
general extremely hard, if not impossible).

As an example, consider ↑ Einstein-Maxwell theory that describes a universe filled with
Maxwell’s EM field but nothing else (no charges). The source of the gravitational field is
then given by the HEMT Eq. (11.115) of Maxwell theory,

T�� D
1

4�

�
F��F

�
� C

1

4
g��F˛ˇF

˛ˇ

�
; (12.21)

and the equations of motion of the coupled system read

Eq. (12.3) , F ��I� D 0 (Inhomogeneous Maxwell eqs.), (12.22a)

Eq. (12.4) , G�� D ��T�� (Einstein field eqs.). (12.22b)

We assume that F�� D A�;� � A�;� with the gauge field A�, so that the homogeneous
Maxwell equations Eq. (11.69) are identically satisfied.

If we combine Eq. (12.21) with Eq. (12.22b), we obtain the ⁂ Einstein-Maxwell equations

R�� �
1

2
Rg�� D �

�

4�

�
F��F

�
� C

1

4
g��F˛ˇF

˛ˇ

�
: (12.23)

The crucial (and surprising) insight is that Eq. (12.23) [equivalently: Eq. (12.22b) and
Eq. (12.21)] already contains the inhomogeneous Maxwell Eq. (12.22a):

G�� D ��T��
�

H) F ��I� D 0 : (12.24)
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So writing down the Einstein field equations – with an explicit expression of the energy-
momentum tensor in terms of the matter fields on the right – is tantamount to writing down
all equations of motion!

For more details [and a proof of Eq. (12.24)] seeMisner et al. [3] (§20.6, pp. 471–483).

For a fully “geometrized” formulation of Einstein-Maxwell theory see Ref. [155].

12.1.1. Newtonian limit

We now want to study the relation between the EFEs and Newtonian mechanics to determine the Einstein
gravitational constant � via a correspondence principle.

11 | Non-relativistic limit:

• Slowly varying, weak gravitational fields!Metric almost Minkowskian:

g��.x/ D ��� C h��.x/ with small perturbation jh��.x/j � 1 (12.25)

In the following, we keep only the lowest order terms in h�� .

• Slow bodies (v � c)! Source of gravity = Mass density �.x/ (= rest energy)

T�� D

(
�c2 �� D 00

0 otherwise
) T D T �� D �c

2 (12.26)

The energy-momentum tensor of a ↑ perfect fluid of mass-energy density �.x/, pressure
p.x/, and 4-velocity field u�.x/ is given by

T ��.x/ D
�
�C

p

c2

�
u�u� � pg�� : (12.27)

In a comoving frame (where the fluid is at rest), it is u� D .c; 0; 0; 0/ and g�� D ��� so that

T �� D diag
�
�c2; p; p; p

� p�0
� diag

�
�c2; 0; 0; 0

�
(12.28)

if we assume the pressure to be negligible wrt. the rest energy.

12 | ^ �� D 00 in Eq. (12.11)
ƒ D 0
����!

We are interested in the �� D 00 component because in Eq. (11.65) we related this component of
the metric with the Newtonian gravitational potential in the non-relativistic limit.

R00 D �
�

2
�c2 C���O.h/ (12.29)

We drop h��.x/ on the right-hand side because this is a higher-order perturbation that can be
neglected for jh�� j � 1.

i | Because of h��.x/ there is no global inertial coordinate system; but there is a coordinate
system where O.�/ D O.h/ with connection coefficients � � j���� j.

Eqs. (10.104) and (10.106)!

R00 D @0�
�
0� � @��

�
00 C��

��
O.h2/ (12.30)
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ii | We assume that all masses move slowly (or not at all), so that we can drop time derivatives:

R00D����@0�
�
0� �����@0�

0
00 � @i�

i
00 � �@i�

i
00 (12.31)

with Christoffel symbols Eq. (10.79)

� i00
12.25
� �

1

2
@ih00 : (12.32)

Here we also dropped time derivatives.

!

R00 �
1

2
@i@

ih00 D �
1

2
�h00 (12.33)

Here we used ��� for pulling indices up/down since the modification by h�� yields higher-
order terms O.h2/.

iii | Eq. (12.29)
Eq. (12.33)
������!

�h00 � ��c
2 (12.34)

13 | Einstein gravitational constant:

Recall that we can identify the 00-component of the metric with the Newtonian gravitational
potential in the non-relativistic limit:

Eq. (12.34)
Eqs. (11.65) and (12.25)
�������������! (h00 � 2�=c2)

�� D
1

2
�c4� cf. Newtonian gravity Eq. (8.4): �� D 4�G� (12.35)

The validity of Newtonian gravity in the non-relativistic limit requires the identification:

� D
8�G

c4
� 2:076 65 � 10�43N�1 (12.36)

• � plays the role of a coupling constant in Eq. (12.10): It describes the coupling between
metric/geometry (= gravitational field) and matter. If you set � to zero, matter and energy no
longer curve spacetime and gravitational systems (like our solar system) can no longer exist.

• The fact that � is extremely small (in units of everyday life) tells us that the coupling of matter
to the spacetime geometry is extremely weak. Note that this weakness is due to the smallness
of Newton’s gravitational constantG and the largeness of the speed of light c.

This explains why it took us so long the figure out that masses curve spacetime: Since �
is so small, spacetime is extremely“stiff” (much stiffer than steel or glass), so that masses
of everyday life have no perceivable effect on it. This is also why space around us is essen-
tially Euclidean, despite the presence of Earth. In an imaginary world where � � 1N�1,
space(time) would “wobble” like jelly when you move; you could see this because of the
→ deflection of light and → gravitational lensing. For example, you could tell whether an opaque
bottle is full or empty from the way it distorts what you see in its vicinity.

14 | Newtonian dynamics:
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i | ^ Geodesic equation Eq. (11.45) for a test particle:

d2x�

d�2
D ��

�

˛ˇ

dx˛

d�
dxˇ

d�
(12.37)

In the non-relativistic limit, this should lead to Newton’s equation in a gravitational field.

ii | ^ Non-relativistic particle: � � t D x0=c and u� D dx�

d� � .c; 0; 0; 0/

Eq. (12.37)!
d2xi

dt2
D �� i00c

2 12.32
D

1

2
c2@ih00 D �

1

2
c2@ih00 (12.38)

iii | Comparison with the Newtonian equation of motion Eq. (8.5):

REx D �r� : (12.39)

Identification: � D c2

2
h00!

g00
12.25
D �00 C h00 D 1C

2�

c2
3 (12.40)

This is consistent with Eq. (11.65).

12.1.2. The cosmological constant

15 | Cosmological constant:

To find an interpretation for the cosmological constantƒ, we study its effects on non-relativistic
Newtonian physics:

i | Retrace our steps to derive the non-relativistic limit of the EFEs above, but now including
the cosmological constant:

Add ƒg00 � ƒ�00 on right-hand side of Eq. (12.29)
ı
�!

�� D 4�G��ƒc2 � 4�G.�C �ƒ/ (12.41)

with additional “mass density” �ƒ WD �ƒc2=.4�G/

ii | ^ � D 0 (vacuum) & ƒ ¤ 0:

�� D �ƒc2 D const ) �.Er/ $ �
ƒc2

6
r2 (12.42)

The solution follows with the boundary condition �.E0/ D 0.
ı
�! Gravitational acceleration:

Eg.Er/ D �r� D
ƒc2

3
Er D

(
repulsive ƒ > 0

attractive ƒ < 0
(12.43)

• Note that our choice to set the gravitational potential to zero in the origin Er D 0 is
arbitrary: Consider two test bodies at positions ErA and ErB . Because of the universality of
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free fall their masses don’t matter, and their relative acceleration due to the gravitational
potential is

EaAB D Eg.ErA/ � Eg.ErB/ D
ƒc2

3
.ErA � ErB/ D

ƒc2

3
�ErAB : (12.44)

This demonstrates how strange the effect of the cosmological constant is: All bodies
accelerate away or towards one another, and the acceleration only depends on and
is proportional to their relative distance vector. The effect is therefore completely
homogeneous and space behaves like a dough that rises or collapses, with massive
bodies being dragged along like raisins.

• Thusƒ > 0 acts like“antigravity” and blows up the universe,ƒ < 0 does the opposite.

• For largeƒ > 0, the universe would blow up so fast that neither stars nor galaxies could
form. Conversely, for largeƒ < 0 the universe would have already collapsed. Thus we
can exclude both large positive and large negative values forƒ (→ below).

iii | We can conclude:

The cosmological constant makes the non-relativistic limit of general
relativity deviate from Newtonian mechanics: It predicts a homogeneous
long-range repulsion (ƒ > 0) or attraction (ƒ < 0) that increases with the
distance. Thus, if it ƒ is non-zero, it must be very small to be consistent with
our observations and can only be relevant on cosmological scales.

• Einstein introduced the cosmological constant in 1917 in“Kosmologische Betrachtungen
zur allgemeinen Relativitätstheorie” [15] [Eq. (13a) on p. 151, Einstein denoted ourƒ by
�]. Its purpose was to allow for cosmological solutions of the EFEs that describe a static
and finite universe (at this time, it was widely believed that the universe was static).

When Edwin Hubble showed 1929 that the universe is actually expanding (and therefore
non-stationary) [156], the cosmological constant lost its purpose and was abandoned
by Einstein and contemporaries (though Einstein was quite stubborn and hesitant to
acknowledge non-stationary solutions as mathematically sound and physically reason-
able [157–159]). Einstein later referred to the introduction of the cosmological constant
as“his biggest blunder” [160].

In hindsight, Einstein’s “biggest blunder” was not the introduction of the cosmological
term in the first place (given the state of knowledge in 1917, it was a reasonable approach),
but his later refusal and hesitant acceptance of non-static solutions, supporting evidence
notwithstanding.

• How small is small? First, note that

Œƒ�
12.12
D ŒR�

10.117
D ŒR�� �

10.114
D ŒR���� �

10.105
D L�2 (12.45)

so thatƒ�1=2 is a length scale. Since the Newtonian limit has been successfully tested
in our solar system (without any evidence for strange long-range acceleration effects),
modifications due to ƒ, if present, must be much larger than this length scale; this
yields an upper bound

jƒj . .Size of the solar system/�2 (12.46)

for the cosmological constant. For more details, see Refs. [161, 162].
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• Today we know that the universe is not only steadily expanding: the expansion is
accelerating. In a strange turn of events, these observations led to a revival of the
cosmological constant, because it can be used to model such accelerated expansions
(→ƒCDM). By now, there is striking evidence thatƒ > 0 in our universe [163, 164].
The physical mechanism behind a non-zero cosmological constant is unknown (↑ dark
energy).

• We can bring the cosmological term in Eq. (12.10) to the other side,

G�� D ��

�
T�� C

ƒ

�
g��

�
� ��

�
T�� C T

vac
��

�
; (12.47)

which suggests the definition of a“vaccuumcontribution”to the total energy-momentum
tensor:

T vac
�� D

ƒ

�
g�� : (12.48)

In this reading, even“empty” space (T�� D 0) contains a homogeneously distributed
form of energy (T vac

�� ¤ 0) that acts as a source of gravity and is responsible for blowing
up or collapsing spacetime.

While this may sound exotic, it is actually what one would expect from ↑ quantum field
theory and the ↑ Standard Model of particle physics: In quantum mechanics, you learn
that even the ground state (= lowest energy state) of a harmonic oscillator has a finite
↓ ground state energy of „!

2
. The same is true for the ground state (= vacuum) of the

quantum fields that permeate space and describe all the fundamental particles (leptons,
quarks, gauge bosons). That is, quantum field theory predicts that even the vacuum
has a finite “vacuum energy density”, and it is reasonable to conjecture that this might
translate into the cosmological constant of general relativity in the classical
limit.

But there is a problem: We argued above thatƒ ¤ 0 can only be small. But quantumfield
theory tells us that the vacuum energy should be large; more precisely: the cosmological
constant predicted by quantum field theory is by a factor of 1050 � 10120 larger than
the observed one (the factor depends on how exactly one evaluates quantum field
theory)! This is of course ridiculous and has been dubbed “the worst prediction in
the history of physics.” It is at present unknown how to solve this conundrum, see
Refs. [161, 162, 165–167] for more details on the ↑ cosmological constant problem.

• To understand why a contribution to the HEMT of the form Eq. (12.48) can be inter-
preted as the energy of the vacuum, we can use the (classical) Klein-Gordon field theory
Eq. (11.116):

L.�; @�; g/ D
1

2
.@��/.@��/„ ƒ‚ …
Kinetic energy

�
m2

2
�2„ƒ‚…

Potential energy

: (12.49)

It’s Hilbert energy-momentum tensor (→ Problemset 4) reads [← Eq. (11.118)]:

T�� D �;��;� �
1

2
g��

�
�;˛�;˛ �m

2�2
�
: (12.50)

The “vacuum” is the lowest-energy state �0 of the field. (In particle physics, the
quantum fields that describe fundamental particles permeate space; they cannot “go
away”. “Vacuum” then means “no particles”, which translates to “no excitation of
the field”.) Classically, the field of the lowest-energy state tries to minimize the kinetic
energy; and it can do so by being constant: �0 D const. The HEMT in the vacuum
state then reads

Eq. (12.50)
�0Dconst
HHHHH) T vac

�� D
m2

2
�20 g�� ; (12.51)
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which has exactly the form of Eq. (12.48) with the identificationƒ� D m2�20=2. This
explains the hypothesis that a non-zero cosmological constant could be due to the
vacuum energy of the (quantum) fields that describe the fundamental particles of the
Standard Model (or some other yet unknown field).

Remark: You may complain that the classical ground state of the Klein-Gordon field is
�0 D const D 0, since the field also minimizes the potential energy (which is a harmonic
potential �2), so that T vac

�� D 0. This is of course correct. But first note that this is
a feature of the particular potential chosen and does not affect the form T vac

�� / g�� ,
which is crucial for our argument. Furthermore, remember that we are actually dealing
with quantum fields in the classical limit. So actually one should use expectation values
to compute the classical HEMT: T vac

�� D
m2

2
h�2i0 g�� . And just like hx2i0 > 0 for a

quantum harmonic oscillator in its ground state (recall that it is a ↓ coherent state), one
also finds h�2i0 > 0 due to the quantum fluctuations of the Klein-Gordon field.
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↓ Lecture 26 [25.06.24]

12.2. The Einstein-Hilbert action

In our derivation of the Einstein field equations in Section 12.1 we assumed that there is an action with a
local Lagrangian that gives rise to the dynamics of the metric field. By exploiting Lovelock’s theorem,
we managed to derive the equation of motion without ever specifying the Lagrangian explicitly. Since
the EFEs are conceptually simple and“inevitable”, we should expect the action that gives rise to these
equations to be simple and“inevitable” as well:

1 | ^ Generally covariant action for metric field g�� :

(We omit prefactors for the sake of clarity.)

SŒg� D

Z Scalar‚ …„ ƒ
d4x
p
g
h Scalars‚ …„ ƒ
1CR„ƒ‚…
� @2g

CR2 CR��R
��
CR����R

����
C : : :„ ƒ‚ …

� .@2g/2

i

general relativity Modifications of general relativity

(12.52)

Goal: We want a second-order differential equation for g�� (← 2ND in Section 12.1)

Facts:

• If the Lagrangian only depends on first derivatives, the Euler-Lagrange equations include at
most second derivatives. ,

• Problem: There is no scalar including only first derivatives of the metric! /

This is easy to see: At every point we can choose locally geodesic coordinates where all first
derivatives of the metric vanish. Since a scalar is independent of coordinates, this leaves
only the trivial possibility that the scalar does not depend on the first derivatives at all, and is
therefore constant.

• The next best (and only!) scalar linear in second derivatives is the Ricci scalar.

This is our last hope to obtain a (non-trivial) second-order differential equation, since the
linearity in @2g makes all terms of potentially third and higher derivatives vanish. ,

To understand why, remember (well, probably you don’t remember because this is rarely
covered in basic courses on classical mechanics) that for a Lagrangian L.t; q; q0; q00/ that
depends on second derivatives q00, the Euler-Lagrange equation reads

@L

@q
�

d
dt
@L

@q0
C

d2

dt2
@L

@q00
D 0 : (12.53)

If L.t; q; q0; q00/ D f .t/q00.t/C QL.t; q; q0/ only depends linearly on the second derivative,
@L
@q00 does not contain the function q.t/, so that there are no derivatives beyond q00 that can
show up in the Euler-Lagrange equation.

That the Ricci scalarR is the only (non-trivial) scalar that can be constructed from the metric
and its first and second derivatives, and is linear in the latter, has been shown byHermann
Vermeil in 1917 [168]; this statement is known as ↑ Vermeil’s theorem.
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2 | The ⁂ Einstein-Hilbert action:

These arguments lead us to propose following the simple action:

SŒg� WD
c3

16�G„ƒ‚…
.2�c/�1

Z
d4x
p
g .R � 2ƒ/ (12.54)

• The factor 2 in front of the cosmological constant is chosen such that the Euler-Lagrange
equations take the conventional form of the Einstein field equations. The global prefactor
1
2�c

is irrelevant for our current purpose because, first, we are interested in pure gravity (=
no matter action Sg Œ��), and second, we are only interested in classical equations of motion,
i.e., we don’t use the action to define a ↓ path integral (which would be needed for a theory of
quantum gravity). The strange additional c in the prefactor 1

2�c
is necessary for dimensional

reasons (→ below) and due to our choice to measure time coordinates in units of length:
x0 D ct .

• If you want to use an action for a path integral, it must have the dimension of an action
E � T DM � L2 � T �1, so that the exponent of exp

�
i
„
S
�
D exp

�
2�i S

h

�
is a dimensionless

number [„ is the reduced Planck’s constant, the “quantum of action” (Wirkungsquantum)
that quantifies the strength of quantum fluctuations].

A bit of dimensional analysis yields for Eq. (12.54)

ŒS� D Œ���1 Œc�1d4x�„ ƒ‚ …
L3�T

Œg�
1
2„ƒ‚…

1

ŒR�„ƒ‚…
L�2

Š
DM � L2 � T �1

) Œ�� D T 2 �M�1
� L�1 (12.55)

which is conveniently the dimension of � D 8�G
c4 .

• The Einstein-Hilbert action was introduced by mathematicianDavid Hilbert in 1915
in Ref. [152] – where he independently found the Einstein field equations (essentially at the
same time as Einstein, give or take a few days). For a historical account on the race between
Einstein and Hilbert see Ref. [153].

3 | Euler-Lagrange equations:

One can now check (→ below) that the stationary solutions satisfy the EFE in vacuum Eq. (12.10):

ıSŒg�
Š
D 0

�
() R�� �

1

2
Rg�� Cƒg��

Š
D 0 (12.56)

¡! Please appreciate this almost magical result: You start by writing down the simplest non-trivial
covariant action that can be constructed from the metric, and the Einstein field equations follow.

This underpins our previous statement that the EFEs are“inevitable” under quite general assump-
tions. It also illustrates in which sense general relativity is simple: Without cosmological
constant (and dropping the unnecessary prefactor), the action of general relativity in
vacuum is

SŒg� D

Z
d4x
p
gR : (12.57)

If this isn’t simple and elegant, what is?

The proof of Eq. (12.56) is straightforward but a bit tedious (→ Problemset 5):
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i | With Eq. (11.112) it follows

ı.
p
g/ D �

1

2

p
gg��ıg

�� (12.58)

which is the variation of the cosmological term in Eq. (12.56).

ii | The variation of the more complicated first term in Eq. (12.56) yields

ı.
p
gR/ D ı.

p
gR��g

��/ D
p
gg��ıR�� C

�
R�� �

1

2
Rg��

�
ıg��
p
g (12.59)

where we again made use of Eq. (11.112); the variation ıR�� remains to be evaluated.

iii | To do so, we proceed in locally geodesic coordinates where the Christoffel symbols vanish and
we can use Eq. (10.104) so that

R�� D R
�
��� D �

�
��;� � �

�
��;� ; (12.60)

and therefore

g��ıR�� D g
��

��
ı����

�
;�
�

�
ı����

�
;�

�
(12.61a)

D

�
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(12.61b)

� C �;� : (12.61c)

Here we used ı.�;�/ D .ı�/;� and that g��;� D 0 in locally geodesic coordinates; we also
renamed the indices �$ � in the second term.

iv | In locally geodesic coordinates, Eq. (12.61) is equivalent to g��ıR�� D C �I� . If C
� is a

vector field (→ below), then this equation is actually valid in arbitrary coordinates, and we can
apply Gauss’s theorem:Z

d4x
p
gg��R�� D

Z
d4x
p
g C �I�

10.95
D

Z
d4x

�p
gC �

�
;�
D

I
d��
p
gC � D 0 :

(12.62)

The surface integral vanishes because C / ı� / ıg�� D 0 on the surface, which is true if
we consider local variations of the metric. We have thereby shown that the first summand
in Eq. (12.59) does not contribute to the variation of the Einstein-Hilbert action and can
therefore be dropped.

So why is C � , defined in Eq. (12.61), a vector field? This is not so obvious because it is
defined in terms of connection coefficients ���� – which are not tensors! The crucial point
is that the coordinate transformation law Eq. (10.39) of connection coefficients is tensorial
up to a non-tensorial contribution that depends only on the coordinate transformation (but
not the connection itself ): Let Qg D g C ıg be an infinitesimal variation of the metric. Then
the variation of the coefficients of the Levi-Civita connection is

ı� D �. Qg/ � �.g/ ; (12.63)

where we omit indices for clarity and the dependence on the metric is given by Eq. (10.79).
Under an arbitrary coordinate transformation, this difference transforms like a tensor because
the problematic term in Eq. (10.39) is independent of the metric and therefore cancels in the
difference.

v | We can now combine our results:

The variation of the Einstein-Hilbert action Eq. (12.54) evaluates to

ıSŒg�

12.58
12.59
12.62
D

1

2�c

Z
d4x
p
g

�
R�� �

1

2
Rg�� Cƒg��

�
ıg��

Š
D 0 ; (12.64)
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since this variation must vanish for all ıg�� , this is equivalent to the Einstein field Eq. (12.10)
in vacuum (T�� D 0). �

4 | Action with matter:

We can now insert the Einstein-Hilbert action into the “Action of Everything” introduced in
Section 12.1:

Eq. (12.1)
Eqs. (12.5b) and (12.54)
��������������!

SŒg; �� D
1

c

Z
d4x
p
g

�
1

2�
.R � 2ƒ/C LMatter

�
(12.65)

¡! Now the prefactor with the Einstein gravitational constant � is important: it determines the
coupling strength between gravity and matter.

The additional prefactor 1
c
is only needed for dimensional reasons because we measure time in

units of length: x0 D ct ; it does not affect the equations of motion.

!

ıgSŒg; ��
Š
D 0

12.5a
12.6
12.64
(H) R�� �

1

2
Rg�� Cƒg�� D ��T�� (12.66)

5 | What is the energy-momentum tensor of the gravitational field?

i | Since the metric is now our dynamical “gravitational potential”, it should be able to carry
energy (and momentum) in some form. And surely it does: The first (indirect) observation
of → gravitational waves was based on the observation of a neutron star circling a pulsar (the
↑ Hulse-Taylor pulsar, also known as PSR B1913+16). Over time their orbital period changes,
indicating a decay of the orbit [169–171]. But this means that energy must be radiated away,
and the only possible carrier is gravitational waves! (By the way, the observations match
precisely the quantitative predictions of general relativity.) So clearly gravitational
waves – which are excitations of the metric field – carry energy.

ii | It is therefore reasonable to expect that there is an energy-momentum tensor associated to
the gravitational field, just as there is for any other field that carries energy and momentum.

Recall that the Hilbert energy-momentum tensor was defined in Eq. (11.106) as

TMatter
�� D

2
p
g

ı.
p
gLMatter/

ıg��
; (12.67)

and by comparison with previous results (e.g., electrodynamics) we verified that this quantity
indeed captures the concepts of energy (currents) and momentum (currents) correctly [recall
Eq. (6.110)].

iii | But in general relativity, the metric field is“just another dynamical field,” described
by an action (the Einstein-Hilbert action), which is given by the Lagrangian

LMetric.g; @g; @
2g/

12.54
D

1

2�
.R � 2ƒ/ : (12.68)

It is therefore reasonable to expect that the energy-momentum tensor of the gravitational
field is given by

TMetric
��

‹
D

2
p
g

ı.
p
gLMetric/

ıg��

12.6
12.64
D ��1.G�� Cƒg��/ : (12.69)

This already looks strange: This is the left-hand side of the Einstein field equations!

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → THE EINSTEIN FIELD EQUATIONS

338
PAGE

iv | Let us assume that there is no matter present, so that the EFEs readG��Cƒg�� D 0. Since
the propagation of gravitational waves does not rely on the presence of matter, they should
still be able to carry energy. However:

Eq. (12.69)
12:10
HHH) TMetric

��

:
D 0 : (12.70)

So the HEMT TMetric
�� of pure gravity vanishes for all solutions of the field equations. This

tells us that TMetric
�� is not a reasonable choice for the EMT of the gravitational field.

[Side note: What happened here is a consequence of the diffeomorphism invariance of
the Einstein-Hilbert action (which is a gauge symmetry). A global continuous symmetry
yields a conserved current via Noether’s first theorem. A local continuous symmetry yields
Noether identities via Noether’s second theorem. The latter necessarily make the conserved
quantity associated to “global gauge transformations” vanish on-shell [77]. Here this means
TMetric
��

:
D 0. This is similar to the vanishing of the Hamiltonian of the reparametrization

invariant theory in Section 5.4.]

v | But there is something evenweirder going on: If this tensor would describe the energy density
of the gravitational field, then (local) energy conservation means

.TMetric/��I� D �
�1.G��I� Cƒg

��
I� / � 0 : (12.71)

This follows from the Bianchi identity Eq. (10.122) and metric compatibility Eq. (10.74).

Compare this to the“normal” (local) energy-momentum conservation Eq. (11.109) of proper
matter fields, which is only true for fields that satisfy the equations of motion ( :D), i.e., it
provides a constraint on field evolutions that can be realized in nature (one often employs such
constraints to solve complicated equations of motion). But since Eq. (12.71) is an identity, it
does not constrain the field evolution g�� whatsoever! This makes the constrain of “energy-
momentum conservation” rather vacuous, and the “energy” defined by Eq. (12.69) a quite
useless quantity (independent of the fact that it vanishes on-shell for pure gravity).

At this point it should be clear that Eq. (12.69) is not a reasonable candidate for the energy-
momentum tensor of the gravitational field.

But we can escalate the situation further by asking…

vi | What is the total energy-momentum tensor of Everything?

Well, the“Action of Everything” is Eq. (12.1), so that the“HEMT of Everything” should be

T
Everything
��

‹
D

2
p
g

ı.
p
gŒLMetric C LMatter�/

ıg��

D TMetric
�� C TMatter

��

12.69
D

1

�
.G�� Cƒg��/C T

Matter
�� : (12.72)

That’s the pinnacle ob absurdity! This is simply what one obtains from the Einstein field
Eq. (12.10) if one collects all terms on one side. Since every realizable configuration .g; �/ of
all fields must satisfy the EFE, the“energy-momentum tensor of Everything” again vanishes
on-shell:

T
Everything
��

:
D 0 : (12.73)

We could boldly conclude that “the total energy of the universe is zero,” but this misses
the point because Eq. (12.73) has no operational meaning – it is simply the Einstein field
equations in disguise.

[If you recall the general structure of the theory considered in Section 12.1 and takeEq. (11.106)
as the definition of the energy-momentum tensor, wehave just shown that the energy-momentum
tensor of any diffeomorphism invariant theory vanishes on-shell. A theory is diffeomorphism
invariant if (1) it is background independent (= g is a dynamical field) and (2) the action is
generally covariant.]
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vii | If TMetric
�� is not a reasonable choice for the energy-momentum tensor of the gravitational

field, what is? The answer may be surprising:

There is no energy-momentum tensor of the gravitational field.

Gravitational energy is necessarily non-local.

Important: This does not mean that the gravitational field carries no energy. It onlymeans that
this energy cannot be associated to a local energy density in any reasonable way; gravitational
energy is necessarily delocalized.

viii | Here is another (hand-waving) argument to reason why there cannot be a energy-momentum
tensor for gravity (the argument is flawed [172], but demonstrates at least that the gravitational
field is “different”):

The energy-momentum tensors of all field theories relevant to fundamental physics are
quadratic in first derivatives of the field [Examples: ← Eq. (11.115) for electrodynamics and
← Eq. (11.118) for the Klein-Gordon field]. Since g�� is the field of general relativity,
a conventional EMT should then be quadratic in g��;�. But we already argued previously
that one cannot construct a tensor from first derivatives of the metric alone (because one can
make these derivatives vanish in locally geodesic coordinates). Hence such a“conventional”
EMT cannot exist for the gravitational field.

The flaw of this argument, pointed out in Ref. [172], is of course that we already know
that gravity is very different from all other fundamental field theories (recall Section 8.2).
Thus it is quite a leap of faith to exclude an energy-momentum tensor that depends on
higher-than-first derivatives, based solely on our experience that other field theories behave
differently.

ix | The problem concerning the energy of the gravitational field has a long-standing history;
for more details see Ref. [172] and references therein. See alsoMisner et al. [3] (§20.2,
pp. 466–468). For a discussion of the so called ↑ energy-momentum pseudotensor that can be
used to study the energy of gravitational waves seeCarroll [4] (§7.6, pp. 307–315).

12.3. ‡ Modifications of general relativity

• Our approach to come up with a covariant action already suggests modifications of general
relativity by adding higher-order curvature terms, recall Eq. (12.52). This begs the question
in which ways general relativity can be modifield to obtain other relativistic theories of
gravity.

• ¡! So far, general relativity has passed the test of time with flying colors:

→ Applications in Chapter 13

Despite some unexplained phenomena (← below), there is currently no widely accepted evidence
that general relativity needs to be modified (at least not on the classical level, i.e., in the
“infrared limit”).

1 | Two classes of modifications:

• Modifications in the UV-limit (= at high energies, small distances…)

Motivation: general relativity is not a quantum theory! Quantum gravity?

This is quite uncontroversial: It is widely believed thatgeneral relativity is the classical
limit of a more fundamental theory that is most likely governed by the laws of quantum
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mechanics (that is, a theory of ↑ quantum gravity). The modifications due to quantum effects
will become important on the ↓ Planck scale at the latest; on a semi-classical level, this might
manifest as additional curvature terms showing up in the action / field equations, which
modify the predictions of general relativity on very small (high) length (energy)
scales. Note that such modifications are not relevant for large-scale physics (such as the
motion of galaxies or the expansion of the universe).

Not everyone agrees that gravity must be quantized; Roger Penrose, for example, advocates
that “quantum mechanics must be gravitized.” He denies that gravity has a quantum nature
at all, and that the collapse of the quantum wavefunction is an objective dynamical process,
induced by gravity, that makes a unique, classical, macroscopic world emerge out of a micro-
scopic quantum world [173]. This is in direct contradiction to most other interpretations of
quantum mechanics (collapse theories are not interpretations but modifications of quantum
mechanics) like ↑ Everett’s many-worlds interpretation or ↑ decoherence theory.

→ Excursions in Part III

• Modifications in the IR-limit (= at low energies, large distances…)

Motivation: Unexplained gravitational phenomena on large scales.

This is controversial and a stance not shared by many physicists: Modifications of general
relativity in the IR-limit typically means messing with well-established classical observa-
tions such as Newtonian gravity and/or the equivalence principle (in its various incarnations,
← Section 9.1). While it is of course possible that these classical laws and principles are
violated by some as of yet undiscovered physical process (which then would require a revision
of general relativity as taught in this course), there is currently no hard evidence for
such (regarding the problem of dark matter: → next).

→ Below we briefly discuss potential IR-modifications of general relativity.

2 | Dark matter:

i | Arguments for IR-modifications must be based on classical, large-scale observations that
don not match the predictions of general relativity and/or its non-relativistic limit:
Newtonian gravity.

ii | The most prominent and widely accepted discrepancy of this kind is based on the rotation
curves of galaxies: The gravitational pull experienced by stars in the outskirts of galaxies is
much larger than computed from the mass of gas and stars one observes (using general
relativity in the non-relativistic limit, i.e., Newtonian mechanics). That this discrepancy
is real is confirmed beyond any doubt.

If one plots the orbital velocities of stars in spiral galaxies over their distance from the galaxy
center, one obtains curves that flatten out for large distances (Fig. 12.1 a). This is true for
almost all galaxies (there are a few exceptions though). If one uses telescopes to infer the
mass-energy distribution of these galaxies (i.e., gas, dust and stars), and then computes
how the velocity profile according to Newtonian mechanics should look like (by equating
centrifugal and gravitational force), one finds that the rotation curves should drop off for
large distances (Fig. 12.1 b). In a nutshell: the stars in the outskirts of galaxies are too fast, if
they were only pulled by the gravitational force due to matter we can see, the galaxies would
be ripped apart by the centrifugal force (but they are not!).

iii | Potential solutions to the puzzle fall into two categories:

• general relativity is correct
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Figure 12.1. • Why dark matter? (a) That the rotation curves of galaxies do not match the visible
matter distribution was first noticed in 1970 [174] and repeatedly confirmed over the years [175, 176].
For a review on the rotation curves of spiral galaxies see Ref. [177]. (Plot from Ref. [175].) (b)Without
a modification of general relativity (↑ MOND, ↑ TeVeS, …), there must be invisible matter (“dark
matter”) responsible for this phenomenon. The distribution of this hypothetical matter can then be mapped
out by studying rotation curves [178]. (Plot from Ref. [178].) (c) Evidence for dark matter: Shown is a
superimposed image of the galaxy cluster 1E 0657-56 (↑ Bullet cluster). Pink: X-ray (hot gas, baryonic
matter); White/Orange: Optical (stars, baryonic matter); Blue: Lensing map (baryonic and dark matter).
This direct observation of a spatial dislocation of baryonic and gravitating matter is believed to be a strong
evidence for the existence of dark matter [179]. These measurements can even be used to constrain the
properties of dark matter [180]. Photo: https://chandra.si.edu/photo/2006/1e0657/. (d) By now
there are observations of other galaxy clusters with similar features, such as MACS J0025.4-1222 [181].
The color map is the same as for c). Photo: https://www.chandra.harvard.edu/photo/2008/macs/.
(e) The observation of the ultra-diffuse galaxy NGC 1052-DF2 revealed a rotation curve consistent with the
absence of dark matter [182,183]. A similar galaxy without dark matter was found quickly after [184]. Note
that the absence of dark matter in specific galaxies can be interpreted as evidence for the existence of dark
matter. Photo: https://esahubble.org/images/heic1806a/.

! There must be matter/energy in galaxies that we cannot detect (“see”).

!⁂ Dark matter?

Note that“dark matter” is a placeholder term. It is simply matter that we cannot detect
for whatever reason. There is nothing magical about it (→ below).

• general relativity is not correct
(on very large length-scales or at very low accelerations)

!Modifications of general relativity?

Because stars in the outskirts of galaxies are non-relativistic (low velocities, weak grav-
itational fields), they must be described by the non-relativistic limit of the correct
relativistic theory of gravity; for general relativity, this is good old Newtonian
gravity. So a modification of general relativity that makes sense of the flat rota-
tion curves of galaxies without postulating additional “dark”matter must necessarily
modify Newton’s law of universal gravitation. But this law works perfectly well in our

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART

https://chandra.si.edu/photo/2006/1e0657/
https://www.chandra.harvard.edu/photo/2008/macs/
https://esahubble.org/images/heic1806a/


GR → THE EINSTEIN FIELD EQUATIONS

342
PAGE

solar system (up to corrections that general relativity can explain). Thus any
reasonable IR-modification of general relativitymust ensure that its hampering
with Newton’s law only affects extremely large distances (and therefore extremely low
gravitational accelerations). The most prominent theory of this kind is called ↑ Modified
Newtonian Dynamics (MOND); in it original formulation byMilgrom [185–187] it is
simply a non-relativistic, non-covariant modification of Newtonian gravity. Since (local)
Lorentz covariance and the principle of general covariance are rather well-established
cornerstones of physics that one shouldn’t carelessly mess with, it is desirable to de-
rive the modifications proposed by MOND from a generally covariant modification of
general relativity; such a modification was proposed by Bekenstein and
dubbed ↑ Tensor-Vector-Scalar gravity (TeVeS) [188]. It is a rather contrived theory that
is significantly more complex than general relativity.

Recent studies (using new data from space-borne observatories that piled up over the
last few years) have shown that the modifications proposed by MOND-like theories do
not match observations [189–192]. In short: the future for MOND-like modifications
of general relativity looks bleak. (There is nothing wrong with this; that’s how
science works: there is a unexplained phenomenon; you propose a solution and derive
its implications; as more observations pour in, you check whether they are compatible
with your theory; if not, you modify or, if this doesn’t help, abandon the theory.)

Here is the corresponding XKCD comic that sums up the situation quite well:

Source: https://xkcd.com/1758/

iv | The case for dark matter:

To be very clear: While the rotation curve/dark matter discrepancy has been the strongest
case for potential IR-modifications of general relativity, this route has always been
pursued only by a minority of physicists.

To laymen and students of physics alike, the alternative“solution” to postulate“dark matter”
to patch up the discrepancy between observations and general relativity often looks
like a cheap cop-out (Fig. 12.1 b). However, there are reasons why the majority of physicists
believe that this is the most promising route to solve the puzzle:

1. Postulating unseen particles has been successful in the past. For example, Wolfang
Pauli postulated 1930 the neutrino to explain missing momentum in radioactive beta
decay (the neutrino was found in 1956). Peter Higgs (and others) postulated 1964 the
Higgs boson to explain the mass of the weak gauge bosons (which was then discovered
at the LHC in 2012). In 1973 the third generation of quarks (later called top and bottom)
was predicted to explain CP violations in the decay of kaons (the bottom quark was
discovered in 1977, the top quark in 1995).

[To be fair: Postulating the existence of things that have not yet been observed has
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also failed in the past. For example, to explain the anomalous perihelion precession of
Mercury, a new planet named ↑ Vulcan was postulated (orbiting between Sun and
Mercury). The planet does not exist, and today we know that corrections due to
general relativity are responsible for the precession.]

2. The StandardModel of particle physics, our best theory of the very small, describes the
properties of fundamental particles. While the model is restricted by symmetries (one
of them being Lorentz invariance), it still can be modified and extended in many ways;
for example, it is quite natural to add right-handed ↑ sterile neutrinos without breaking
the math. Thus, from the viewpoint of a particle physicist, it is general practice to
extend theories by new particles (= fields) and study the consequences. “Dark matter”
could just be one or more fields the excitations of which evaded our detectors so far
(sterile neutrinos are such a candidate for dark matter).

3. By now, there is strong indirect evidence for dark matter (whatever it is made of ) from
astronomical observations (Fig. 12.1):

• Fig. 12.1 c and Fig. 12.1 d show images of the galaxy clusters 1E 0657-56 (↑ Bul-
let cluster) [179, 180] and MACS J0025.4-1222 [181], respectively. The images
superimpose data from different instruments: Pink denotes X-rays that indicate
where the hot interstellar gas is located. The white/orange structures on the black
background are the optical signatures of galaxies coming from stars. The most in-
teresting is the blue cloud: it encodes the distribution of gravitating matter inferred
from a so called ↑ lensing map. The idea is to use → gravitational lenses to map
out the mass distribution of a region of space. Essentially you look how the light
coming from the stars in the background is disturbed by masses in the foreground.
In these pictures, only the blue density map is sensitive to dark matter (because
dark matter does not emit light, but distorts light from the background stars).

The situation in both Fig. 12.1 c and Fig. 12.1 d is similar: we see the aftermath of
two clusters of galaxies that collided. This sounds more exciting than it actually is,
because galaxies (and even more so clusters of galaxies) consist mostly of empty
space with a bit of dust and gas. This means that in such collisions there are almost
no collisions of stars; they all miss each other! By contrast, the low-density gas
between the stars behaves like a fluid; the two“blobs” of interstellar gas hit each
other and slow down. This is what the two pink clouds in Fig. 12.1 c show: the
X-ray emitting gas is lagging behind the actual stars (mostly in the blue region) that
missed each other and are flying to the left and right.

So far, there is no hint of dark matter: the blue (gravitating) mass is on top of
the stars and the gas is lagging behind. The twist is that almost all of the (visible)
mass of a galaxy (cluster) comes from the gas between the stars – and not the stars
themselves! This might sound strange, but there is a lot of space between stars,
and even if this space is almost vacuum, the total mass still outweighs the stars
significantly. But now we have a problem: If most of the visible mass is gas (pink),
why is most of the gravitating mass where the stars are (blue)? Well, because the
blue cloud is mostly caused by the dark matter halo of the two galaxies, and not
by the stars! And this fits exactly the properties expected for dark matter: The
particles making up dark matter cannot interact in any significant way, otherwise
we would have already detected them. But this means that a cloud of dark matter
does not behave like “normal gas” would; in particular, two colliding clouds of
dark matter cannot slow each other down. Thus it is perfectly consistent that the
two dark matter clouds (blue) passed each other, just as the visible stars did (but
for very different reasons). It is this observable separation between visible mass
(pink) and gravitating mass (blue) that makes a strong case for dark matter.

• Another recent observation supporting the existence of dark matter is, quite sur-
prisingly, the observation of the ultra-diffuse galaxy NGC 1052-DF2 (Fig. 12.1 e)
with a rotation curve that is consistent with the absence of dark matter [182, 183]
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(by now a second of these rare galaxies has been found [184]). The argument is
quite simple:

If you want to avoid dark matter, you must mess with general relativity
(like MOND and TeVeS do) and thereby Newton’s law of universal gravitation.
But now that we have examples of galaxies where Newtonian gravity works without
postulating dark matter, you have a problem: why is your modification not valid for
these galaxies? You cannot go around and modify the laws of physics from place to
place! But if dark matter exists (and is responsible for the flat rotation curves), it is
at least plausible that a few galaxies with an extravagant history somehow got their
cloud of dark matter stripped away (perhaps by the gravitational interaction with
another galaxy), and therefore have rotation curves that fall off, without the need
for additional mass.

In summary, it seems likely that dark matter exists and is responsible for the rotation curve
problem. Conversely, it seems more and more unlikely that general relativitymust
be modified anytime soon. But until we identify and measure what dark matter actually is,
we don’t know for sure.

3 | Potential modifications:

Arguments for or against modifications of general relativity aside, which possibilities do
we have to construct alternatives to general relativity?

Formore details on alternative theories of gravity seeRef. [111] andCarroll [4] (§4.8, pp. 181–190).

← Lovelock’s theorem [135, 136, 172]:

Only a metric field

Second-order field equations

Four-dimensional spacetime

Local action

9>>>=>>>; ) general relativity (12.74)

! Options for modifications of general relativity:

• ^ Other fields in addition to (or replacing) the metric

– ^ Scalar fields

Theories that augment the metric tensor field g�� by an additional scalar field � are
known as ↑ scalar-tensor theories of gravity. You may wonder how � differs from any
other matter field? The reason why � cannot be simply identified as another matter
field is that its coupling to the metric is non-minimal. Note that this suggests a definition
which fields describe matter and which describe gravity: Matter fields are minimally
coupled to the metric, additional gravitational fields are non-minimally coupled. Since
non-minimally coupled fields tend to violate the equivalence principle, such theories
often violate its strong version SEP .

Example: One of the first and most famous scalar-tensor theories is ↑ Brans-Dicke
theory [193]. It is defined by the gravitational action (here for c D 1)

SBDŒg; �� D
1

16�

Z
d4x
p
g

�
�R �

!

�
g��.@��/.@��/

�
(12.75)

with massless scalar field �.x/ and ⁂ Dicke coupling constant !. For ! ! 1 one
recovers general relativity. In theories of this kind, the scalar field �.x/ can be
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interpreted as a position and time dependent replacement of the gravitational coupling
constant 1=� / 1=G.

– ^ Connections other than the Levi-Civita connection

As discussed in Section 9.4, the concepts of connection and metric are independent in
principle. Only when demanding a metric-compatible and torsion-free connection does
one obtain the unique Levi-Civita connection and everything is determined by the
metric alone.

Example: One could start with the Einstein-Hilbert action, but treat connection � and
metric g as independent fields:

SŒg; �� WD
1

2�c

Z
d4x
p
gg��R��.�/ : (12.76)

Here, the curvature is directly computed from the connection via Eq. (10.70); this is
known as the ↑ Palatini action (→ Problemset 5).

Quite surprisingly, if one starts from Eq. (12.76) and assumes either…

* � is metric-compatible, or…

* � is torsion-free,

the variation ı�S of the action wrt. the connection coefficients ���� vanishes only
for the Levi-Civita connection (which brings us back to general relativity).
Only if one drops all restrictions, and allows for arbitrary connections, does one find a
modification of general relativity.

However, note that the difference of two arbitrary connections is a tensor [this follows
from Eq. (10.39)]. But this means that w.l.o.g. you can write any connection in the form

���� D

�
�

��

�
„ƒ‚…

Levi-Civita

C T ���„ƒ‚…
Tensor

; (12.77)

so that the decoupling ofmetric and connection boils down to the extension ofgeneral
relativity by some additional tensor field T ��� .

For example, see Refs. [132, 133] for potential extensions of general relativity
by allowing connections with torsion.

– …

There is of course no limit to your imagination. One can consider any combination
of arbitrary-rank tensor fields to augment the metric. One example is the previously
mentioned ↑ Tensor-Vector-Scalar gravity (TeVeS) by Bekenstein [188] which, as the
name suggests, comprises a metric tensor field, a vector field, and a scalar field.

• ^ Higher than second derivatives of the metric in the field equations

Example: ↑ f .R/-gravity theories [194] are defined by the generalized Einstein-Hilbert action

Sf Œg� WD
1

2�c

Z
d4x
p
gf .R/ (12.78)

with some differentiable function f W R! R that specifies the theory. For f .R/ D R one
recovers general relativity (without cosmological constant), but for f .R/ ¤ R the
field equations differ from the EFEs (and typically contain higher than second derivatives of
the metric).

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → THE EINSTEIN FIELD EQUATIONS

346
PAGE

• ^ Spacetime dimensionsD ¤ 4

It is straightforward to generalize general relativity (e.g., using the Einstein-Hilbert
action) to arbitrary spacetime dimensionsD. For an example, in → Problemset 4 we study
D D 2C1-dimensionalgeneral relativity. These theories can behave very differently
fromD D 3C 1-dimensional general relativity. However, they obviously do not
describe reality correctly as our spacetime has undeniable D D 3 C 1 dimensions. The
only viable route is then to postulate additional spatial dimensions and “curl them up”
(↑ compactification) so that one cannot see them on the large scales accessible to us. Such
theories are known as ↑ Kaluza-Klein theories becauseTheodor Kaluza introduced a
D D 4C 1-dimensional version in 1921 [195], which was later extended byOskar Klein
in 1926 [89, 196].

Example: A simple metric of aD D 4C d -dimensional spacetime could have the form

ds2 D GabdXadXb � g��.x/dx�dx�„ ƒ‚ …
Observable 4D spacetime

C b2.x/ij .y/dyidyj„ ƒ‚ …
Compact extra dimensions

(12.79)

witha; b D 0; : : : ; dC3 ford > 0,�; � D 0; 1; 2; 3, and i; j D 1; : : : ; d are the coordinates
of the compactified additional d dimensions.

As action one could postulate the Einstein-Hilbert action,

SŒG� WD
1

16�G4Cd

Z
d4CdX

p
GRŒG� ; (12.80)

whereG4Cd denotes the“gravitational constant” of this hypothetical 4C d -dimensional
theory andRŒG� is the Ricci scalar computed from the 4C d -dimensional metricGab . Note
that this is not equivalent to general relativity in 4C d dimensions because (1) we
constrain the form of the metric to Eq. (12.79), and (2) the additional d space dimensions
are compact and not extended.

Remarkably, if one integrates out these compact extra dimensions (↑ dimensional reduction),
one finds theories equivalent to general relativity with extra fields [under additional
constraints on ij , the simple metric (12.79) yields a ← scalar-tensor theory, seeCarroll [4]
(§4.8, pp. 186–189) for details]. The intuition behind this is that the geometric degrees of
freedom of the curled-up dimensions manifest in the extended 4D spacetime as additional
fields that can couple non-minimally to the metric.

In a nutshell: Extending spacetime by compact extra dimensions is often equivalent to adding
new fields on a 4D spacetime (without extra dimensions).

• ^ Field equations that cannot be derived from the metric variation of an action.

The field equations of such theories are not necessarily rank-2 tensor equations; and even
if so, they are not necessarily symmetric in the indices and/or divergence-free (recall our
derivation in Section 12.1 of these properties starting from a covariant action).

• ^ Non-local theories

Physicists don’t like non-local theories very much. Whenever you work with a continuum
theory that can be described by (a set of ) differential equations on some manifold, the theory
is local. Non-local theories therefore must be described by other equations (for example:
↑ integro-differential equations). Such theories and equations are often hard to work with.
Fortunately, nature seems to be rather local, which explains the prevalence of local theories
in physics (though this might be an illusion of sorts).
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12.4. ‡ Diffeomorphism invariance and the Hole argument

Now that general relativity has been fully developed as a relativistic theory of gravity, there are a
few conceptual issues that need to be clarified.

1 | The Hole argument:

This discussion is based on Ref. [197]. For reviews of the hole argument see Refs. [198, 199].

i | ^ Fields .g; �/ & Action of Everything (AoE) SŒg; �� D SŒg�C Sg Œ��

Recall Eq. (12.1) in Section 12.1.

^ Diffeomorphism ' 2 Diff.M/! Transformed fields . Ng; N�/

Recall Eq. (11.85) in Section 11.4.

¡! Remember that we interpret . Ng; N�/ as new/different fields (in the same coordinates).

AoE is generally covariant
Eq. (11.89)
������! AoE is diffeomorphism invariant:

SŒ Ng; N�� D SŒg; �� (12.81)

This implies for the EOMs!

ıSŒ Ng; N�� D 0 , ıSŒg; �� D 0 (12.82)

In words: If .g; �/ is a solution of the equations of motion (the Einstein field equations and
the matter EOMs), then the new fields . Ng; N�/ obtained by any diffeomorphism ' are another
solution. The group of diffeomorphisms Diff.M/ on the spacetime manifold is therefore a
symmetry/invariance group of general relativity.

Note that this hinges on the fact that both themetric g and thematter fields� are transformed
by the same diffeomorphism.

ii | At this point, it is unclear why the fact that Diff.M/ is a symmetry group of general
relativity poses a problem. To understand the issue, recall our current interpretation:

Spacetime D
�

ManifoldM„ ƒ‚ …
Coincidence classes

of events (?)

; Metricg„ ƒ‚ …
Gravitational

field

�
(12.83)

Diffeomorphism invariance then implies that the following two field configurations (sketched
here on a 2D spacetime manifold for simplicity) both satisfy the EOMs if one of them does:
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The crucial point is that diffeomorphisms ' can act locally on compact regions of spacetime
(here the“hole”), leaving the fields everywhere else unchanged.

Here the conincidence classes of events E that make up the spacetime manifold M are
denoted by gray dots, the fields (both metric g and matter �) are indicated by contour lines.
Note that the two diffeomorphic field configurations .g; �/ and . Ng; N�/ differ only in a compact
region denotes as “hole”.

! Problem:

The problem that arises from such a construction can be phrased in various ways:

• Assume that time runs upwards in the 2D patch of spacetime above. The two field
configurations .g; �/ and . Ng; N�/ are then identical in the“past” (= lower boundary of
the patch), but differ in the “hole”. But this is a problem for determinism: A useful
physical model should make unambiguous predictions for the future evolution of a
system, based on a set of initial data. The diffeomorphism invariance of general
relativity thwarts this, for it cannot distinguish between the two field evolutions
above that coincide in the past.

! Is general relativity indeterministic?

• In our current reading, the points of the spacetime manifold are (coincidence classes
of ) events E. The fields (metric and matter alike) are functions onM . If we interpret
the red contour line in the sketch as the trajectory of a particle (given by the excitation
of some field), diffeomorphisms can be used to deform this trajectory arbitrarily. But
the statement “the red particle passes through event E” is not invariant under such
transformations. This seems to be problematic because it is a statement about ← conici-
dences, and as such should be objective (as argued in Section 1.1). Put differently: The
EOMs of general relativity cannot decide wether the particle meets the event
E or not!

!What is the relation between fields and (coincidence classes of ) events?

• Einstein originally considered a spacetime filled with matter – except for a “hole” that
was assumed to be free of matter (that’s were the term“hole” comes from). He then
asked whether the metric in the hole was determined by the distribution of matter
(and the metric) outside the hole. Diffeomorphism invariance said no. This implies
that knowledge of the distribution of matter outside the hole, together with the initial
geometry of spacetime, is not enough to predict the metric inside the hole. Einstein
called this a “violation of the law of causlity” – which is essentially the problem of
indeterminism identified above.

Einstein introduced the argument in late 1913 to rationalize his failure to find a generally
covariant field equations that were consistent with Newtonian gravity in the non-relativistic
limit. He used the hole argument to convince himself that a generally covariant theory of
gravity was impossible (← last point above). The argument then coaxed him into a (misguided)
search for non-covariant field equations that, in hindsight, delayed the genesis of general
relativity by two years. Einstein found the flaw in his argument in late 1915 (→ next);
freed from this conceptual roadblock, he published the correct field Eq. (12.10) shortly after.

iii | Solution:

To solve the problems above, we have no choice but to concede the following:

• If we want general relativity to be a deterministic (= predictive) theory, we
must identify diffeomorphic solutions as physically indistinguishable.

[Similar to gauge fields A� and QA� that are related by QA� D A� C @�� are physically
indistinguishable in electrodanymics.]
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• We cannot interpret the pointsE 2M of the manifold as observable entities that exist
(in some physical sense) independent of the fields.

!⁂ Leibniz equivalence:

• Diffeomorphic solutions .g; �/
'
� . Ng; N�/ describe the same physics.

• general relativity is a gauge theory; Diff.M/ is its gauge group.
• The spacetime manifoldM itself does not exist as physical entity.
• The fields .g; �/ on the spacetime manifoldM exist as physical entities.

• The pointsE 2M of the spacetime manifold cannot exist in the same way the fields on
the manifold do. The stance thatM exists as a physical entity is known as ↑ manifold
substantivalism; the hole argument is therefore an argument against this philosophical
reading of general relativity. (See also my perspective → below.) Note that this
does not affect the independent existence of the metric field, which is responsible for
the elevation of “spacetime” from a static background to a dynamical participant in the
evolution of the universe. This view is known as ↑ substantivalism (without the prefix
“manifold”) and remains unaffected by the hole argument.

• Disclaimer: No matter what I claim here, you will always find a paper by a philosopher
of science who disagrees. That’s fine; the whole purpose of philosophy is to disagree
about stuff that we cannot (yet) pin down by experiments.

• Historical note:

Einstein finally discarded the hole argument and embraced Leibniz equivalence (which
led him to his field equations in November 1915). On January 3. 1916, Einstein writes in
a letter to his friend Michele Besso [200]:

An der Lochbetrachtung war alles richtig bis auf den letzten Schluss. Es hat keinen
physikalischen Inhalt, wenn inbezug auf dasselbe KoordinatensystemK zwei ver-
schiedene Lösungen G.x/ und G0.x/ existieren. Gleichzeitig zwei Lösungen in
dieselbe Mannigfaltigkeit hineinzudenken, hat keinen Sinn und das System K

hat ja keine physikalische Realität. Anstelle der Lochbatrachtung tritt folgende
Überlegung. Real ist physikalisch nichts als die Gesamtheit der raumzeitlichen
Punktkoinzidenzen. Wäre z. B. das physikalische Geschehen aufzubauen aus Be-
wegungen materieller Punkte allein, so wären die Begegnungen der Punkte, d. h.
die Schnittpunkte ihrer Weltlinien das einzig Reale, d. h. prinzipiell beobachtbare.
Diese Schnittpunkte bleiben natürlich bei allen Transformationen erhalten (und es
kommen keine neuen hinzu), wenn nur gewisse Eindeutigkeitsbedingungen gewahrt
bleiben. Es ist also das natürlichste, von den Gesetzen zu verlangen, dass sie nicht
mehr bestimmen als die Gesamtheit der zeiträumlichen Koinzidenzen. Dies wird
nach dem Gesagten bereits durch allgemein kovariante Gleichungen erreicht.

For your entertainment, the letter also contains the following (unrelated) statement:

Das Studium von Minkowski würde Dir nichts helfen.
Seine Arbeiten sind unnütz kompliziert.

iv | ‡ Another perspective:

What follows is my own take on what diffeomorphism invariance might tell us about reality.
The purpose of the following arguments is to demonstrate that the “hole issue”, diffeo-
morphism invariance, and general covariance, are all “symptoms” of mathematical surplus
structure that – while being useful for our description of general relativity– cannot
(and should not) be identified with real physical entities.
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a | Let me start by pointing out an intrinsic flaw of our previous interpretation of the
mathematical objects we are working with. So far, our reading was as follows:

Spacetime manifoldM D Set of coincidence classes E D fe1; e2; : : :g of events ei
Gravitational field g D Tensor field onM : g WM ! T �M ˝ T �M

Electromagnetic field A D Vector field onM : A WM ! TM

Klein-Gordon field � D Scalar field onM : � WM ! R

Now think of a coincidence class including the events“particle here”and“photon here”.
We can think of this as a combined event where the photon is absorbed or emitted by
the particle. But particle physics tells us that there are no particles (funny, I know), just
fields. In the modern reading of quantum field theory, “particles” are simply localized
(and quantized) excitations of fields. For simplicity, let us say that the event “photon
here” simply means A.E/ ¤ 0 for some pointE 2M , and the coincidental presence
of the particle is similarly described by �.E/ ¤ 0 (since � is a scalar, this would have
to be a scalar particle like the Higgs boson [which is not electrically charged]; but this is
not important here).

This shows that elementary events of the type“particle of type X is here” are associated
with specific values of fields of type X – not with their arguments (= points of the
manifold)! But if these points are supposed to be coincidence classes of events, we
arrive at a strange circular construction where fields are defined on points that contain
(and are characterized by) the value of the field at that very point.

In a nutshell:

All observable features of physical systems are determined by the values of fields, their coinci-
dences and causal relations.

This suggests that the pointsE of the spacetime manifoldM cannot be events them-
selves (nor can they be classes of events). However, we were also not far off identifying
spacetime points with coincidence classes of events. Let me explain:

b | Let us put forward the following Postulate:

Only events (e), related by coincidences (�) and a causal partial order (�) exist.

Recall our discussion in special relativity of events and their relations in Sec-
tion 1.6.

That we identify these events with realizations of values of fields it not important.

! Reality is a causal network of events, grouped by coincidences:
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This looks rather messy! It is certainly hard to formulate a workable model (= theory)
for this reality without putting in a bit more effort into the layout of the causal graph:

c | Unexplained fact: The causality graph of our universe is 4D-embeddable.

• “4D-embeddable”means that you can lay out the graph on a 4D manifold such
that the edges (= causal relations) only connect “nearby” nodes (= events) of the
graph (“nearby” being defined by the ↑ topology of the manifold).

• If you randomly construct a causality graph, there is absolutely no reason to expect
that it has this property. Hence this is a feature of reality that must be explained
(→ below). Note that the embeddability is a local feature; we do not claim that the
graph can be embedded in a topologically trivial manifold like R4.

This suggests the following procedure to lay out the causality graph:

(1) Construct a 4Dmanifold using empty boxes (these are the points of the manifold) by
arranging them in a 4Dhypercubic lattice (for simplicity). This is our new spacetime
manifoldM . Note that it doesn’t contain any events yet; its a completely artificial
structure without physical existence.

(2) Place events of the causality graph into the boxes of the manifold such that…

• … events that coincide (�) are placed in the same box.

• … events connected by an edge (�) are placed in nearby boxes.

This procedure succeeds because the graph is 4D-embeddable.

(Since empty boxes don’t exist, you can think of them as not being there at all.)

! For example:

There you have it. This is the structure we called “spacetime manifold”. You can
even see the light/null-cone structure of a Lorentzian manifold emerge from the causal
relations (recall Section 11.1).

What changed is our interpretation: The points E 2 M are the boxes themselves (not
the sets of events collected in them). Nothing of this construction has to do with reality
(we don’t change the causality graph); this layout is merely a convenient way to represent
reality.
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d | The diffeomorphism invariance of general relativity (and thus the hole argu-
ment) are now trivial consequences of the fact that the above description to lay out the
causality graph on a 4D grid of boxes is not unique: It is obvious that there is a quite lot
of freedom in placing the causally related events in nearby boxes.

For example, an alternative layout that differs from the previous one only in the orange
“hole” is the following:

This is the discrete version of Einstein’s“hole diffeomorphisms”. From this perspective,
it is trivial that such a transformation must be gauge because all physics is encoded in the
causality graph of events (which remains the same). Note how the emerging light/null-
cone texture is “warped”, as expected from an (active) diffeomorphism that affects the
metric.

e | We now understand diffeomorphism invariance and the hole argument. But what about
general covariance? Up to now we didn’t even mention coordinates!

Coordinates are simply labels that we print onto the boxes to refer to them in our
equations. This is what we mean by a chart that assigns the coordinates x� to a point (=
box)E 2M . It is also convenient to assign the label of a box to all events placed in the
box; this is what we mean by expressions like A�.x/ if A.E/ D A�.x/@� is the value
of the field atE 2M .
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For example, here is a systematic way to label the boxes and 5 exemplary events (e.g.,
the values of the EM field):

Now that we have boxes (that don’t exist) with labels (that don’t exist either), the duality
of (active) diffeomorphisms and (passive) coordinate transformations becomes evident:

(A) Diffeomorphism (active view):

Keep the labels of the boxes, but move the events around (thereby assigning new
labels to the events).

(B) Coordinate transformation (passive view):

Keep the events in their boxes, but change the labels of all boxes (thereby assigning
new labels to the events).

Note that both transformation can lead to the same labeling of events (if the coordinate
transformation is chosen“inverse” to the diffeomorphism)!

• From this perspective, the statement that general relativity is gauged by
(active) diffeomorphisms is dual to the statement that its equations are generally
covariant, i.e., form invariant under (passive) coordinate transformations.

• This equivalence hinges on the fact that all physical content is encoded in the causality
graph which implies that the boxes are not physical entities; this is ← background
independence. By contrast, a physical theory that is background dependent assigns
physical reality to the boxes themselves (but not the labels) by associating them
with some events (= field) that are not moved around with the other events. With
such“static” events in place, the duality between diffeomorphisms and coordinate
transformations is lost!

This is why special relativity can be formulated generally covariant without
being diffeomorphism invariant. In this case, the “static” background structure is
the Minkowski metric and the boxes make up Minkowski space.

v | Comment on ↑ Scientific realism:
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When we deny the manifold M existence (and relegate it to a useful auxiliary structure
of “empty boxes”), we must find an answer to the following question (otherwise the 4D
embeddability of the causal network of events is a “miracle”):

Why does the causal graph have the topology of a 4D manifold?

• I have no answer to this question/ (and there is certainly no consensus among scientists,
let alone philosophers). However, it seems that any reasonable theory beyondgeneral
relativity (quantum gravity…) must answer this question.

• A potential solution to the question is the line of arguments discussed in Section 4.4.

• Scientific realism is the epistemological stance that there exists physical entities out there
that we descibe by our theories – independent of whether (and how) we observe them.
In philosophy, scientific realism is an attempt to explain “why science works.”

[For example: To understand the effectiveness of Maxwell’s equation in describing
electromagnetic phenomena, it is certainly useful to assume that the electromagnetic
field F�� (or, to some extent, the gauge field A�) really exists – despite the fact that
nobody has ever directly observed these fields.]

2 | Where is special relativity?

i | Here is a riddle:

1. In special relativity we were proud of our discovery that Maxwell’s equations
were forminvariant under Lorentz transformations (Lorentz covariant) but not under
Galilei transformations.

2. In general relativity we were proud of our discovery that coordinate systems
don’t exist, and all fundamental physical theories must be expressible in a generally
covariant form. We achieved this for Maxwell’s equations.

3. But then these generally covariant Maxwell equations must be forminvariant under
both Lorentz and Galilei transformations (among others). The distinguished status of
Lorentz transformations seems to be lost.

What is going on?

ii | We use the massless Klein-Gordon field Eq. (11.36) for its simplicity to resolve the puzzle:

You can of course use the (more complicated) Maxwell equations to make the same points.

a | The Klein-Gordon field theory is defined in special relativity as follows:

���@�@��.x/ D 0 (12.84)

• Black: Equation (= definition of the theory/model)

• Red: Solution (= possible evolution)

b | ^ Arbitrary diffeomorphism Nx D '.x/

! Define new field N�. Nx/ WD �.'�1. Nx// D �.x/

! ' is symmetry of Eq. (12.84) iff(
���@�@��.x/ D 0

�˛ˇ N@˛ N@ˇ�. Nx/ D 0

)
'
(H)
sym.

(
���@�@� N�.x/ D 0

�˛ˇ N@˛ N@ˇ N�. Nx/ D 0

)
(12.85)
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The differential equations in braces are trivially equivalent because x and Nx are dummy
variables (˛ and ˇ are dummy indices) and the equations are assumed to be satisfied for
all coordinates x / points on the manifold.

Let us check under which conditions on ' we can get from the left-hand side of
Eq. (12.85) to the righ-hand side (and vice versa):

���@�@��.x/ D 0 (12.86a)

, ���@�@� N�. Nx/ D 0 (12.86b)

, ���@�

"�
N@ˇ N�. Nx/

� @ Nxˇ
@x�

#
D 0 (12.86c)

, ���

"�
N@˛ N@ˇ N�. Nx/

� @ Nxˇ
@x�

@ Nx˛

@x�
C
�
N@ˇ N�. Nx/

� @2 Nxˇ

@x�@x�

#
D 0 (12.86d)

When is this expression equivalent to the right-hand side of Eq. (12.85)?

First, the linear order term must vanish. This implies

@2 Nxˇ

@x�@x�
Š
D 0 , Nxˇ DM ˇ

˛ x
˛
C bˇ ; (12.87)

which means that the diffeomorphism ' must be an affine map.

With this constraint, Eq. (12.86d) simplifies to�
M ˛

� �
��M ˇ

�

�
N@˛ N@ˇ N�. Nx/ D 0 : (12.88)

This is equivalent to the right-hand side of Eq. (12.85) if�
M ˛

� �
��M ˇ

�

�
Š
D �˛ˇ : (12.89)

But this is the defining relation for isometries of Minkowski space [← Eq. (4.21)], and we
already know that this defines the Lorentz group O.1; 3/ (recall Section 4.2). Hence we
can conclude:
ı
�!

The symmetries (← invariance group, Section 1.2) of the
Klein-Gordon equation include ← Poincaré transformations.

¡! This is a statement about active transformations of fields: Poincaré transformations
are a “machine” to construct new solutions of the Klein-Gordon equation. First, this
is a useful mathematical tool, and second, it is physically significant as it implies that
if the field evolution � can be observed, then so can N�. Nothing of this has to do with
coordinates!

This suggests the following definition:

A theory is relativistic (in the sense of special relativity)
if its invariance group contains the Poincaré group.

Note that this definition makes no reference to coordinate transformations and how
equations transform under such!
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c | But in special relativity we always talked about “Lorentz covariant equations”
that do not change under Lorentz/Poincaré transformations, now interpreted as coordi-
nate transformations.

To understand how this relate to the previous discussion, let us once again focus on the
Klein-Gordon equation, but now we perform a

^ Arbitrary coordinate transformation Nx D '.x/

It is convenient to interpret Eq. (12.84) as a generally covariant equation:

g��r�r�� D 0 (12.90)

with g��.x/ D ��� , r�� D @��, and

r��� D @��� � �
˛
���˛ with �˛�� D 0 : (12.91)

Under Nx D '.x/ the equation remains forminvariant in the sense that:

g˛ˇ .x/r˛rˇ�.x/ D 0
NxD'.x/
(HHH) Ng��. Nx/ Nr� Nr� N�. Nx/ D 0 (12.92)

with

Ng��. Nx/ D
@ Nx�

@x˛
@ Nx�

@xˇ
g˛ˇ .x/ D

@ Nx�

@x˛
@ Nx�

@xˇ
�˛ˇ (12.93)

and

Nr�
Nr� N�. Nx/

def
D N@� N@� N�. Nx/ � N�

˛
��
N@˛ N�. Nx/ (12.94a)

10.39
D

�
@˛@ˇ�.x/

� @xˇ
@ Nx�

@x˛

@ Nx�
C
���������
@ˇ�.x/

� @2xˇ

@ Nx�@ Nx�

�
((((((((((((((�
@ Nx˛

@x�
@2x�

@ Nx�@ Nx�

� �
@ˇ�.x/

� @xˇ
@ Nx˛

(12.94b)

12.91
D

@x˛

@ Nx�
@xˇ

@ Nx�
r˛rˇ�.x/ (12.94c)

Of course you don’t have to do this step-by-step calculation; the whole point of intro-
ducing covariant derivatives was that the object transforms like a tensor!

d | Now comes the punchline:

• General covariance:

The property Eq. (12.92) is what we call general covariance; it is valid for arbitrary
coordinate transformations ', including Lorentz and Galilei transformations:

g��r�r��.x/ D 0

'D

8<: Lorentz
Galilei
…

(HHHHHHHH) Ng�� Nr� Nr� N�. Nx/ D 0 (12.95)

But this does not imply that ' is a symmetry of the equation because the transformed
equation on the right is not functionally equivalent to the equation on the left! This
means: If you relabel the dummy variable Nx 7! x in the right equation, you don’t
end up with original equation on the left because in general:

g��.x/ ¤ Ng��.x/ and r� ¤
Nr� (12.96)

! The transformed solution N�.x/ solves a functionally different equation!
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– Let use show explicitly that the two equations are not functionally identical. To
this end, introduce the explicit notation �˛�� Œg�.x/, which tells us to use the
metric g�� to compute the Christoffel symbols from their definition Eq. (10.79),
and interpret the result as a function of the spacetime coordinates x.

With this notation, the left equation of (12.95) reads explicitly

g��.x/
�
@�@��.x/ � �

˛
�� Œg�.x/@˛�.x/

�
D 0 ; (12.97)

whereas the right equation reads

Ng��. Nx/
�
N@� N@� N�. Nx/ � �

˛
�� Œ Ng�. Nx/

N@˛ N�. Nx/
�
D 0 : (12.98)

These two equations have the same form– they are forminvariant; andEq. (12.98)
is equivalent to Eq. (12.97) if both g�� and � transform as usual for a tensor
and a scalar. But the variable Nx in Eq. (12.98) is a dummy variable (ignoring
potential domain issues); thus let us rename it Nx 7! x so that the differential
equation reads

Ng��.x/
�
@�@� N�.x/ � �

˛
�� Œ Ng�.x/@˛

N�.x/
�
D 0 : (12.99)

But this differential equation is not the same as Eq. (12.97) because Ng�� ¤ g��

for arbitrary transformations '. This is why the new function N�.x/ solves
a different equation in general – and not the old one. But then ' does not
automatically lead to a symmetry that can be used to construct new solutions
from old ones.

– Some might complain: Wait, wasn’t the point of general covariance that equa-
tions are forminvariant under arbitrary coordinate transformations? Well, yes,
but with “forminvariance” one means exactly the above transformation; and
not that the equation remains functionally identical.

Recall (Chapter 3) that the whole point of introducing tensors and“generally co-
variant equations” (= tensor equations) was to characterize coordinate-dependent
(!) equations that encode coordinate-independent equations (= relations between
geometric objects). The transformation Eq. (12.95) guarantees that the equation
can be written coordinate-free as (→ below)

gabrarb� D 0 ; (12.100)

and that’s the whole point.

• Symmetry:

For a scalar field, a transformation ' is a symmetry if, for a solution �.x/, the new
function N�.x/ WD �.'�1.x// is another solution of the old equation:

g˛ˇr˛rˇ�.x/ D 0

'D

8<: Lorentz ?
Galilei ?
… ?

(HHHHHHHHH) g��r�r� N�.x/ D 0 (12.101)

This is clearly not the same equivalence as in Eq. (12.95).

Eq. (12.101) & Eqs. (12.97) and (12.99)!

�˛�� Œ Ng�
Š
D �˛�� Œg� D 0 and Ng��

Š
D g�� D ��� (12.102)

Using the transformation of connection coefficients Eq. (10.39), one immedi-
ately derives Eq. (12.87) from the first condition; this again implies an affine
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form Eq. (12.87) for the transformation '. The second condition is equivalent
to Eq. (12.89) and restricts ' to the isometry group of Minkowski space, that is:
← Poincaré transformations.
ı
�! Symmetries of the Klein-Gordon equation on Minkowski space:

g˛ˇr˛rˇ�.x/ D 0
'D

˚
Poincaré

(HHHHHHHH) g��r�r� N�.x/ D 0 (12.103)

Brief round-up:

• We started by writing the (special) relativistic Klein-Gordon equation in tensorial
form. The equation then becomes generally covariant, i.e., forminvariant under
arbitrary coordinate transformations (in particular: Galilei transformations). But
these do not translate to (active) symmetries: The transformations of fields thatmap
solutions onto new solutions are still only Poincaré transformations. The takeaway
is that Galilei transformations (or any other non-Poincaré transformations) are not
isometries of Minkowski space, and this spoils their use for constructing new solutions
from old ones.

• A nice benefit of the generally covariant form Eq. (12.90) is that it can be used to de-
fine the Klein-Gordon field on arbitrary curved spacetimes, not only onMinkowski
space. If g�� is the metric of some generic spacetime, the equation remains of
course forminvariant under coordinate transformations. But which of these passive
transformations can be reinterpreted as active symmetries? Our argument above
still goes trough and we are tasked with finding the isometries of the new spacetime.
But, as mentioned in Section 11.5, a generic spacetime doesn’t have any Killing
fields, and therefore also no (continuous group of ) symmetries. Thus, on a generic
spacetime, the Klein-Gordon equation does not have the Poincaré group as (part
of ) its symmetry group, because the spacetime on which it is formulate doesn’t
have this symmetry either.

iii | Question:

Is it possible to construct a generally covariant theory for which every (passive) coordinate transfor-
mation can be interpreted as an (active) symmetry?

Compare Eq. (12.97) and Eq. (12.99):

Solve for �:

(
g��.x/

�
@�@��.x/ � �

˛
�� Œg�.x/@˛�.x/

�
D 0

Ng��.x/
�
@�@� N�.x/ � �

˛
�� Œ Ng�.x/@˛

N�.x/
�
D 0

(12.104)

Problem: �.x/ and N�.x/ solve different equations (compare the black equations).

Idea: Interpret the metric as solution and not as background (= part of the equation).

!

Solve for .g; �/:

(
g��.x/

�
@�@��.x/ � �

˛
�� Œg�.x/@˛�.x/

�
D 0

Ng��.x/
�
@�@� N�.x/ � �

˛
�� Œ Ng�.x/@˛

N�.x/
�
D 0

(12.105)

.g; �/ and . Ng; N�/ solve the same equation,.

!We just prepared the theory for ← background independence.
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Whether the theory really is background independent depends on the presence and type of
additional equations of motion that constrain the metric field (→ below). However, what we
can say is that the theory has no longer any absolute objects (= non-dynamical tensor fields).

We conclude:

No absolute objects

General covariance

)
„ ƒ‚ …

Passive transformations

) Diffeomorphism invariance„ ƒ‚ …
Active transformations

• As argued above, diffeomorphism invariance must be interpreted as a gauge symmetry
that relates physically equivalent solutions. This means that our “trick” to declare the
metric as a dynamical field to lift all coordinate transformations to (active) symmetries
(now also Galilei transformations are symmetries!) didn’t really work out as intended.
It is as if we wanted“too much”: Now that every diffeomorphism is a symmetry, none of
them is physical anymore – all of them are gauge! But the good old (physical) Poincaré
symmetry can of course be resurrected for metric solutions that have the appropriate
Killing fields.

• Interpreting Eq. (12.90) as an equation for .g; �/ makes the theory diffeomorphism
invariant, i.e., every coordinate transformation can be interpreted as an active symmetry
transformation. Without restricting the new dynamical field g�� by an additional
equation of motion [e.g., the Einstein field equation Eq. (12.10) (→ below)], this is a
rather useless construction because the theory has solutions for every metric you ask
for. Hence it cannot predict anything about the metric, only about the evolution of the
Klein-Gordon field in relation to the metric.

iv | Conclusion:

We can sum up our findings as follows:

• Global Lorentz/Poincaré transformations �
ƒ
7! N� of matter fields

are not symmetries of general relativity, because the metric
typically lacks the necessary Killing fields.

• Global Lorentz/Poincaré transformations .g; �/
ƒ
7! . Ng; N�/ of both mat-

ter fields and metric are gauge symmetries of general relativity;
they have no physical significance.

• So is special relativity gone? Well, yes, if we identify the theory with“global
Lorentz symmetry” the answer must be affirmative: general relativity does not
contain special relativity in its pure form because spacetime is a dynamical field
– and solving for it usually does not produce flatMinkowski space. Only in the situations
where it does, general relativity reduces to special relativity (which
is approximately true in interstellar space far away from matter, and with appropriate
boundary conditions).

• Is this a problem? The answer is of course no, but it is instructive understand why:

Minkowski space is the defining entity of special relativity and has two charac-
teristic features: it is flat and it is Lorentzian [it has metric signature .1; 3/]. The crucial
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insight is that its flatness is not a characteristic feature of reality, it is a simplicity assump-
tion that makes special relativity“unnaturally symmetric” (10 Killing fields!).
Hence the global Lorentz symmetry of relativistic theories – which is imprinted by the
symmetry of spacetime due to general covariance – is “unnatural” mutatis mutandis.
The core feature of reality, that special relativity actually brought to the table,
is the locality of causality, which is ensured by the Lorentz signature .1; 3/ alone. The
realization that this core feature is not tied to the flatness of Minkowski space leads
directly to general relativity.

! Essence of special relativity that survives in general relativity:

General covariance

Lorentzian metric

)
)

8̂<̂
:

Local Lorentz symmetry

Locality of causality

Local constancy of the speed of light

9>=>;
• Recall the “spoiler” in Section 0.6.

• Aside: You know now three theories to describe classical mechanics: Good old Newto-
nian mechanics, special relativity, and general relativity. It is estab-
lished practice to teach these subjects in this very order:

Newtonian mechanics„ ƒ‚ …
2nd term

then
��! special relativity„ ƒ‚ …

5th term

then
��! general relativity„ ƒ‚ …

6th term

It seems to be consensus that the reason for this is how hard or easy the subjects are.
While there certainly is some (pedagogic) truth to this assessment, I would like to point
out that the“complexity” of a theory can be gauged in (at least) two different ways. For
lack of better terms I will refer to them as operational complexity and conceptual complexity.

Operational complexity captures how hard it is to work out actual problems in the respec-
tive theory. This leads to the following grading:

EF D mEa
simpler
����!

than
K� D m

du�

d�
simpler
����!

than
K� D m

du�

d�
Cm�

�

˛ˇ
u˛uˇ

Since students must solve problems to internalize a theory, it is this order, from the
operationally simple Newtonian mechanics to the operationally hard general rela-
tivity, that supports the conventional approach to teach these subjects.

By contrast, conceptual complexity captures howmuch“conceptual scaffolding” is needed
to formulate the theory precisely. Based on the discussions above, my claim is that the
order is exactly opposite:

general relativity
simpler
����!

than
special relativity

simpler
����!

than
Newton

The argument is simple: While more symmetries (or structures) make solving problems
easier (thereby lowering the operational complexity), they tend to clutter the conceptual
framework of a theory (thereby increasing the conceptual complexity). In addition, they
often obfuscate the actually important structures of the theory (recall the discussion of
the flatness of Minkowski space above).

One might counter that surely the conceptual framework of Newtonian mechanics
is not harder than that of special relativity! I beg to disagree: If one carves
out the mathematics of Newtonian spacetime properly, one has to deal with ↑ affine
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manifolds, ↑ fiber bundles, etc…[for a proper definition of Newtonian spacetime, see
Straumann [9] (pp. 10–16)]. Put bluntly: Newtonian mechanics looks conceptually
“simple” because it is usually not done rigorously! (At least compared to how rigorously
we do general relativity.)

3 | Interlude: ⁂ Abstract index notation:

It is often convenient to write equations in a coordinate-free form, without loosing information
about the types of tensors involved, and how they act on each other. This is achieved by abstract
index notation:

Scalar: � WD � 2 R (12.106a)

Vector: Aa WD A�@� 2 TM (12.106b)

Covector: Ba WD B�dx� 2 T �M (12.106c)

Mixed tensor: T ab WD T
�
� @� ˝ dx� 2 TM ˝ T �M (12.106d)

: : :

¡! The roman indices a; b; : : : are not numerical indices, they are labels that indicate “slots” of
tensors and how they are applied to each other. For example:

BaA
a
WD Ba.A

a/ D B�dx�.A�@�/ D B�A�dx�.@�/ D B�A�ı�� D B�A
� : (12.107)

Example: The Klein-Gordon equation in coordinate-free notation reads:

�abrarb� D 0 (12.108)

where �ab D g��.x/dx�dx� denotes the Minkowski metric. [This is not the matrix ��� D
diag .1;�1;�1;�1/! Furthermore, the components g��.x/ only equal ��� in inertial coordinates.]

4 | Background independence:

How does the concept of ← background independence (Section 9.2) mesh with these concepts?

This discussion is based on Ref. [119].

i | We have found the following implication:

Background
independence )

(
No absolute objects

General covariance

)
)

Diffeomorphism
invariance

(12.109)

This suggests the following identification:

(?) A theory is background independent iff it is diffeomorphism invariant.

ii | Problem:

^ The following theory (in abstract index notation):

KG-SRT :

(
gabrarb� D 0 (Matter EOM)

Rabcd D 0 (Metric EOM)
(12.110)

This theory…

• … is coordinate-free (in components: generally covariant).

• … has no absolute objects [solutions are tuples .gab; �/].
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• … is equivalent to the Klein-Gordon field in special relativity.

(The only flat metric onM ' R4 is the Minkowski metric gab D �ab .)

! KG-SRT is a diffeomorphism invariant formulation of special relativity!

But clearly special relativity should count as a background-dependent theory, for it is
defined on non-dynamical Minkowski space! How can we extract this characteristic feature
from artificially diffeomorphism invariant formulations like KG-SRT ?

iii | To this end, let us compare KG-SRT with the Klein-Gordon field in general relativity:

KG-GRT :

(
gabrarb� D 0 (Matter EOM)

Rab �
1
2
Rgab D ��Tab (Metric EOM)

(12.111)

Here Tab depends on the KG-field with components given in Eq. (11.118) form D 0.

! Compare solutions:

KG-SRT ) .�ab; �
1/; .�ab; �

2/; .�ab; �
3/; : : : (12.112)

KG-GRT ) .g1ab; �
1/; .g2ab; �

2/; .g3ab; �
3/; : : : (12.113)

! KG-SRT has a “hidden” absolute object (�ab) shared by all solutions!

iv | The fact that all solutions of a theory like special relativity share some invariant
objects allows for a cascade of “specializations” of the formulation of the theory:

Formulation Solve for… Diff. inv. Coord. free Gen. cov.

gabrarb� D 0

Rabcd D 0
gab; � 3 3 3

Fix shared metric gab D �ab D Q���.x/dx�dx� as absolute element!

�abrarb� D 0 � 7 3 3

Write in components wrt. some coordinates!

Q���.x/r�r�� D 0 � 7 7 3

Choose inertial coordinates to exploit symmetry of Minkowski space!

���@�@�� D 0 � 7 7 7

• All formulations above are equivalent in the sense that they describe the same physics.

• Thus, the very fact thatwe could formulatespecial relativity in anon-diffeomorphism
invariant form (and even a non-generally covariant form) characterizes it as a background-
dependent theory.

• For general relativity, the first step (were one fixes the metric as an abso-
lute element of the theory) fails and the cascade cannot take off. This prevents non-
diffeomorphism invariant formulations of the theory. Since there is no distinguished
metric, there cannot be a distinguished coordinate system, and thereby no non-generally
covariant formulation either.
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v | This leads us to the following refined definition of background independence:

Background independent theories (like general relativity) are charac-
terized by their lack of a formulation that is not diffeomorphism invariant.

This explains why we didn’t encounter a formulation of general relativity that is
not generally covariant, while we did use such formulations when discussing special
relativity.
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↓ Lecture 27 [02.07.24]

13. Applications & Predictions

Now that the framework of general relativity is fully developed, we can start using it. As already
mentioned, solving the Einstein field equations is hard, and in most realistic scenarios impossible. This
is why we focus on the simplest and most symmetric settings – which still does not save us from mathe-
matical complexity. Thus, instead of struggling with conceptual subtleties, we will mostly fight technical
(mathematical) issues in this chapter.

¡! Studying applications and predictions of general relativity is a vast topic, deserving its own
course. This chapter only scratches the surface of this multifaceted (and active) field of research.

A comprehensive review of experimental tests of general relativity can be found in Ref. [201].

13.1. The gravitational field of a spherical mass

The first (and most important) exact solution of the Einstein field equations was obtained by German
physicistKarl Schwarzschild at the end of 1915, only a few weeks after Einstein published his field
equations; the so called → Schwarzschild metric was published in January 1916 [202]. Schwarzschild found
his solution while serving in the German army (during World War I); he died only a few months later in
May 1916 (due to a disease he developed at the Russian front).

Here is how Schwarzschild sells his solution in Ref. [202] (§2):

Hr. Einstein hat gezeigt, daß dies Problem [der sphärisch symmetrischen Massenverteilung] in
erster Näherung auf das Newtonsche Gesetz führt [← Section 12.1.1] und daß die zweite Näherung
die bekannte Anomalie in der Bewegung des Merkurperihels richtig wiedergibt [→ Section 13.2.1].
Die folgende Rechnung liefert die strenge Lösung des Problems. Es ist immer angenehm, über
strenge Lösungen einfacher Form zu verfügen [recht hat er ,]. Wichtiger ist, daß die Rechnung
zugleich die eindeutige Bestimmtheit der Lösung ergibt, über die Hrn. Einsteins Behandlung
noch Zweifel ließ, und die nach der Art, wie sie sich unten einstellt, wohl auch nur schwer durch ein
solches Annäherungsverfahren erwiesen werden könnte. Die folgenden Zeilen führen also dazu,
Hrn. Einsteins Resultat in vermehrter Reinheit erstrahlen zu lassen.

Einstein was surprised that Schwarzschild succeeded so quickly in deriving an exact solution for his field
equations. He writes on 29. December 1915 [203] in a letter to Schwarzschild:

Ihre Rechnung, die den Eindeutigkeitsbeweis für das Problem liefert, ist höchst interessant. Hof-
fentlich veröffentlichen Sie dieselbe bald! Ich hätte nicht gedacht, dass die strenge Behandlung des
Punktproblems so einfach wäre.

Approximately spherically symmetric masses are ubiquitous in our universe: think of planets, stars, and
black holes. It is thus a reasonable first step, after setting up the Einstein field equations, to ask what
the metric induced by spherically symmetric bodies looks like (in vacuum, outside of the mass itself ),
and which modifications of the dynamics of test particles moving in such gravitational fields general
relativity predicts. In this section, we discuss this scenario in detail.

Here we consider only spherically symmetric mass distributions that are non-rotating and uncharged.
In particular the first assumption is often not satisfied by objects in space (celestial bodies typically
rotate); taking into account the angular momentum of masses leads to a (more complicated) cousin of the
Schwarzschild metric, the so called ↑ Kerr metric (which we will not discuss here due to its complexity).
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13.1.1. Spherically symmetric spacetimes

1 | Recall: Minkowski metric in spherical coordinates:

ds2 D c2dt2 � .dr2 C r2d�2/„ ƒ‚ …
dEx2

with d�2 WD d�2 C sin2 � d'2 (13.1)

^ Most general spherically symmetric metric (= invariant under spatial rotations Ex0 D REx):

ds2 D A.r; t/ dt2 � B.r; t/ dr2 C 2C.r; t/ dtdr � D.r; t/„ƒ‚…
D r2 (wlog)

d�2 (13.2)

A;B;C;D: Undetermined functions

• Ametric that is spherically symmetric should allow for coordinates that reflect this symmetry.
This means that the metric “looks the same” in all directions, i.e., no coefficient g�� can
depend on � or ' (above A, B, C , D). Furthermore, the metric should not contain any
off-diagonals that mix angles d� and d' with either time dt or the radial part dr . For fixed
time t and radius r , a spherically symmetric metric must describe, well, a sphere, so that the
only allowed length element is d�2, possibly scaled by a constant.

These statement are sloppy. What we really want is a metric that has three (linearly indepen-
dent) space-like ← Killing vector fields that satisfy the Lie algebra so.3/ (the algebra of angular
momentum operators in quantum mechanics) – and therefore represent spatial rotations;
such spacetimes are called ↑ spherically symmetric because their isometries (generated by
Killing vectors) include the rotation group SO.3/. One can then show that for such spheri-
cally symmetric spacetimes there exist coordinates in which the metric has the form (13.2).
This is similar to Section 11.5 were we studied how the existence of a time-like Killing vector
restricts the components of the metric in appropriately chosen coordinates.

• Note that we do not assume that the metric is ← stationary or even ← static, nor do we restrict
its asymptotic behavior.

• That one can always choose coordinates whereD.r; t/ D r2 is easy to see: Simply define new
coordinates Nr WD

p
D.r; t/ and Nt WD t , and use the transformation d Nr D @r

p
D.r; t/ dr C

@t
p
D.r; t/ dt and dNt D dt to rewrite ds2. This modifies the prefactors A ! NA, B ! NB

andC ! NC , but does not introduce additional terms beyond dNt2, d Nr2 and dNtd Nr in the metric.
Finally, rename Nr 7! r , Nt 7! t , NA 7! A etc.

2 | Define new time coordinate Nt D Nt .t; r/ and a suitable function ! D !.t; r/ such that

dNt D !.Adt C Cdr/ (13.3)

That this is always possible is straightforward to see: First, note that the expression Adt C Cdr
is not necessarily an ↑ exact differential form, i.e., it is not guaranteed for Nt .t; r/ to exist. This is
why we need the additional function !.t; r/. On a suitable domain (it must be ↑ contractible), the
↑ Poincaré lemma tells us that every ↑ closed form is exact. This means that if we can choose !.t; r/
such that !.Adt C Cdr/ becomes closed, we know that Nt .t; r/ exists such that Eq. (13.3) holds.

A differential form is closed if its exterior derivative vanishes:

0
Š
D dŒ!.Adt C Cdr/� D Œ@r .!A/ � @t .!C/� dr ^ dt : (13.4)

This condition is equivalent to a first-order partial differential equation for !,

@r .!A/ D @t .!C/ , .@r!/AC .@rA/! D @t .!/C C @t .C /! ; (13.5)
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for which you need to find only one non-zero solution !, given the functions A and C . Such a
solution is called ↑ integrating factor.

Eq. (13.2)
Eq. (13.3)
�����!

Adt2 C 2Cdtdr $
dNt2

A!2
�
C 2dr2

A
(13.6)

This trick eliminates the mixed term dtdr (we drop again all bars and rename prefactors):

ds2 D A.r; t/ dt2 � B.r; t/ dr2 � r2 d�2 (13.7)

3 | Lorentz signature of ds2! A > 0 and B > 0! Define A � e�c2 and B � e�!

Here � D �.r; t/ and � D �.r; t/ are undetermined functions:

ds2 D e� d.ct/2 � e� dr2 � r2
�
d�2 C sin2 � d'2

�
� g��dx�dx� (13.8)

Note that our coordinates are .x0; x1; x2; x3/ D .ct; r; �; '/.

In these coordinates the only non-zero components of the metric tensor are:

g�� D

0B@g00 g11
g22

g33

1CA
��

D

0BB@
e�

�e�

�r2

�r2 sin2 �

1CCA
��

(13.9)

4 | Our final goal is to solve the Einstein field equations for a point mass using the rotation symmetric
ansatz Eq. (13.8). To this end, we need the curvature tensor, and therefore the…

Christoffel symbols:

A straightforward but tedious calculation yields the non-zero components:

Eq. (13.9)
Eq. (10.79)
������!

�000 D
P�

2
; �001 D

�0

2
; �011 D

P�

2
e��� (13.10a)

�100 D
�0

2
e���; �101 D

P�

2
; �111 D

�0

2
(13.10b)

�122 D �re
��; �133 D �re

�� sin2 �

�212 D
1

r
; �233 D � sin � cos � (13.10c)

�313 D
1

r
; �323 D cot � (13.10d)

with abbreviations P� � @�
@.ct/

D
@�
@x0 and �0 �

@�
@r
D

@�
@x1 .

We extend this convention to higher derivatives in the obvious way.

All not listed components either vanish or are given by the symmetry of the Christoffel symbols.
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5 | Einstein field equations:

Another straightforward (but even more tedious) calculation yields the non-zero components of
the Einstein tensor. With these, the Einstein field equation reads:

G 0
0 D e

��
�
1
r2 �

�0

r

�
�

1
r2 D ��T 0

0 (13.11a)

G 1
0 D e

�� P�
r

D ��T 1
0 (13.11b)

G 1
1 D e

��
�
1
r2 C

�0

r

�
�

1
r2 D ��T 1

1 (13.11c)

G 2
2 D

8<:
1
2
e��

�
�00
C

�02

2
C

�0��0

r
�
�0�0

2

�
�
1
4
e��

�
2 R�C P�2 � P� P�

�
9=; D ��T 2

2 (13.11d)

G 3
3 D G

2
2 D ��T 3

3 (13.11e)

All other components of the Einstein tensor vanish.

Our rotation symmetric ansatz Eq. (13.9) for the metric of course imposes restrictions on the form
of the energy-momentum tensor for which solutions exists. Note that the Einstein tensor contains
second-order derivatives for it derives from the curvature tensor.

13.1.2. Birkhoff’s theorem

6 | ^ Spherically symmetric solutions in vacuum: T�� D 0

This means that we are interested in the metric outside of spherically symmetric bodies (like planets
and stars). As this is exactly were we would like to test general relativity (e.g., by following
test particles on their geodesics), this simplifications is actually well motivated.

7 | ^ First three equations of Eq. (13.11):

Eq. (13.11a) , e��

�
�0

r
�
1

r2

�
C
1

r2
D 0 (13.12a)

Eq. (13.11b) , P� D 0 (13.12b)

Eq. (13.11c) , e��

�
�0

r
C
1

r2

�
�
1

r2
D 0 (13.12c)

Eq. (13.12b)! � D �.r/
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8 | Eq. (13.12a) + Eq. (13.12c)!

�0.r/C �0.r; t/ D 0 , �0.t; r/ D ��0.r/ (13.13)

Integration yields the form

�.t; r/ D �.r/C f .t/ : (13.14)

The fact that �.r/ relates to �.r/ is not important right now. The crucial point is that the space
and time dependency of �.t; r/ separated into two summands:

^ Coordinate transformation Nt D Nt .t/ with dNt D ef=2dt :

e�.t;r/d.ct/2 13.14
D e�.r/ef .t/d.ct/2 D e�.r/ d.c Nt /2 (13.15)

That such a coordinate transformation always exists is easy to see: The integral Nt .t/ WD
R t
t0
ef .s/=2ds

does the job by construction.

Eq. (13.8)
Nt 7! t
���!Most general spherically symmetric solution in vacuum:

ds2 D e�.r/ d.ct/2 � e�.r/ dr2 � r2 d�2 (13.16)

Our new insight is that � D �.r/ and � D �.r/ do not depend on the time coordinate:

!Metric is ← static.

9 | Eq. (13.13) is still valid: [combine Eqs. (13.13) and (13.14)]

�0.r/C �0.r/ D 0 ) �.r/C �.r/ D 0 (13.17)

There is of course also an integration constant. But this constant can be absorbed in the term
e�.r/d.ct/2 by another coordinate transformation (rescaling) of the time coordinate.

10 | Let us once again go back to the Einstein field equations:

Eq. (13.12a) , e��.r/
�
1 � �0r

�
D 1 (13.18)

Use substitution ˛.r/ WD e��.r/!

˛ C ˛0r D 1 (13.19)

! Solution:

˛ D 1C
a

r
D e�� 13.17

D e� with integration constant a. (13.20)

^ Spatial infinity r !1: [Use lim
r!1

e� D 1 D lim
r!1

e� .]

lim
r!1

ds2 13.16
D d.ct/2 � dr2 � r2 d�2 D hMinkowski spacei (13.21)

!Metric is asymptotically flat.

11 | Check that…

• Eqs. (13.11a) and (13.17)! Eq. (13.11c) solved 3

• Eq. (13.20)
ı
�! Eqs. (13.11d) and (13.11e) solved 3
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12 | ⁂ Birkhoff’s theorem:

We can summarize our results as follows:

Every spherically symmetric solution of the Einstein field equations

in vacuum is static and asymptotically flat.

• The theorem was proven by American mathematician George David Birkhoff in
1923 [204]. However, the same result was obtained already in 1921 by Norwegian physicist
JørgTofte Jebsen [205]. Birkhoff’s theorem is therefore a typical example for↑Stigler’s
law [206] according to which no scientific discovery is named after its original discoverer.

• If you think about it, this result is quite surprising as we didn’t exploit any properties of
the energy-momentum tensor that produces the gravitational field except for its spherical
symmetry. This means that our result holds also for time-dependent distributions of mass/en-
ergy – as long as the time dependence does not break the spherical symmetry. For example,
consider a pulsating (non-rotating) star:

Birkhoff’s theorem demands that the metric outside of this star is nonetheless static and
asymptotically flat. This implies in particular that such a time-dependent object cannot emit
gravitational waves!

[A similar situation occurs when a dying star explodes in a supernova: If the explosion is
spherically symmetric, such an event cannot emit gravitational waves.]

13.1.3. The Schwarzschild metric

13 | The derivation above yields the most general solution of the vacuum EFEs that are spherically
symmetric:

Eqs. (13.16) and (13.20)!

ds2 D
�
1C

a

r

�
d.ct/2 �

�
1C

a

r

��1

dr2 � r2 d�2 (13.22)

! The parameter a must be determined by the mass of the object that generates this metric.

14 | ^ Correspondence principle:

In the non-relativistic weak-field limit, we must recover the Newtonian gravitational potential:

1C
a

r

13.22
D g00

11:65
� 1C

2�

c2
D 1 �

2GM=c2

r
with � D �

GM

r
(13.23)

HereM is the mass of the central spherically symmetric body.

! a D �2GM
c2 � �rs with the…

rs D
2GM

c2
⁂ Schwarzschild radius (13.24)
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Thus we finally find the ⁂ Schwarzschild metric

ds2 D
�
1 �

rs

r

�
d.ct/2 �

�
1 �

rs

r

��1

dr2 � r2d�2 (13.25)

expressed in ⁂ Schwarzschild coordinates .ct; r; �; '/ with d�2 D d�2 C sin2 � d'2.

15 | Comments:

• ¡! Do notmake themistake to interpret t and r asmeasurable times and distances, respectively.
These are just coordinates and one must compute coordinate independent proper times and
distances to check if, how, and where they relate to observable quantities (→ below). (Recall
the remarks in Section 9.2 about the role played by coordinates in general relativity.)
Note also that for r < rs the coordinate t is actually space-like whereas r is time-like.

• In Schwarzschild coordinates, the metric Eq. (13.25) has two singularities:

1. On the sphere with r D rs (→ event horizon) the prefactor of dr2 diverges and the
prefactor of dt2 vanishes. You show on → Problemset 6 that this singularity is an
artifact of the Schwarzschild coordinates, and that it can be remedied by choosing better
coordinates (e.g. ↑ Kruskal–Szekeres coordinates). The metric can then be smoothly
extended beyond the horizon without anything fancy happening on the horizon itself.

2. At r D 0 the prefactor of dt2 blows up and the prefactor of dr2 vanishes. In contrast to
the coordinate singularity at r D rs , the singularity at r D 0 of the interior solution is
“physical” in the sense that there coordinate-independent quantities (scalars built from
the curvature tensor) diverge. However, keep in mind that for “normal” bodies like
planets and stars, the Schwarzschild metric is not valid in the interior anyway, so that
this singularity has no physical relevance in these scenarios. Only for black holes this
singularity is relevant as it heralds the breakdown of general relativity.

• Inspection of Eq. (13.25) shows that the ratio rs=r quantifies the deviations fromflatMinkowski
space. Because the Schwarzschild solution Eq. (13.25) is only valid outside of the mass, rela-
tivistic effects become important if one can approach the body to r � rs , i.e., the (coordinate)
radiusR of the body must be of the order of the Schwarzschild radius. Conversely, for bodies
with R � rs it is necessarily r � rs such that the dominant effect of the Schwarzschild
metric is described by Newtonian gravity:

The situation of a → black hole where r < rs is possible will be discussed in Section 13.3; in
the following we assume r � R > rs so that neither the coordinate singularity at r D rs nor
the physical singularity at r D 0 are relevant.
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• ¡! Do not forget that the Schwarzschild solution Eq. (13.25) is only valid in vacuo, i.e., outside
the gravitating mass. The metric in the interior is different from Eq. (13.25) (in particular:
non-singular). This means that if the Schwarzschild radius rs < R is “buried” in the body,
it has no physical significance. There is no event horizon close to the center of Earth!

For the exact solution of the interior of a star see ↑Weinberg [121] (§11.1, pp. 299–304).

• Because of the coordinate singularity at r D rs , the Schwarzschild solution in Eq. (13.25)
actually separates into two independent solutions for the EFEs in vacuum: The extended
outer solution for r > rs (with time-like coordinate t) and the bounded inner solution for
0 < r < rs (with time-like coordinate r). Since the metric is undefined at r D rs , it is a
priori unclear whether (and if, how) these two “patches” can be glued together to form a
single, contiguous spacetime that solves the vacuum EFEs. That (and how) this is possible
can be seen for example in ↑ Kruskal–Szekeres coordinates (→ Problemset 6).

• If one plugs in the numbers, the Schwarzschild radius of a spherical massM is roughly

rs � 3 �

�
M

Mˇ

�
km (13.26)

whereMˇ is the mass of the Sun. One finds for example:

rs [m] rs=R

Erde 9 � 10�3 10�9

Sonne 3 � 103 10�6

White dwarf 3 � 103 3 � 10�4

Neutron star 3 � 103 0:3

This explains why the Newtonian approximation has been so successful in our Solar System.

It is clear that we should compare rs to the coordinate radius R of the spherical body, i.e.,
the radial Schwarzschild coordinate r D R where the surface of the body is located (since
the terms rs=r compare rs to the coordinate r). Remembering our warning above (that
coordinates cannot directly be identified with physical quantities), you might object that
equating R with the measured radius of (e.g.) Earth is not justified. This is indeed a valid
objection; however, → below we will see that the coordinate radius has a straightforward
physical meaning – which justifies the numbers above (although the interpretation is not the
one you might expect).

• According to Birkhoff’s theorem, the Schwarzschild metric is the unique solution of the
vacuum field equations outside of a spherically symmetric, non-rotating, uncharged mass. That
the mass is non-rotating is important, because a finite angular momentum breaks the rotation
symmetry of the problem. That the mass is uncharged is important, because otherwise the
electromagnetic field outside the mass would be non-zero and our assumption T�� D 0would
be invalid.

• One can loosen these restrictions and solve the EFEs for more general scenarios:

Rotating? Charged? Metric Ref. Found

7 7 ← Schwarzschild [202] 1916

7 3 ↑ Reisser-Nordström [207–210] 1916

3 7 ↑ Kerr [211] 1963

3 3 ↑ Kerr-Newman [212, 213] 1965

Because most celestial bodies rotate, these generalizations (in particular the Kerr metric)
are often more useful to describe real phenomena than the Schwarzschild metric (like black
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holes). However, for slowly rotating bodies the Schwarzschild metric often provides good
approximations to explain a variety of phenomena (→ Section 13.2; but not always, → Lense-
Thirring effect in → Problemset 6).

• In his derivation, Schwarzschild used both time-independence and asymptotic flatness as inde-
pendent assumptions [202]. The contribution by Birkhoff and Jebsen was to show that both
assumptions are superfluous [204,205]: That the solution must be static and asymptotically
flat is already implied by its rotational symmetry.

16 | Proper time:

Let us now study how the Schwarzschild coordinates relate to measurable proper time:

i | ^ Ideal clock at rest in Schwarzschild coordinates:

! Proper time:

d� 11.10
D

1

c
ds 13.25
D

r
1 �

rs

r
dt (13.27)

! �� < �t for rs < r <1

ii | ^ Asymptotic observer at r !1:

lim
r!1

d� D dt (13.28)

!We can conclude:

Schwarzschild time t = Proper time of observer at spatial infinity (13.29)

iii | In summary, the clocks of stationary observers at finite distance to the mass run always slower
than the clocks at spatial infinity. The closer the clock to the Schwarzschild radius, the slower
it ticks. We can illustrate this as follows:

• To draw the null cones in a Schwarzschild rt -diagram, note that ds2 Š
D 0 implies

d.ct/
dr
D ˙

�
1 �

rs

r

��1

(13.30)

for constant � and '. So for r ! 1 the cones open with 90ı, as in flat Minkowski
space; for r ! rs the cones close up and become degenerate at the Schwarzschild
radius.
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17 | Proper distance:

How do the Schwarzschild coordinates relate to proper distances?

i | ^ Time slice t D const (dt D 0)

! Spatial metric: [For a formal definition see Eq. (11.30) or Eq. (11.27).]

dl2 D
�
1 �

rs

r

��1

dr2 C r2
�
d�2 C sin2 � d'2

�
(13.31)

ii | ^ Circumference of a great circle C of coordinate radius r (� D �
2
):

LŒC � WD

Z
C

dl„ƒ‚…
Coordinate
independent

D r

Z 2�

0

d'„ ƒ‚ …
Coordinate
dependent

D 2�r (13.32)

Similarly, one finds AŒS � D 4�r2 for the surface of a sphere S with coordinate radius r .

! The coordinate r directly relates to lengths of circles (and areas of spheres).

Note that both LŒC � and AŒS � are geometric (= coordinate independent) quantities.

iii | But what about radial proper distances?

^ Radial segment L from r1 to r2 (� D const and ' D const):

LŒL� WD

Z
L

dl D
Z r2

r1

drq
1 � rs

r

DW �R.r1; r2/ > r2 � r1 (13.33)

Note that we cannot compute distances from the center r D 0 because, first, we would
integrate over the coordinate singularity (and start at the singularity at r D 0), and second,
for r < rs the coordinate becomes time-like and the integral actually measures a time and
not a length! This is why we consider distances between two points with radial coordinates
r2; r1 > rs .

We conclude:

The radial proper distance is larger than the coordinate distance. (13.34)

iv | ^ Two great circles Ci with radii r2 > r1!

ıU

ıR
WD

LŒC2� � LŒC1�

�R.r1; r2/
D
2�.r2 � r1/

�R.r1; r2/

13:33
<

2�.r2 � r1/

r2 � r1
D 2� (13.35)

This means that the circumference varies “less than usual”: ıU < 2�ıR.

Compare this to Euclidean geometry:

ıU

ıR
WD

2�r2 � 2�r1

r2 � r1
D 2� ) ıU D 2�ıR (13.36)

Note that the ratio defined in Eq. (13.35) makes use of geometric properties of the space(time)
only; i.e., both LŒCi � and�d are (in principle) measurable quantities that do not depend on
coordinates.
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! Space is non-Euclidean!
The fact that this ratio is smaller than 2� tells us that the spatial curvature is positive. For
example, a two-dimensional sphere has positive curvature and the same feature:

(This is an extreme example where the ratio is zero.)

v | Let us approximate the measure Eq. (13.35) and apply it to the Solar System to get a feeling
for how non-Euclidean space actually is in our neighborhood:

We assume rs � r and r2� r1 � rs (which is satisfied for all situations in the Solar System).

Eq. (13.33)!

�R.r1; r2/ �

Z r2

r1

dr
�
1C

1

2

rs

r

�
D r2 � r1 C

rs

2
ln
r2

r1
(13.37)

With this and Eq. (13.35) we find:

2�.r2 � r1/

�R.r1; r2/

ı
� 2�

h
1 �

1

2

�
rs

r2 � r1

�
ln
r2

r1„ ƒ‚ …
Non-Euclid. correction �

i
: (13.38)

For example, let r1 D 7 � 108m be the radius of the Sun and r2 D 5:8 � 1010m the
semi-major axis of Mercury. With the Schwarzschild radius rs D 3� 103m (of the Sun) one
finds the non-Euclidean correction � � 10�7.

! The deviations from Euclidean geometry in the Solar System are miniscule.

This explains why the Euclidean space used in Newtonian mechanics is such a good approxi-
mation to describe the Solar System!

18 | Alternative coordinates:

There is a zoo of different coordinate systems adapted to the Schwarzschild metric, all with distinct
advantages and disadvantages. Here we introduce one alternative coordinate system to demonstrate
that the singularity at r D rs is an artifact of Schwarzschild coordinates:

For a motivation of the widely used ↑ Kruskal–Szekeres coordinates: → Problemset 6.

i | ^ Coordinate transformation Nr D Nr.r/ with

r �
�
1C

rs

4 Nr

�2
Nr (13.39)

and r � rs , Nr � rs=4.

Eq. (13.25)
ı
�!

ds2 D
�
1 � rs

4 Nr

1C rs

4 Nr

�2
d.ct/2 �

�
1C

rs

4 Nr

�4 �
d Nr2 C Nr2d�2

�„ ƒ‚ …
� d Nx2Cd Ny2Cd Ń2

(13.40)
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with ⁂ isotropic coordinates .c Nt ; Nx; Ny; Ń/ or .c Nt ; Nr; �; '/.

Note that the Nr-dependent scaling now affects all spatial coordinates equally; hence isotropic
coordinates [cf. Eq. (13.25)].

ii | Important: No divergence/singularity for Nr ! rs=4 in Eq. (13.40) !

Although the divergence (singularity) at the event horizon is gone, the metric is still degenerate
at Nr D rs=4 since the component Ng00 D 0 vanishes [← Eq. (3.46)]. The ↑ Kruskal–Szekeres
coordinates you study in → Problemset 6 do not have this problem and are non-degenerate
and non-singular on the event horizon.

iii | ^ Weak field limit Nr � rs
ı
�! (expand linearly in rs

Nr
)

ds2 �
�
1 �

rs

Nr

�
d.ct/2 �

�
1C

rs

Nr

� �
d Nr2 C Nr2d�2

�
(13.41)

19 | Cosmological constant:

Retracing the solution in Section 13.1.2 – but now including the cosmological constant in the EFEs
– yields the ⁂ Schwarzschild de Sitter metric

ds2 D
�
1 �

rs

r
�
ƒr2

3

�
d.ct/2 �

�
1 �

rs

r
�
ƒr2

3

��1

dr2 � r2d�2 : (13.42)

[↑ de Sitter space is the maximally symmetric (= 10 Killing vectors) spacetime with constant positive
scalar curvature (R > 0); you can think of it as the generalization of spheres in Euclidean space. De
Sitter space is the maximally symmetric vacuum solution of the EFEs with positive cosmological
constant – analog to Minkowski space for the case of vanishing cosmological constant.]

Due to the additional terms in Eq. (13.42), the asymptotic metric for r ! 1 is no longer flat
Minkowski space but positively curved de Sitter space. In the non-relativistic limit, the gravitational
potential can be identified via Eq. (11.65) as

� D �
GM

r
�
c2ƒ

6
r2 : (13.43)

This is a modification of Newtonian gravity and consistent with our previous result Eq. (12.42).
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↓ Lecture 28 [09.07.24]

13.2. Tests of general relativity in the Solar System

With the Schwarzschild metric at hand, we can finally derive predictions of general relativity that
can be used to distinguish the theory from its non-relativistic predecessor, Newtonian dynamics. Here
we focus on tests and predictions that are applicable to scales within our Solar System. Hence we omit
the cosmological constant (ƒ D 0) and can also safely assume r � rs , so that the singularities of the
Schwarzschild metric can be ignored:

Test 3A:
Gravitational redshift

Section 13.2.4

Test 3B:
Gravitational time dilation
Section 13.2.5

Test 2A:
Light deflection
Section 13.2.2

Test 2B:
Gravitational lensing
Section 13.2.3

Test 1:
Perihelion precession
Section 13.2.1

Test 4:
Shapiro time delay
Section 13.2.6

Einstein introduced and studied 1916 in Ref. [21] (§22, pp. 818–822) what are today known as the“Three
classical tests of general relativity”. He summarized and popularized them 1919 in an article
written for the London Times [214,215]:

• The perihelion precession of Mercury (→ Section 13.2.1)

• The deflection of light by the Sun (→ Section 13.2.2)

• The gravitational redshift of light (→ Section 13.2.4)

In Einstein’s words [214] (p. 209):

Die neue Theorie der Gravitation weicht in prinzipieller Hinsicht von der Theorie Newtons bedeu-
tend ab. Aber ihre praktischen Ergebnisse stimmen mit denen der Newton’schen Theorie so nahe
überein, dass es schwer fällt, Unterscheidungs-Kriterien zu finden, die der Erfahrung zugänglich
sind. Solche haben sich bis jetzt gefunden

1) in der Drehung der Ellipsen der Planetenbahnen um die Sonne (beim Merkur bestätigt).

2) in derKrümmung derLichtstrahlen durch dieGravitationsfelder (durch die englischenSonnenfinsternis-
Aufnahmen bestätigt).

3) in einer Verschiebung der Spektrallinien nach dem roten Spektralende hin des von Sternen
bedeutender Masse zu uns gesandten Lichtes (bisher nicht bestätigt).

Der Hauptreiz der Theorie liegt in ihrer logischen Geschlossenheit. Wenn eine einzige aus ihr gezo-
gene Konsequenz sich als unzutreffend erweist, muss sie verlassen werden; eine blosse Modifikation
erscheint ohne Zerstörung des ganzen Gebäudes unmöglich.
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13.2.1. Apsidal precession

The first and most famous application of general relativity was and is the explanation of the
anomalous apsidal precession of Mercury’s orbit:

Problem:

Taking into account all known gravitational perturbations (mostly due to other planets) explainsMercury’s
apsidal precession up to a deviation of [216]

�'‹ � .42:56˙ 0:94/
00 per century (13.44)

which remains mysterious in Newton’s theory/.

Solution: general relativity,

The fact that general relativity can be used to compute�'‹ precisely was a triumph for Einstein,
and paved the way for a quick adoption of the theory. Einstein derived�'‹ in his famous paper“Erklärung
der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie” [14], published on 18. November
1915.

If you look sharply at the publication date, you might wonder how Einstein was able to pull off this feat
if his foundational paper“Die Feldgleichungen der Gravitation” [13] (in which he published the Einstein
field equations) appeared later, namely on 25. November 1915. The reason is that he used the“wrong”
equations R�� D ��T�� [which he introduced in Ref. [12] on 11. November 1915 (with a correction
added on 18. November), see Eq. (16b) on p. 800 (remember that Einstein’s notation differs from ours)]
to do the Mercury calculation. Because this calculation rests on the vacuum field equations only, and
G�� D 0 , R�� D 0, these results remained unaffected by his later modification of the field equations.
Einstein writes in Ref. [13]:

Die Feldgleichungen für das Vakuum, auf welche ich die Erklärung der Perihelbewegung des
Merkur gegründet habe, bleiben von dieser Modifikation [the addition of the term 1

2
g��T in the

trace-inverted form Eq. (12.11)] unberührt.

‡ Reminder: The Kepler problem in Newtonian mechanics

Let us first revisit the two-body problem in Newtonian mechanics so that we can compare it to the
modifications due to the Schwarzschild geometry later:

1 | System: ^ Test mass m in gravitational field of heavy massM � m:

We use spherical coordinates .r; �; '/ on Euclidean space to exploit the rotational symmetry.

Rotational symmetry! Conservation of angular momentum! w.l.o.g. � D �
2
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! Lagrangian of test mass:

L D
1

2
m
�
Pr2 C r2 P'2

�„ ƒ‚ …
Kinetic energy

C
GmM

r„ ƒ‚ …
Gravitational

energy

(13.45)

2 | Integration:

Integrating the equations of motion of this system is simplified by exploiting its symmetries:

i | ' cyclic (the Lagrangian does not depend on ')!

d
dt
@L

@ P'
D 0 ) l WD m r2 P'„ƒ‚…

DWh

D const (13.46)

! Angular momentum l is conserved

ii | Eq. (13.45) translation-symmetric in time t !

E WD H D
1

2
m
�
Pr2 C r2 P'2

�
�
GmM

r
D const (13.47)

! Energy E is conserved

iii | Use h D r2 P' D const and assume r D r.'/! Pr D dr
d' P'

The assumption r D r.'/ restricts the set of solutions to the ones we are interested in. There
are of course also radial solutions with ' D const and r D r.t/, but these are not important
for our application to describe planets in the Solar System.

Eq. (13.47)! E D
1

2
m

"�
dr
d'

�2 h2
r4
C
h2

r2

#
�
GmM

r
(13.48)

iv | ^ New radial coordinate u WD 1
r
! u0 WD

du
d' D �

1
r2

dr
d'

Eq. (13.48)! E D
1

2
mh2

h�
u0
�2
C u2

i
�GmMu (13.49)

v | Assume u0 ¤ 0 and derive Eq. (13.49) wrt. ':

Solutions with u0 D 0 imply r D const and correspond to circular orbits.

Eq. (13.49)
d
d'

��! u00
C u $ A with A WD

GM

h2
(13.50)

We will find a similar (but modified) equation of this form in the Schwarzschild geometry.

3 | Solution:

Adding homogeneous solutions to the particular solutionA of Eq. (13.50) yields the general solution:

u D
1

r
D A Œ1C e cos.' � '0/� (13.51)

! ↓ Conic sections

For 0 < e < 1 the orbit r D r.'/ describes an ellipse with perihelion at ' D '0 (w.l.o.g. '0 D 0)
and eccentricity e. For e D 0 one obtains the circular solution with radius A�1.

That Eq. (13.51) describes ellipses for 0 < e < 1 with eccentricity e is not obvious because this
equation is the ↓ polar form of the ellipse equation with ' measured wrt. one of the ↓ foci of the
ellipse. (Remember that we put the heavy mass in the origin r D 0 of our coordinate system.)
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The Kepler problem in Schwarzschild spacetime

We can now tackle the same problem (that is, the motion of a test mass in the gravitational field of a much
heavier body) in general relativity by using…

• … the Schwarzschild metric produced by the Sun (Section 13.1.3).

• … that the test mass follows geodesics in this metric (Section 11.2).

4 | System:

The geodesic equation follows from the Lagrangian: [← Eq. (10.126) ff. in Section 10.3.3]

L D
1

2
g�� Px

�
Px� with Schwarzschild metric g�� (13.52)

^ Schwarzschild coordinates .x0; x1; x2; x3/ D .ct; r; �; '/
Eq. (13.25)
������!

L D
1

2

��
1 �

rs

r

�
c2 Pt2 �

�
1 �

rs

r

��1

Pr2 � r2
�
P�2 C P'2 sin2 �

��
(13.53)

with P� WD d�

d� and proper time � .

• We can parametrize the geodesic with proper time becausem ¤ 0 for the test mass.

• We could also plug the Christoffel symbols Eq. (13.10) [together with Eq. (13.20)] into the
geodesic equation Eq. (10.131) and solve it. Here we follow a more pedestrian (and less
technical) approach to work out the differences to the Newtonian case above.

5 | Equation of motion:

i | ^ Euler-Lagrange equation for x2 D � :

d
d�

�
@L

@ P�

�
�
@L

@�
D 0

ı
() R� C

2

r
Pr P� � P'2 sin � cos � D 0 (13.54)

Solved by � D �
2
D const (without imposing restrictions on the other coordinates!)

As before, this restricts our solutions to the plane with � D �
2
; because of the spherical

symmetry of the problem this no actual restriction.

ii | This choice simplifies the Lagrangian:

Eq. (13.53)
�D �

2
���! L1 D

1

2

��
1 �

rs

r

�
c2 Pt2 �

�
1 �

rs

r

��1

Pr2 � r2 P'2
�

(13.55)

The subscript reminds us that this Lagrangian only describes motions in the � D �
2
plane.

iii | ^ Euler-Lagrange equation for x1 D r
ı
�!�

1 �
rs

r

��1

Rr C
1

2

rs

r2
c2 Pt2 �

1

2

�
1 �

rs

r

��2 rs

r2
Pr2 � r P'2 D 0 (13.56)

This complicated EOM is not needed because we exploit enough integrals of motion (→ below).

iv | Cyclic coordinates x0 D ct and x3 D '! Integrals of motion:

@L1

@.c Pt /
D

�
1 �

rs

r

�
c Pt DW k D const and

@L1

@ P'
D r2 P' DW h D const (13.57)
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v | m ¤ 0
Eq. (11.51)
������! k Pxk2 D g�� Px

� Px� D c2 > 0

With this we restrict our derivation to time-like solutions (as needed for amassive test particle).
The fact that k Pxk2 D const was proven in Eq. (11.3) and is a consequence of x�.�/ describing
a geodesic and � being an ← affine parameter [which is true for all solutions of the geodesic
equation Eq. (10.131)]. That the constant equals c2 selects a specific affine parameter, namely
the proper time � .

g�� Px
�
Px� D c2

13.25
HHH)
�D �

2

�
1 �

rs

r

�
c2 Pt2 �

�
1 �

rs

r

��1

Pr2 � r2 P'2 D c2 (13.58)

vi | Eqs. (13.57) and (13.58)
ı
�!

1

r4

�
dr
d'

�2
C
1

r2

�
1 �

rs

r

��
1C

c2r2

h2

�
�
k2

h2
D 0 (13.59)

Here we assumed P' ¤ 0 (thereby excluding radial motions) and used the chain rule,

Pr2

P'2
D

�
dr
d'

�2
; (13.60)

once again imposing a restriction to solutions of the form r D r.'/.

vii | ^ New radial coordinate u WD 1
r

Eq. (13.59)
ı
�!

�
u0
�2
C u2 D

k2 � c2

h2
C
c2rs

h2
uC rsu

3 (13.61)

Here we used again u0 WD
du
d' D �

1
r2

dr
d' .

viii | Assume again u0 ¤ 0 and derive Eq. (13.61) wrt. ':

Solutions with u0 D 0 imply r D const and correspond to circular orbits.

Eq. (13.61)
d
d'

��! u00
C u D A C

3

2
rsu

2„ ƒ‚ …
cf. (13.50)

(13.62)

with A D GM
h2 and rs D 2GM

c2 .

Note that the new term couples with the length scale rs of general relativity and
makes the differential equation non-linear.

Both the Newtonian source A and the relativistic correction / rs on the right-hand side
include Newtons gravitational constantG. However, only rs contains the speed of light c,
which marks this correction as relativistic.

Perihelion precession in general relativity

6 | Approximate solution:

Up to this point our derivation is exact. However, the differential equation Eq. (13.62) is no longer
linear and hard to solve exactly. Thus we apply some (well justified) approximations to solve it:
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i | Note that Eq. (13.62) can be written as

u00
C

�
1 �

3

2

rs

r

�
u D A (13.63)

so that the deviations of the Newtonian case Eq. (13.50) are controlled by rs
r
.

In the Solar System this ratio is very small:�rs
r

�
Mercury

� 7 � 10�8 (13.64)

Here we used the Schwarzschild radius rs D 3 � 103m of the Sun and the perihelion
r � 4:6 � 1010m of Mercury.

! ^ rsu
2 a perturbation for the Newtonian solution (13.51),

u0 WD A Œ1C e cos'� : (13.65)

! First-order perturbation:

u00
C u � AC 3

2
rsA

2
�
1C 2e cos' C e2 cos2 '

�„ ƒ‚ …
u2

0

(13.66)

Here we inserted the unperturbed solution u0 into the perturbation of the EOM. Solving
this equation yields a first-order correction. One could then reinsert this solution into the
equation and repeat the procedure until one converges to a fixed point – and thereby a solution
of the non-linear equation. For our purpose, the first-order correction is already sufficient.

ii | The eccentricity of most planets is very small (= their orbits are almost circular). For example:

eMercury � 0:2! drop O.e2/ terms!

u00
C u � A � 3rsA

2e cos' (13.67)

Here we also dropped the constant 3
2
rsA

2 on the right-hand side because it can be absorbed
into a (small) shift of the constantA on the left-hand side (whichwill not affect our conclusions
below).

iii | Eq. (13.67) is linear! Use unperturbed solution u0 for ansatz:

u � u0 C u1 )
�
u00
0 C u0 � A

�„ ƒ‚ …
13.50
D 0

Cu00
1 C u1 D 3rsA

2e cos' (13.68)

ı
�! Particular solution:

u1 D
3
2
rsA

2e ' sin' (13.69)

! Solution:

u � u0 C u1
13.65
D A

h
1C e cos' C 3

2
rsA'„ƒ‚…

DW�.'/

e sin'
i

(13.70)
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iv | The prefactor of e sin' is very small:

�.'/ D 3
2
rsA' D 3

�
GM

ch

�2
' � 1 (13.71)

Recall that h D r2 P' [← Eq. (13.57)]. Since the motion of planets is non-relativistic, we can
estimate h � .1AU/2 .2�=1 yr/ � 1015m2=s. Plugging in the other constants and the mass
of the Sun yields 3

2
rsA � 10

�7, which, together with ' 2 Œ0; 2�/ � 1, justifies the following
approximation:

Eq. (13.70)
ı
�! u � A f1C e cosŒ' ��.'/�g (13.72a)

D A
n
1C e cos

��
1 � 3

2
rsA

�„ ƒ‚ …
<1

'
�o

(13.72b)

Here we used cos�.'/ � 1 and sin�.'/ � �.'/, together with the trigonometric identity
cosŒ' ��.'/� D cos' cos�.'/C sin' sin�.'/.

! Rosetta orbit (← Sketch above)

To see that this equation describes a Rosetta orbit note that�.'/ plays the role of an angle-
dependent phase shift. Hence the object follows ellipses that slowly rotate themselves with '
about the focus point in which the central mass resides.

7 | Perihelion precession:

To evolve from one perihelion to the next, the argument of the cosine in Eq. (13.72b) must advance
by 2� (because then the radial distance u D 1

r
is again the same). !

�
1 � 3

2
rsA

�
'1 � 2� , '1 D

2�

1 � 3
2
rsA

Taylor
� 2� C 3�rsA„ƒ‚…

DW�'1

(13.73)

�'1: Angle by which the perihelion advances after one revolution.

Here we used again that 3
2
rsA� 1 is very small.

8 | It is convention to express�'1 in terms of the parameters of the (Newtonian) elliptical orbit (13.51):

r D
`

1C e cos'
with ` WD

1

A
(13.74)

with…

• ↓ eccentricity e,

• ↑ semi-latus rectum `,

• ↓ perihelion distance rmin WD
`
1Ce
D a.1 � e/, and

• ↓ semi-major axis a.

Eq. (13.73)!

�'1 D 3�
rs

`
D

3�

1C e

rs

rmin
D

6�GM

c2rmin.1C e/
D

3�rs

a.1 � e2/
(13.75)

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → APPLICATIONS & PREDICTIONS

383
PAGE

• If a (b) is the semi-major (semi-minor) axis of an ellipse, and the focal points are at jcj WD
p
a2 � b2 on the x-axis, the eccentricity is given by e WD c

a
D
p
1 � b2=a2. In our context,

the perihelion distance is then rmin WD a � c D a.1 � e/. The parameter ` in the polar
representation is given by ` WD rmin.1C e/ D a.1� e

2/ D b2

a
and called ↑ semi-latus rectum:

• For Mercury we have rmin � 4:6 � 1010m and e � 0:206, and the Schwarzschild radius
of the Sun is rs � 2952m. Plugging in the numbers in Eq. (13.75) yields �'1 � 0:10300,
which is extremely small and not measurable. However, for each revolution around the Sun
this shift accumulates, so that the effect amplifies over time. This is why the perihelion
precession is typically measured in angular advance per 100 years. The orbital period of
Mercury is T � 0:241 yr which leads toN � 415 revolutions per century. The prediction
of general relativity for the perihelion advance of Mercury is then:

.�'/Theory � 43:0
00 per century (13.76)

Subtracting all known Newtonian effects (mostly due to planetary perturbations, this contri-
bution is� 53200 per century, i.e., much larger than the relativistic effect) from the observed
precession results in an unexplained difference of [216]

.�'/Observation D .42:56˙ 0:94/
00 per century (13.77)

(amore recent analysis can be found in [217]). To comment this result in Einstein’s words [14]:

Die Rechnung liefert für den Planeten Merkur ein Vorschreiten des Perihels um 4300

in hundert Jahren, während die Astronomen 4500 ˙ 500 als unerklärten Rest zwischen
Beobachtungen und Newtonscher Theorie angeben.

Dies bedeutet volle Übereinstimmung.

• Since the general relativistic perihelion precession scales with rs
rmin

and accumulates with
each revolution around the Sun, it is understandable that the effect was first observed for
Mercury, the planet with the smallest perihelion distance (� 0:31AU) and the shortest
orbital period (� 0:24 yr). Nowadays one can measure the (considerably smaller) effect also
for Venus and Earth.

• Compare this to your results of → Problemset 1 where you studied relativistic, non-metric,
linear theories of gravity:

For the scalar theory you found

.�'1/Scalar D �
2�GM

c2rmin.1C e/
; (13.78)

which has both a wrong sign and a wrong prefactor compared to Eq. (13.75).

For the linear tensor theory you found

.�'1/Tensor D
8�GM

c2rmin.1C e/
; (13.79)

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → APPLICATIONS & PREDICTIONS

384
PAGE

which has now the correct sign but still a wrong prefactor compared to Eq. (13.75).

These comparisons explain why we claimed that these theories make wrong predictions.

• Compare Eq. (13.75) with Einstein’s result in Ref. [14] [Eq. (13) on p. 838]. Note that Einstein
did not (and could not) know about the Schwarzschild solution at the time; he therefore
employed approximate techniques to construct an appropriate metric. Since we also made
approximations in the same order, the results coincide.

13.2.2. Deflection of light

We now study the second of Einstein’s classical tests of general relativity: the deflection of light
in the gravitational field of heavy bodies.

1 | Light rays follow null geodesics [← Eq. (11.5)]

We could now plug the Christoffel symbols of the Schwarzschild spacetime Eq. (13.10) [together
with Eq. (13.20)] into the geodesic equation Eq. (10.131) and solve it for light-like/null trajectories
(← Eq. (11.5)).

2 | There is a simpler method, though:

We can exploit our results formassive test particles in Section 13.2.1 to directly obtain the differential
equation that describes null geodesics in the � D �

2
plane. The trick is that the geodesics of these

particles must continuously morph into the null geodesics of light rays in the limit m ! 0 (for
constant momentum).

^ Eqs. (13.46) and (13.57): l D hm D mr2 P'! Orbital angular momentum

Light (photons) has momentum (p D „k) but no mass (m D 0).

! lim
m!0

l D lim
m!0

hm
Š
> 0! lim

m!0
h D1! lim

m!0
A D lim

m!0

GM
h2 D 0

With this limit we find:

Eq. (13.62)
m!0
���! u00

C u D
3

2
rsu

2 with u D
1

r
and u00

D
d2u

d'2
(13.80)

3 | Solution:

We solve Eq. (13.80) perturbatively along the same lines as in Section 13.2.1:

i | ^ Homogeneous/linear part of Eq. (13.80):

u00
0 C u0 D 0 ) u0 D

1

r
D
1

b
sin.' � '0/ (13.81)

Here, b and '0 parametrize the initial state.

We set w.l.o.g. '0 D 0 in the following. (Because of rotation symmetry.)

^ u0 in Cartesian coordinates: (Note that b D r sin' D const for the solution u0.)

Ex.'/ �

�
x

y

�
WD

�
r cos'
r sin'

�
13.81
D

�
b cot'
b

�
(13.82)

! “Straight line” with ⁂ impact parameter b
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The solution describes a horizontal line parallel to the x-axis that goes from x D C1 for
' D 0 to x D �1 for ' D � and passes by the origin (where the Sun would be) at distance b.

¡! The trajectory u0 does not solve the geodesic equation Eq. (13.80) of the Schwarzschild
spacetime; it is therefore not a “straight line” (= autoparallel curve) in this metric. Only in
the special case whereM D 0 ) rs D 0 (i.e., when the Sun is gone) does u0 describe the
trajectory of light rays correctly. This is consistent as in this situation spacetime is flat and
we would expect light to follow straight lines in Cartesian coordinates (which one can choose
globally on a flat spacetime).

ii | Perturbative equation:

We plug in the unperturbed solution u0 for the non-linear perturbation in Eq. (13.80):

u00
C u � 3

rs

2b2
sin2 ' (13.83)

ı
�! Particular solution:

u1 D
rs

2b2

�
1C cos2 '

�
(13.84)

iii | ! First-order solution:

u D
1

r
� u0 C u1 D

1

b
sin' C

rs

2b2

�
1C cos2 '

�
(13.85)

4 | We can again introduce spatial “Cartesian” coordinates: !

y D r sin' 13.85
D b �

rs

2b
r
�
2 cos2 ' C sin2 '

�
13.82
D b �

rs

2b

2x2 C y2p
x2 C y2„ ƒ‚ …

New! Cf. Eq. (13.82)

(13.86)

! No longer “straight lines” in “Cartesian” coordinates!

5 | ^ Asymptotic behavior for x !˙1:

y � b �
rs

b
jxj (13.87)

Do not forget the absolute value when evaluating x2=
p
x2!

This result an be illustrated as follows:
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! Deflection angle: (use the small angle approximation tan˛ � ˛)

ı D 2˛
˛�1
� 2

rs

b
D
4GM

c2b

Sun
�

1:7500

b=Rˇ

(13.88)

HereRˇ denotes the radius of the Sun.

• ¡! We established above that forM D 0 we can use Cartesian coordinates to describe the
trajectory of the light ray on flat Minkowski space. Once we switch on gravity (M ¤ 0),
we can of course still use the coordinates .x; y/, defined via Schwarzschild coordinates
.r; '/ in the usual way. However, we cannot simply assume that they continue to have metric
meaning (i.e., areCartesian)! (Recall that r has no directmetricmeaning in the Schwarzschild
geometry either [← Eq. (13.33)].) Thus the fact that Eq. (13.86) no longer describes a“straight
line” in .x; y/ coordinate space has no physical interpretation a priori.

Luckily, we usually observe celestial bodies from far away (and the light deflected by them
reaches them from far away). Since we know that the Schwarzschild metric induced by
these objects is asymptotically flat, we can study the light long before and after it entered the
gravitational field of these objects. In these regions, spacetime is approximatelyMinkowskian,
and the coordinates .x; y/ are approximately Cartesian (they are spatial components of an
inertial coordinate system which, as discussed in Section 1.1, carries metric information).
Since the angle Eq. (13.88) is defined between two straight lines in this region of space, it has
physical meaning and observable effects (→ below and Section 13.2.3).

• The predicted deflection of light that passes close by the Sun (b � Rˇ ) ı � 1:7500) was
first measured by Arthur Eddington and collaborators during their famous expedition
to West Africa (Príncipe) and Brazil (Sobral) [218], where they exploited the solar eclipse
on 29. May 1919 to observe stars that are visible close to the solar disk only when it is
covered by the moon (↑ Eddington experiment). In their paper, they distinguish three possible
outcomes: (1) light is not deflected by gravity, (2) light is deflected by the Newtonian angle
ı=2 � 0:8700 (→ below), or (3) light is deflected by the angle ı � 1:7500 predicted bygeneral
relativity. They summarize their meticulous analysis as follows (p. 332):

Thus the results of the expeditions to Sobral and Principe can leave little doubt that a
deflection of light takes place in the neighbourhood of the Sun and that it is of the amount
demanded by Einstein’s generalised theory of relativity, as attributable to the Sun’s
gravitational field.

This result mad headlines all over the world, contributed to the wide acceptance ofgeneral
relativity, and catapulted Einstein to fame.

For a review of various experimental results (up to 1960) regarding the deflection of light see
Ref. [219]. The precision of the Eddington experiment was rather low (and its significance
later debated, see Ref. [220] for a review). However, later variations of the experiment that
used radio waves instead of light verified the predictions of general relativity to
very high precision. Ref. [221], for example, reports only a deviation of ımeasured=ıpredicted D

1:007˙ 0:009 from the predictions of general relativity.

• In the aftermath of establishing special relativity, Einstein studied uniformly acceler-
ated frames of reference and already proposed the equivalence principle, equating uniform
acceleration with uniform gravitational fields. This led him 1907 to the prediction that light
must be deflected by gravity. He states in Ref. [96] (p. 212):

Es folgt hieraus, daß die Lichtstrahlen, […], durch das Gravitationsfeld gekrümmt
werden; […]
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Later, in 1911, Einstein elaborated on this idea in his paper“Über den Einfluß der Schwerkraft
auf die Ausbreitung des Lichtes” [103] and predicted the deflection angle

ıNewton D
2GM

c2b
D
ı

2
; (13.89)

which is exactly half the prediction (13.88) of general relativity. He evaluates it for a
light ray that skims the Sun and concludes (p. 908):

Ein an der Sonne vorbeigehender Lichtstrahl erlitte demnach eine Ablenkung vom
Betrage 4 � 10�6 D 0:83 Bogensekunden.

The result (13.89) can be obtained by postulating that Newtonian gravity also affects light
rays because, according to special relativity, photons have a “dynamical mass”m D
E=c2 D h�=c2. Due of the universality of free fall, the trajectory of a particle that shoots by
the Sun (and is on an unbound trajectory) only depends on its initial velocity and position
(and not its mass). It is then reasonable to postulate that the same trajectories are followed
by photons with c as initial velocity. This purely Newtonian calculation (with appropriate
approximations) yields the deflection angle Eq. (13.89).

In the course of completinggeneral relativity in 1915, Einstein realized that the actual
deflection angle predicted by general relativity is twice his original prediction of 1911.
He presented his results in a meeting of the Prussian Academy of Science on 25. March
1915 [222] and published the calculation of the correct deflection angle (13.88) in his famous
1916 paper [21] (which sums up the results accumulated during 1915).

Fun fact: While the deflection angle 1:700 is correctly stated in Ref. [21], the corresponding
equation (74) on page 822 is actually off by the important factor of 2 due to a printing error;
it should read B D 2˛

�
D

�M
2��

with � D 8�K
c2 , where K denotes Newton’s gravitational

constant, B is the deflection angle, and� the impact parameter [223].

The difference between Newtonian and generally relativistic predictions of the deflection
angle can be traced back to the curvature of space that is missing in the former (Newtonian
space is Euclidean) and included in the latter [due to the factor .1 � rs=r/�1 for dr in
the Schwarzschild metric (13.25), recall Eq. (13.33) ff ]. Note that because of Eqs. (11.64)
and (11.65), the prefactor .1� rs=r/ of dt in (13.25) is responsible for reproducing Newtonian
physics; it is then the additional prefactor .1� rs=r/�1 of dr that is responsible for doubling
the deflection angle in the Schwarzschild metric.

13.2.3. Gravitational lensing

A direct consequence of the deflection of light is that large masses can act as“lenses” for distant observers:

6 | Example: Here we consider the most symmetric (and rarest) scenario:

^ Collinear constellation with…

• light source S (e.g., a galaxy),

• heavy mass/lens L (e.g., another galaxy),

• observer O (a telescope on Earth).
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Axial symmetry! Point source appears ring-shaped !⁂ Einstein ring

! Straightforward linearized trigonometry leads to the angular size of the Einstein ring:

�E $

s
4GM

c2
�
dLS

dLdS
⁂ Einstein angle (13.90)

For details: ↑Carroll [4] (§8.6, p. 349 ff.).

• ¡! Because of the 1=b dependence of the deflection angle (13.88), gravitational lenses do not
have a focal point but a focal line (along the optical axis, behind the lens). Thus, strictly
speaking, gravitational lenses are no lenses:

• If source and/or observer are slightly off-axis, the Einstein ring typically breaks into two
copies of the imaged object. If the alignment is almost perfect, the ring can morph into a
“horseshoe Einstein ring”, as shown in Fig. 13.1 (a). When the lens breaks the rotational
symmetry (think of an elongated galaxy), the image can consist of four copies of the same
object, called an ↑ Einstein cross [Fig. 13.1 (b)]. Typical constellations are even less symmetric
and produce a warped mess, as shown in Fig. 13.1 (c).

• That massive bodies can act as“gravitational lenses”was discussed by Einstein in 1936 [224].
Since Einstein considered stars as lenses, he came to the conclusion that the effect was way
too small to be observable:

Therefore, there is no great chance of observing this phenomenon, even if dazzling by the
light of the much nearer starB is disregarded.

However, one year later, Fritz Zwicky suggested that galaxies might be massive enough
to cause observable lensing effects [225]. The first gravitational lens (indeed caused by a
galaxy) was then observed in 1979 [226] (the ↑ Twin Quasar, a single quasar that appears
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twice due to a gravitational lens). The first complete Einstein ring was observed later (in
1997) by the Hubble telescope in the infrared [227].

Nowadays, a plethora of gravitational lenses have been identified (→ Fig. 13.1).

7 | Observations:

Here a few examples of observed gravitational lenses:

Figure 13.1. • Gravitational lenses: (a)A horseshoe Einstein ring photographed by Hubble in 2011:
“The gravity of a luminous red galaxy in the foreground has gravitationally distorted the light from a
much more distant blue galaxy.” [228] (b) An ↑ Einstein cross photographed by Hubble in 2012:
“The foreground galaxy’s gravity acts as a lens that bends and amplifies the light from a quasar behind
it, producing four images of the distant object.” [229] (c) A large gravitational lens photographed
by the James Webb Space Telescope in 2023: “A galaxy cluster in the foreground has magnified
distant galaxies, warping their shapes and creating the bright smears of light spread throughout this
image.” [230]

8 | Applications:

Nowadays, gravitational lensing is used as a tool in astronomy:

For more details: ↑ Ref. [231].

• ↑ Microlensing: Gravitational lensing of background light sources by small, mostly invisible
objects (like exoplanets, neutron stars, black holes…) can be used to detect and study them.
These objects are too light to cause observable distortions of the image; however, lensing
also changes the apparent brightness of the background object – and changes in brightness
over time can be detected even if the lensing itself cannot be resolved.

• ↑ Weak lensing: The lensing that produces Einstein rings and multiple images of the same
object is called ↑ strong lensing (and is quite rare). In most directions of space, there are no
observable strong lensing phenomena. By contrast, weak lensing describes the slight and ubiq-
uitous “warping” of background sources by the foreground mass distribution. This warping
can be used statistically to gain information about the (often invisible) mass distribution in the
foreground [recall the blue ↑ lensing map used to study the ← Bullet cluster in Fig. 12.1 (c)].

• Since strong gravitational lenses can magnify extremely distant objects, it has been hypoth-
esized to use the Sun as a “telescope” [232]. The problem with this proposal is that the
nearest point on the half-infinite focal line of the Sun is about 550AU (astronomical units =
Sun-Earth distances) away – and this is where a space-borne observatory would have to be in
order to use the Sun as a lens. For comparison, Voyager 1 is with only� 164AU the most
distant spacecraft we managed to deploy.
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13.2.4. Gravitational redshift

Based on the conservation of energy, and the possibility to create and annihilate particles from and into
photons (reflecting the equivalence of mass an energy), we already concluded in Section 8.3 that the
wavelength of light that escapes a gravitational potential must increase, i.e., the light must be redshifted.
Here we finally confirm this prediction within the full framework of general relativity:

1 | ^ Stationary emitter E at ExE and receiver R at ExR in a static metric:

Definition of a static metric: ← Eq. (11.136) in Section 11.5.

The following derivation does not rely on the Schwarzschild metric; we will specialize to this
particular metric later.

2 | ^ Light signal emitted by E at tE and received by R at tR:

The light follows a light-like trajectory. ! ds2 D 0
Eq. (11.136)
�������!

ctR � ctE D c

Z tR

tE

dt D
Z

PER

r
�gij

g00
dxidxj„ ƒ‚ …

Independent of t

(13.91)

PER is the spatial path followed by the light signal from ExE to ExR.

3 | ^ Second light signal from E to R:

Metric static! Signal follows the same path PER
Eq. (13.91)
������!

ctR � ctE„ ƒ‚ …
first signal

D ct 0R � ct
0
E„ ƒ‚ …

second signal

, �tR WD t
0
R � tR D t

0
E � tE DW �tE (13.92)

This means that the coordinate time differences between the first and the second signal are the same
for both emitter and receiver!

Assume that at the first signal a laser is switched on, and on the second signal it is switched off.

Let there be n oscillations of the electromagnetic field emitted by E and received by R!

n

�tR

13.92
D

n

�tE
(13.93)

¡! This is the coordinate frequency of the light atR andE, not the measured frequency!

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → APPLICATIONS & PREDICTIONS

391
PAGE

4 | Proper time d� D c�1ds measured at the position of E andR:

��E=R
11.136
D

q
g00.ExE=R/�tE=R (13.94)

Recall that we assumeE andR to be stationary in the chosen coordinates x� D .ct; Ex/.

!With this we find for the measured frequencies of the emitted and received light:

�R

�E
D
n=��R

n=��E

13.94
D

s
g00.ExE /

g00.ExR/
�
n=�tR

n=�tE

13.93
D

s
g00.ExE /

g00.ExR/
(13.95)

5 | So far we only used that the metric is static; now we specialize to the metric of a spherical mass:

^ Schwarzschild metric Eq. (13.25)!

�R

�E
D

s
1 � rs=rE

1 � rs=rR
or 1C ´ WD

�R

�E
D

s
1 � rs=rR

1 � rs=rE

with ⁂ Redshift parameter ´

(13.96)

For rR > rE it follows �R > �E , ´ > 0 ! ⁂ Gravitational redshift

• The gravitational redshift was first experimentally probed and verified by Robert Pound
andGlen Rebka in 1960 with their famous ↑ Pound-Rebka experiment [104, 105]. The
experiment was conducted in a laboratory on Earth and exploited the extremely high spectral
resolution provided by the ↑ Mößbauer effect.

• The gravitational redshift also affects photons emitted by the Sun and received on Earth.
This particular probe of the redshift has been successful as well [233], but is complicated by
the motion of the emitting atoms on the Sun (which causes random Doppler shifts).

6 | Approximations:

• In many situations it is rs

r
� 1! Newtonian approximation:

1C ´
ı
� 1C

rs

2

�
1

rE
�
1

rR

�
(13.97)

To show this, expand Eq. (13.96) in first order of rs=rE and rs=rR.

Let rR D rE C�h with height difference �h� rE !

1C ´
Taylor
� 1C

rs

2
�
�h

r2E
D 1C

GM

r2E„ƒ‚…
Dg

�
�h

c2
D 1C

g�h

c2
(13.98)

Here g is the gravitational acceleration at the emitter (and receiver, since�h� rE ).

! Same result as Eq. (8.14) in Section 8.3,

We therefore confirmed our previous derivation in the Newtonian limit. The fact that light
is affected by gravity (and redshifted if it leaves a gravitational potential) is therefore not a
consequence of the particular structure of the Einstein field equations (we didn’t now about
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them in Section 8.3), but follows from the principles of special relativity, together
with the EEP of general relativity.

This explains howEinstein could predict the gravitational redshift in 1907 (p. 209 of Ref. [96])
without knowing about curved spacetime. However, this approach is only applicable to
homogeneous gravitational fields (which is often justified on Earth). The exact value of the
redshift for light that traverses large distances (and thereby probes the non-homogeneity of
gravitational fields), and/or comes close to the Schwarzschild radius, can only be computed
with the machinery of general relativity as applied above (including the EFEs).

• In astronomical scenarios, the emitters are often excited atoms close to the surface of a star,
so that rE D R� with R� the radius of the star. Telescopes on Earth are the receivers, so
that usually rR !1 is a good approximation. One then finds for the ← redshift parameter ´:

1C ´
13:96
�

�
1 �

rs

R�

�� 1
2

(13.99)

Such redshifts can be measured by spectroscopy since we know the optical transitions of the
elements that serve as emitters (e.g., hydrogen). Spectroscopic analysis of the light emitted
by a star then reveals the redshift by comparison with the wavelength one would measure for
the same elements in a laboratory on Earth.

Beware: The situation is significantly complicated by various other phenomena that can
change the wavelength of light. For example, relative motion leads to the ↓ Doppler effect.
Furthermore, the metric of our universe is not a static Schwarzschild metric but describes an
expanding spacetime. This leads to an additional ↑ cosmological redshift that depends on the
time the light requires to reach us.

13.2.5. Gravitational time dilation

The gravitational time dilation Eq. (13.94) causes the gravitational redshift discussed in Section 13.2.4. We
also covered it in our discussion of the role played by the Schwarzschild time coordinate [← Eq. (13.27)].
So all important mathematical results have already been stated before:

7 | ^ Two stationary clocks A=B located at Exi D .ri ; �i ; 'i / (i D A;B):

The clocks are stationary in Schwarzschild coordinates.

Measure proper time between the same coordinate time slices t and t C�t
Eq. (13.94)
������!

��A

��B

13.94
D

s
g00.ExA/

g00.ExB/

13.25
D

s
1 � rs=rA

1 � rs=rB
(13.100)

rB > rA ) ��B > ��A ! ⁂ Gravitational time dilation

To understand why and how B “sees”A tick slower: → below.

• Like the gravitational redshift, gravitational time dilation is not a probe for the validity of the
Einstein field equations (at least if applied in the weak field limit) but of the EEP . That is, the
effect can be derived from assuming the validity of special relativity together with
the equivalence principle.

This explains how Einstein could predict the gravitational time dilation already in 1907
(p. 208-209 of Ref. [96]).
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• Recall that special relativistic time dilation (← Section 2.2) is symmetric in that two (inertial)
observers both measure the clock of the other tick slower. This symmetric effect is somewhat
artificial because it relies on the comparison of different clocks – which makes apparent the
relativity of simultaneity. To compare two clocks that travel different paths twice, at least one
had to be accelerated (in Minkowski space!), recall our discussion of the twin “paradox” in
Section 2.4. In this scenario, the effect was no longer symmetric and both observers agreed
on their relative time delay. Gravitational time dilation is a generalization of this phenomenon
to curved spacetime. It is also asymmetric in that an Earth-bound observer sees the clock of
an asymptotically distant observer run faster, whereas this observer sees the Earth-bound
clock run slower.

• The slowdown of time becomes extreme if one approaches the Schwarzschild radius. As
already discussed, this is impossible for“normal” objects like planets and stars, which is why
the scenario is irrelevant for physics in the solar system. However, if we could approach the
event horizon of a black hole (we don’t have to reach it, being nearby r & rs is enough), the
effect of gravitational time dilation can become arbitrarily large.

Fun fact: This effect is one of the main plot points of the 2014 movie Interstellar. In
the movie, the protagonists land on“Miller’s planet” – a planet that orbits a supermassive
black hole – where one hour proper time corresponds to seven years proper time at r !1
(e.g., on Earth). If you stay too long (say one day) and fly back to Earth, everyone you knew
will be long dead/.

8 | To understand how stationary observers at different locations (in Schwarzschild coordinates)“see”
clocks tick, consider the following setup:

(This is the sketch from Section 13.1.3, reprinted for your convenience.)

Let A be a stationary clock in the gravitational field at rA and B a clock at spatial infinity (“far
away”): rB ! r1 D 1. Assume A sends the reading of its clock at coordinate times t1A and t2A
with radio signals to B . Because the Schwarzschild metric is static, the spacetime trajectories of
the two signals are congruent, so that the coordinate time differences�t between the two signals
are the same for A and B [see sketch, mathematically this follows from Eq. (13.92)].

But the two clock readings sent by A differ by

��A D

r
1 �

rs

rA
�t D

r
1 �

rs

rA
��1 < ��1 ; (13.101)

which is less than the time��1 elapsed for B between the two messages.
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! B concludes that the clock A runs slower!

9 | Weak-field approximation:

^ Weak-field limit rs

r
� 1: Eq. (13.100)

Eq. (13.97)
������!

��A

��B
� 1 �

rs

2

�
1

rB
�
1

rA

�
(13.102)

! Relative tick rate:

�T

T
�
��A ���B

��B

13:102
�

rs

2

�
1

rB
�
1

rA

�
13:98
�

g�h

c2
(13.103)

with gravitational acceleration g D GM

r2
B

.

Here we used rA D rB C�h with height difference�h� rB as in Eq. (13.98).

If we use g D 9:81m2=s and the height of Mount Everest�h D 8848m, we find�T=T � 10�12

for the relative frequency difference between a clock on sea level and one on the summit. This
variation is small but well within the precision of modern atomic clocks (→ below).

10 | Experiments:

• The space-born ↑ Gravity Probe A experiment (1976) was one of the first to directly measure
the effect of gravitational time dilation [234]. It confirmed the prediction of general
relativity to high precision.

• For the←Hafele-Keating experiment (1971), the gravitational timedilation due to the difference
in height between the airplanes and the ground-based reference clock had to be taken into
account to match observation and theory [47, 48]; recall → Problemset 5.

• Modern ↑ optical atomic clocks are precise enough to directly measure the gravitational time
dilation simply by lifting them a few centimeters [235]:

Figure 13.2. • Gravitational time dilation measured by optical clocks: In 2010, the precision
of optical clocks (a modern variety of atomic clocks) reached levels that allowed for the direct
verification of the gravitational time dilation by elevating one clock by 33 cm (between mea-
surement numbers 13 and 14 in panel B) [235]. The frequency (tick rate) of the clock clearly
increases, as predicted by general relativity.

• The recent development of smaller and more robust optical clocks gave birth to the new
field of ↑ relativistic geodesy, i.e., the mapping of Earth by using optical clocks to measure
heights by proxy of gravitational time dilation (see Ref. [236] and references therein). Note
that gravitational time dilation does not actually measure heights (with respect to whatever)
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but the gravitational potential. This means that the tick rate of your clock also changes when
you are above a geological anomaly with higher/lower average mass density (which is also
valuable information):

Figure 13.3. • Relativistic Geodesy: By now, optical clocks have become small enough so that
one can use them to measure hights [236]; this establishes the field of ↑ relativistic geodesy:
the measurement of differences in the gravitational potential by exploiting generally relativistic
effects and our technological ability to measure times extremely precisely.

• Famously, both special relativistic (← Section 2.2) and gravitational time dilation are relevant
effects that must be taken into account for the ↑ Global Positioning System (GPS) to work.
The system is based on a fleet of satellites equipped with atomic clocks that broadcast their
time (plus additional data) to Earth; these timestamps can be used by Earth-bound receivers
to calculate their position relative to (at least) three satellites. Special relativistic time dilation
makes the clocks of the satellites run slower with respect to stationary clocks on Earth,
whereas gravitational time dilation makes them run faster. For the orbit of GPS satellites,
the gravitational time dilation dominates, so that their clocks run faster than Earth-bound
clocks. This effect (among others) must be taken into account for the system to function; see
Ref. [237] for details.
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13.2.6. Shapiro time delay

Besides the three classical tests of general relativity (perihelion precession, deflection of light /
lensing, gravitational redshift / time dilation), there is is a fourth test proposed 1964 by Irwin Shapiro
[238]: Light that travels through the gravitational field of a heavy mass takes a bit longer than it would
without the mass:

1 | ^ Radar signal bounced between Earth and satellite (or another planet):

For a strong effect, the satellite must be in (approximate) ↑ superior conjunction with Sun, such that
the signal passes close to the Sun and experiences a strong gravitational field.

Question: How much time elapses on Earth during a round trip of the signal?

To simplify calculations, we make the following (justified) approximations:

• The deflection of the signal is small and can be neglected.

• The radar signal is fast so that we can consider all bodies as stationary.

• The time elapsed on Earth is assumed to be approximately Schwarzschild coordinate time.

2 | ^ � D �
2
plane

Eq. (13.25)
������!

ds2 D
�
1 �

rs

r

�
d.ct/2 �

�
1 �

rs

r

��1

dr2 � r2d'2
Light
D 0 (13.104)

Light/radar ray follows (approximately) straight line y D r sin' D b D const
ı
�!

d.ct/2 D
��
1 �

rs

r

��2

C

�
1 �

rs

r

��1 b2

.r2 � b2/

�
dr2 (13.105)

To show this use 0 D db D sin' dr C r cos' d' and tan2 ' D b2=.r2 � b2/.

3 | Take root & expand in linear order of rs
r

ı
�!

d.ct/ �
drq
1 � b2

r2

�
1C

rs

r
�
1

2

rsb
2

r3

�
(13.106)
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4 | Integration along path .x; y D b/ for x 2 Œ�xP ; xE �
ı
�!

c QT D

� cT‚ …„ ƒ
xP C xE„ ƒ‚ …
Euclidean
distance

C rs ln
.rP C xP /.rE C xE /

b2
�
rs

2

�
xP

rP
C
xE

rE

�
„ ƒ‚ …

Additional time delay due to gravity ! Shapiro delay

(13.107)

Since r is not single-valued on the trajectory from Earth to the satellite, one has to add up the
integrals from rE to r D b (segment xE ) and from r D b to rP (segment xP ). To derive the result,

use xi D
q
r2i � b

2 for i D E;P .

2 QT : (Coordinate) time for round trip of signal with Sun (rs > 0)
2T : (Coordinate) time for round trip of signal without Sun (rs D 0)

Ignoring the gravitational time dilation on Earth (due to the gravitational field of the Sun), 2 QT is
approximately the time measured by a clock on Earth for a round trip of the signal.

5 | Let �T WD QT � T and assume rE ; rP � b so that xE � rE and xP � rP !

�T �
rs

c

�
ln
4xPxE

b2
� 1

�
> 0 ⁂ Shapiro time delay (13.108)

! Light travels slower in a gravitational field than in flat Minkowski space!

¡! This slowdown is“seen”by an observer at infinity (it is a slowdown in the Schwarzschild coordinate
velocity); in every local inertial frame the speed of light remains constant (namely c, ← Section 11.1).

• The effect is more pronounced for smaller impact parameters b; this explains why approxi-
mate superior conjunction is needed to measure the effect.

• To be fully correct, one has to translate the coordinate time delay Eq. (13.108) via Eq. (13.94)
into the proper time delay measured by clocks on Earth (using the Schwarzschild metric of
the Sun). We omit this correction here because it is irrelevant for understanding the Shapiro
effect qualitatively.

• To get a feeling for the magnitude of the effect, let us assume we bounce radar signals off
Mercury (xP � 5:8 � 1010m) and receive them on Earth (xE � 14:9 � 1010m). The
smallest impact parameter possible is the radius of the Sun: b � 6:96 � 108m. With the
Schwarzschild radius rs � 3�103m (of the Sun) one finds a one-way delay of�T � 102 µs,
which is of course well within the capabilities of modern clocks.

• The relativistic time delay was proposed by Irwin Shapiro as a fourth test of general
relativity in Ref. [238]. First results were obtained by reflecting radar signals off Venus
and Mercury [239, 240] and confirmed the predictions of general relativity. The
most precise measurement thus far was obtained by monitoring the radio link of the Cassini
spacecraft; these measurements confirmed the predictions of general relativity with
a relative deviation of only� 2 � 10�5 [241].
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↓ Lecture 29 [16.07.24]

13.3. Black holes

Black holes are one of the most surprising and fascinating predictions of general relativity. The
following discussion focuses on the non-rotating, uncharged Schwarzschild black hole (SBH) and merely
scratches the surface of this vast (and active) area of research.

For more details: ↑Carroll [4] (§5.6–§5.8 and §6.1–§6.7) and ↑Misner et al. [3] (§31–§34).

1 | Preface: ^ Euclidean plane R2 with Cartesian coordinates .x; y/

Define New coordinates:

� WD x and � WD y �
1

x
(13.109)

! Coordinate singularity in .�; �/-plane (at x D 0 where � !˙1):

Consider a trajectory that follows the x-axis (red). In .�; �/-coordinates, this trajectory escapes
toC1 and comes back from �1. The y-axis does not show up in the .�; �/ at all (which is why
the crossing of x- and y-axis cannot be represented). So if, by chance, you end up with .�; �/-
coordinates to describe the red trajectory along the x-axis, you might expect some strange physical
behavior at � D x D 0. But the same trajectory in “good” Cartesian coordinates .x; y/ reveals
that nothing is happening at all; the divergence is an artifact of the chosen coordinates – it does not
correlate to any physical phenomenon of the trajectory.

! Lesson:

“Bad coordinates” can produce weird behavior that is not rooted in physics!

We show now that the singularity of the Schwarzschild metric at the event horizon r D rs is of this
type, i.e., Schwarzschild coordinates are “bad coordinates”:

2 | Remember: Schwarzschild metric (13.25) in Schwarzschild coordinates .ct; r; �; '/:

ds2 D
�
1 �

rs

r

�
d.ct/2 �

�
1 �

rs

r

��1

dr2 � r2d�2 (13.110)

with singularities at r D 0 and r D rs :
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• In this .r; t/-diagram, the Schwarzschild metric is encoded by the texture of local null cones;
← Sections 11.1 and 13.1.3, in particular Eq. (13.30). In Schwarzschild coordinates .r; t/,
these close up at r D rs and open again in the interior (r < rs), but are rotated there: time
flows to the left and ends at the r D 0 singularity.

• Trajectories of light rays (null geodesics) are drawn both outside and inside the black hole
(→ Problemset 7). Light falling towards the black hole seems to shoot off to infinity and
apparently never reaches the horizon at r D rs . It is unclear if and how these connect to the
interior geodesics that terminate at the singularity at r D 0. It should be obvious that this
“problem” is very similar to the strange behavior of the x-axis in our ← Euclidean example.

• In the exterior, there are both light rays that escape to infinity and rays that approach the
horizon (and presumably cross it somehow). By contrast, in the interior all future-directed
null geodesics terminate at the singularity. This demonstrates that when you enter a SBH,
nothing can prevent you from hitting the singularity: Once you traverse the horizon, you
enter a region of spacetime where time inevitably ends.

Claim: Singularity at r D rs is due to coordinates (the singularity at r D 0 is not!)

• On→ Problemset 6 you showed that a free falling observer reaches (and crosses) the event
horizon at r D rs in finite proper time. This already suggests that the divergence of themetric
components at r D rs (and the time-like and light-like geodesics) do not herald a break-down
of the metric itself (and thereby local physics), but instead indicates how an infinitely distant
observer sees the probe fall towards the black hole (which are two very different things).

• To support this claim, we must provide a coordinate transformation [in the spirit of the
inverse of Eq. (13.109)] such that the Schwarzschild metric becomes regular on the horizon
at r D rs :
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3 | ^ Kruskal-Szekeres coordinates:

Define the new coordinates .T;R/ via…

T WD

8<:
q

r
rs
� 1 e

r
2rs sinh

�
ct
2rs

�
for r � rsq

1 � r
rs
e

r
2rs cosh

�
ct
2rs

�
for r < rs

(13.111a)

R WD

8<:
q

r
rs
� 1 e

r
2rs cosh

�
ct
2rs

�
for r � rsq

1 � r
rs
e

r
2rs sinh

�
ct
2rs

�
for r < rs

(13.111b)

For a motivation of these transformations: → Problemset 7

The angular coordinates � and ' remain unmodified.
ı
�! Schwarzschild metric in Kruskal-Szekeres coordinates: (Details: → Problemset 7)

ds2 D .2rs/2
e�r=rs

r=rs

�
dT 2 � dR2

�
� r2d�2 (13.112)

where r D r.T;R/ is implicitly determined via

T 2 �R2
13.111
D

�
1 � r

rs

�
e

r
rs : (13.113)

Use cosh2 x � sinh2 x D 1 to show this.

¡! Neither the metric coefficients Eq. (13.112) nor the coordinate functions Eq. (13.111) have
singularities at r D rs . [Only at the central singularity r D 0 themetric Eq. (13.112) is still singular.]
This shows that the singularity at r D rs is a coordinate singularity specific to Schwarzschild
coordinates:

! No singular behavior on the event horizon (r D rs) !

4 | Discussion:

•
ı
�! All ← null cones open with˙45ı.

! All light rays are straight lines with slope˙1, like in a Minkowski diagram!

Note that null cones in the RT -diagram are determined by d� D 0 and ds D 0, which
implies dT D ˙dR

•
ı
�!Metric Eq. (13.112) is defined for

jT j <
p
1CR2 with R 2 Œ�1;1� ; (13.114)

bounded by singularities at T D ˙
p
1CR2.

It is easy to show that

T 2 �R2
13.113
D

�
1 � r

rs

�
e

r
rs � 1 (13.115)

since the right side has the global maximum 1 at r D 0 [where Eq. (13.112) is singular].
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• Event horizon(s):

r D rs
13.113
HHH) T D ˙R (13.116)

– ¡! The event horizon of the Schwarzschild black hole corresponds to the segmentT D R
for R > 0. The other three segments do not belong to the original Schwarzschild
solution (→ below).

– Since all null cones have slope˙1, this shows that the event horizon is a null hypersurface:
it is tangential to local null cones and acts as a “causal membrane” through which time-
and light-like trajectories can traverse only in one direction.

– If you plug r D rs into the coordinate transformation Eq. (13.111), you find .T;R/ D
.0; 0/ for all Schwarzschild times �1 < t < C1. This means that the complete
“horizon”at r D rs in an rt -diagram is identified as a single event in Kruskal coordinates.

To understand what is going on, you should start with Kruskal coordinates (which are
the “good” coordinates that faithfully represent the Schwarzschild spacetime). The
transition to Schwarzschild coordinates then“stretches” the single event at .T;R/ D
.0; 0/ in time direction to become the vertical line at r D rs in a Schwarzschild diagram.
As a side effect, this transformation “pushes” all events on the event horizon .T D
R;R > 0/ to t D C1 in the Schwarzschild diagram. Since trajectories that enter
the black hole cross the horizon via such events, these trajectories now vanish to and
emerge from t D C1 in the rt -diagram. As no trajectory that originates at t > �1
can cross the horizon at .T;R/ D .0; 0/, no trajectory in the rt -diagram can cross the
vertical line at r D rs .

This is similar to the coordinate singularity introduced by Eq. (13.109) in the Euclidean
plane which maps the point .x; y/ D .0; 0/ (actually the complete y-axis) to infinity, so
that all trajectories that cross this point do so “outside” of the � � �-coordinate plane.

• Let us check in which regions of theRT -plane the coordinate transformation Eq. (13.111)
maps the exterior (r > rs) and interior (r < rs) of the Schwarzschild solution, respectively:

Exterior:
�

rs < r < C1

�1 < t < C1

�
13.111
���!

�
0 < R< C1

�R < T < R

�
(13.117a)

Interior:
�

0 < r < rs

�1 < t < C1

�
13.111
���!

(
�1 < R< C1

jRj < T <
p
1CR2

)
(13.117b)

!Only half of theRT -plane (→ Region I and II) corresponds to the Schwarzschild solution!

• Draw lines of constant Schwarzschild coordinates r and t into theRT -plane:

r D const
13:113
HHHH) T D ˙

p
constCR2 ! Hyperbolas (13.118a)

t D const
13:111
HHHH) T D const �R ! Straight lines

(through origin)
(13.118b)

In particular:

T D ˙
p
1CR2 , r D 0„ƒ‚…

Singularity

and T D ˙R , r D rs„ƒ‚…
Horizon

(13.119a)

T D CR , t D C1 and T D �R , t D �1 (13.119b)
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All of this is straightforward to see if one uses Eq. (13.111) to show that

T

R
D

8<:tanh
�
ct
2rs

�
for r � rs

coth
�
ct
2rs

�
for r < rs

(13.120)

and remembers that lim
x!˙1

tanh.x/ D ˙1 and lim
x!˙1

coth.x/ D ˙1.

• Since themetric is regular everywhere – except for the singularity at T D ˙
p
1CR2 (which

corresponds to the physical singularity at r D 0) – both time- and light-like trajectories can
now cross continuously the event horizon atR D T (R > 0). The sketch below demonstrates
that trajectories that do so necessarily terminate at the singularity, whereas trajectories that
avoid the horizon can escape this fate.

!⁂ Kruskal diagram:

Notes:

• For now, focus only on the (uncolored) half plane lower-bounded by the diagonal T D �R
(Region I and II). These two regions correspond to the exterior and interior solution of
the Schwarzschild metric that are separated by the coordinate singularity at r D rs in
Schwarzschild coordinates. To two additional colored Regions III and IV are briefly discussed
→ below. [Note that the coordinate transformation Eq. (13.111) does not map events that can
be labeled by the original Schwarzschild coordinates into these regions.]

• Do not forget that the radial coordinates � and ' still exist! This means that every point
in the Kruskal diagram corresponds to a“sphere of events”. For example, the lineR D T
(R > 0) describes the evolution of the spherical event horizon of the SBH through time. This
means that a light signal emitted on the horizon with geodesics along the diagonal R D T
corresponds to a photon that is emitted radially outward on some point of the black hole
horizon (determined by the angles � and ' that are not shown). The Kruskal diagram shows
that such a photon remains trapped on the horizon forever. Figuratively speaking: On the
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event horizon space“flows” towards the singularity “with the speed of light”, such that only
radially “fleeing” light can“stand still” and evade being sucked into the singularity.

• Here is how to “see” the transformation from the Kruskal diagram to the Schwarzschild
diagram above:

First, delete the colored Regions III and IV. Next, fold up the T D �R diagonal about the
origin .T;R/ D .0; 0/, merging the two semi-infinite segments forR < 0 andR > 0 (these
segments correspond to t D �1). This transformation straightens the hyperbolic r D const
lines (all vertical, if you rotate the whole diagram appropriately by 45ı). But the time lines
t D const are still star-like, with all lines emanating from the origin .R; T / D .0; 0/. Thus,
in the last step, “stretch” this point to an infinite line along the T D R axis, thereby pushing
the semi-infinite segments to t D ˙1. This transformation makes the t D const lines
parallel and perpendicular to the r D const lines. The result of these transformations is
the Schwarzschild diagram ← above. Due to the“stretching”, all trajectories that cross the
event horizon are pushed to t D C1 and seem to leave the rt -plane. This is the coordinate
singularity in Schwarzschild coordinates.

5 | Maximally extended Schwarzschild solution:

Observation: Metric Eq. (13.112) solves EFEs also for T < �R.

So by introducing Kruskal coordinates, we not only got rid of the singular behavior at the event
horizon; we also found two new“patches” of spacetime that solve the EFEs and can be“glued” to
the Schwarzschild spacetime:

! Spacetime extended by Region III and IV:

• Region III: ↑ White hole (= time-reversed black hole)

In contrast to black holes, signals can only leave the white hole via its event horizon, but no
signal can ever enter. As the Kruskal diagram shows, mathematically, white holes are the
time-reversed solutions of black holes.

• Region IV:“Mirror universe”
(= another asymptotically flat region; cannot be reached from Region I)

This region is another asymptotically flat region of spacetime that looks like the exterior
Region I of the SBH that we occupy. Note that it is impossible to exchange signals between
Region I and Region IV, neither via the black hole nor via the white hole (though an observer
within the SBH could receive signals from both universes). The two regions are connected by
a ↑ wormhole, a so called ↑ Einstein-Rosen bridge [242] that, unfortunately, closes too quickly
to be traversable by time-like observers; ↑Carroll [4] (§5.7, pp.227–228).

[The Einstein-Rosen bridge is nothing magical: Consider the Kruskal diagram above and
remember that it continues forR!˙1 and T !˙1. Now“zoom out”; the spacetime
region depicted above becomes a small “throat” that forms a bridge between the large,
asymptotically flat Region I on the right and Region IV on the left. This is the Einstein-Rosen
bridge. That it cannot be traversed follows directly from the Kruskal diagram. This non-
traversability can be traced back to the short lifetime of the wormhole: it opens at T D �1
and closes shortly after at T D C1.]

Notes:

• ¡! Neither Region III nor IV exist for solutions of the EFEs that describe black holes that
form dynamically (as it happens in our universe via gravitational collapse). By contrast, the
Schwarzschild solution describes a highly artificial scenario: a black hole in an empty universe
that exists forever (for an asymptotic observer). There is currently no evidence for white
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holes or the mirror universe; there are also no physical processes known that could lead to
the formation of a white hole.

• It is impossible to represent all four regions I-IV at the same time in Schwarzschild coordinates.
However, since Regions III and IV are mirrored versions of Regions II and I, one can map
them to another set of Schwarzschild coordinates that describe these new regions of spacetime
(again with a coordinate singularity).

• The difference between our original Schwarzschild spacetime (Region I and II) and the new
one (Regions I-IV) is that the latter is ↑ geodesically complete, whereas the former is not:

A spacetime is geodesically complete if you can shoot off geodesics from any point in any
direction (of spacetime), and these geodesics either go on forever (i.e., they are defined
for all ← affine parameters � 2 R), or terminate for finite � at a singularity of the metric.
Inspection of the Kruskal diagram shows that the union of Regions I-IV indeed has this
property. However, removing a single one of the four regions immediately creates a (non-
singular) boundary that can be reached by some geodesics forfinite �. Thismeans in particular
that the original Schwarzschild solution is not geodesically complete (due of the non-singular
boundary T D �R). This explains why the Kruskal solution (comprised of Regions I-IV) is
called maximally extended Schwarzschild solution.

Youmay nowwonder whether this means that we can somehow reach“the end of spacetime”
if Regions III and IV were absent (which they most likely are in reality). The answer is no,
as the Kruskal diagram shows: To reach the boundary T D �R, you would have to follow
a time-like trajectory (not necessarily a geodesic) into the past; no future-directed time-like
trajectory can hit this boundary! This also answers how signals emitted from the white hole
would reveal themselves: For an asymptotic observer, these are signals that appeared on
the event horizon in the distant past (t D �1) and slowly make their way up towards
asymptotic Minkowski space. This is exactly the time-reversed scenario of how it looks like
for an asymptotic observer when a light source falls into the black hole (where it “freezes”
for t !C1).

6 | Penrose diagrams:

Goal: Represent causal structure of complete spacetime in finite domain.

Idea: Coordinate transformations with arctangent can be used to“make infinities finite”:

arctan W R!
�
�
�
2
;C�

2

�
with lim

x!˙1
arctan.x/ D ˙�

2
(13.121)

Since coordinates obtained in such a way are defined on the compact interval
�
�
�
2
; �
2

�
, such

transformations yield ↑ compactifications of spacetimes (they include“infinities” as points).

! Solution (sketch):

Time/Space‚…„ƒ
.T;R/„ƒ‚…
Kruskal

Rotate
����!
by 45ı

Null/Null‚…„ƒ
.U; V /

Compactify
�������!
using arctan

Null/Null‚…„ƒ
. QU ; QV /

Rotate back
������!
by �45ı

Time/Space‚…„ƒ
. QT ; QR/„ƒ‚…
Penrose

(13.122)

The additional rotations to and from null coordinates are needed to ensure that all null cones
keep their constant 90ı opening angle after the transformation (a convenient feature of Kruskal
coordinates that we want to inherit).
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�
�!⁂ Penrose diagram: (in Penrose coordinates QT and QR)

Notes:

• ⁂ Conformal infinity: (= boundary of conformally compactified spacetime)

– i˙ � future/past time-like infinity
This is where time-like trajectories come from (t D �1) and go to (t D C1).

– i0 � spatial infinity
This is where space-like trajectories go to for r !1.

– J˙ � future/past null infinity
All null geodesics headed into the asymptotically flat region of spacetime end at JC.
Conversely, all null geodesics that come from this region start at J�.

¡! These symbols label the type of a boundary (point) of a conformally compactified spacetime
region. The fact that both Region I and IV have the same labels on their boundary does not
mean that these are the same points (= are topologically identified).

• ¡! The points i˙ of future/past time-like infinity are distinct from the adjacent singularities.
This means that future-directed, time-like trajectories in Region I can hit iC without hitting
the singularity.

• The transformation from Kruskal to Penrose coordinates produces a metric that is related to
theMinkowski metric by a conformal transformation (at least inRT -slices). Penrose diagrams
are therefore also called conformal diagrams. You can think of conformal transformations as a
local, angle-preserving“stretching and squeezing” of the metric: Qg��.x/ D �.x/g��.x/.
This explains why the null cone texture look like that of Minkowski space. But of course
the maximally extended Schwarzschild metric is not the Minkowski metric, it only has a
comparable causality structure (but different geodesics). The light cone field does not convey
information of how fast clocks tick locally, since this information is hidden in the scaling�.x/
of the metric (and is lost if one considers conformal equivalence classes; ← Section 11.1).

• The use of conformal compactifications to describe asymptotically flat solutions of the
Einstein field equations was spearheaded independently by Penrose [243] andCarter
[244]. Diagrams of this type are therefore also called Penrose-Carter diagrams.
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7 | Horizon → Interior → Singularity:

Now that we smoothly connected the exterior to the interior of a SBH, let us comment on a few
important points:

• Question: What happens the moment one crosses the horizon?

Answer: The EEP asserts that spacetime is locally flat (= Minkowskian). We just showed that
the metric is regular on the horizon, so the EEP is valid there, too. This means that if you are
in a spaceship (and the black hole is large enough, so that tidal forces can be neglected on the
horizon), there is no experiment that you can perform inside your ship to detect when you
cross the horizon. In particular, you continue to see the universe outside of the black hole
(→ Simulation below).

Regarding the (non-)observability of event horizons: ↑ Ref. [245].

• Question: What is the spacetime inside the black hole like?

Answer: The spacetime inside a SBH is an infinitely long 3D cylinder R� S2 that gets longer
and thinner with time. After a finite time, it shrinks & stretches to a line; this is the singularity.
This means in particular that you should not think of the singularity at r D 0 as a point
in space; it is rather a one-dimensional, space-like manifold of events in time (these events
demarcate quite literally the end of time). Since you cannot stop time from passing, you
cannot avoid the singularity from happening.

To understand the interior geometry, start from the Schwarzschildmetric Eq. (13.25) and note
that for r < rs the coordinate r 2 .0; rs/ is time-like, whereas the coordinate ct 2 .�1;1/
is space-like. To make the metric look more natural, let us rename r 7! ct and ct 7! �; the
interior of a SBH is then described by the metric

ds2 D
�
1 �

rs

ct

�
d�2 �

�
1 �

rs

ct

��1

d.ct/2 � .ct/2d�2 ; (13.123)

where time flows from ct D rs to ct D 0 (where the singularity happens). Note that this is
not a static (or stationary) metric! Spacetime itself shrinks to the singularity, which explains
why neither light nor material objects can avoid it.

A fixed time-slice t D const is then described by the spatial metric

dl2 D
� rs
ct
� 1

�
d�2 C .ct/2d�2 ; (13.124)

with 0 < ct < rs and �1 < � < C1. This metric describes an infinitely long 3D cylinder
R � S2 of radius ct . With time running from rs to 0, the radius of the cylinder shrinks to
zero while being stretched along the � direction (which is experienced as ↑ Spaghettification
by poor observers in this spacetime). For ct ! 0, time ends and space becomes an infinite
one-dimensional line; this is the singularity.

• Question: Does the physical singularity really exist?

Almost certainly not (this is a majority view among physicists). The singularity is a mathe-
matical artifact that indicates a breakdown of general relativity. It is expected that
before one reaches the singularity (when the length scale associated to the curvature is of
the order of the ↓ Planck length lp � 1:6 � 10�35m), quantum effects become important
and classical general relativity no longer describes spacetime correctly (→ quantum
gravity in Part III).
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8 | Characteristics of a Schwarzschild black hole:

The following concepts are important to characterize the vicinity of a Schwarzschild black hole:

• (Event) Horizon at rs D 2MG
c2 :

The event horizon at rs is a “null hypersurface” in spacetime (= its normal 4-vector is null
everywhere, ← above) and therefore serves as a “causal membrane”: time-like (and null)
signals can only traverse the hypersurface in one direction. But this is not what makes it
special (light cones have this property too, ← Section 11.1). What makes the event horizon
special is that all time-like (and null) trajectories that cross it eventually terminate at the
singularity. Thus the horizon separates the static exterior Schwarzschild solution from the
non-stationary interior solution that ends at the singularity.

There are some deep conceptual (and operational) subtleties concerning event horizons that
we sweep under the rug: ↑ Ref. [245].

• Photon sphere at rph D 3
2
rs :

This is the sphere, traced out by circular null geodesics, on which light can orbit the black
hole. When you hover at rph over a SBH, you can see the back of your head! These photon
orbits are unstable: If light hits the photon sphere inclining inwards, it necessarily crosses
the event horizon later. Conversely, light traversing the photon sphere outwards escapes and
is projected (and magnified) onto the → shadow (in some direction). Below the photon radius
rph, there are no circular geodesics (neither time-like nor null, → below), so that everything
that dips beneath rph and falls freely (!) eventually ends up in the black hole. (With a powerful
enough rocket you can still escape from this region, though.)

The radius of the photon sphere can be easily derived from Eq. (13.80) which describes null
geodesics in the � D �

2
plane. Setting u D r�1

ph D const to find possible circular photon
orbits yields the unique photon radius

r�1
ph D

3

2
rs r

�2
ph ) rph D

3

2
rs : (13.125)

• Shadow with impact parameter rsh D
p
27
2
rs � 2:6 rs :

The shadow is a disk of apparent radius rsh that appears black if the SBH is isotropically
illuminated from all sides. It is an image of both the photon sphere and the event horizon.
The center of the shadow contains the near side of the event horizon, followed by ring of
the backside, followed by another (thinner) ring of the near side again,… add infinitum. The
shadow is therefore not only significantly larger than the event horizon, it contains infinitely
many copies of images of the complete event horizon.

Note that the shadow does not need to be black: If you throw a light source towards the SBH,
some of its light can escape (increasingly redshifted) – even from within the photon sphere –
until the source reaches the event horizon. This light will show up in the shadow, where you
can track (multiple copies) of the light source fading away (asymptotically being “frozen”
due to gravitational time dilation). The shadow typically appears black because there is not
much stuff below the → ISCO that can serve as a light source emitting into the shadow.

To calculate the asymptotic shadow radius, we must do a bit of hand waving: rsh is the
asymptotic impact parameter of parallel light rays that separate scattered rays from absorbed
rays. It is evident that such a critical parameter must exist, because rays that pass the black
hole far away are not absorbed, whereas rays that hit the event horizon head on clearly are.
The rays that separate these two cases must be the ones that “touch” the photon sphere
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tangentially (because rays that intersect the photon sphere inevitably hit the horizon, and
rays that do not touch the photon sphere at all cannot be absorbed and must be scattered).

To solve the problem, we start from Eq. (13.61) (valid for massive particles) and take again
the limitm! 0. As argued in Section 13.2.2, this implies h!1; but we must be careful:
The quotient

k

h

13.57
D

�
1 �

rs

r

� c Pt

r2 P'
D

�
1 �

rs

r

� c

r2

�
d'
dt

��1

DW ˇ < 1 (13.126)

remains clearly finite, even for light-like geodesics. The analog of Eq. (13.61) for such
geodesics reads then �

du
d'

�2
D ˇ2 C rsu

3
� u2 (13.127)

for some constant of motion ˇ. A geodesic that touches the photon sphere at r D rph D 3
2
rs

must therefore satisfy

0
Š
D

�
du
d'

�2
D ˇ2 C

rs

r3ph
�
1

r2ph
) ˇ $

2
p
27
r�1
s (13.128)

for some angle ' (remember that u D 1=r and a trajectory is tangential to a circle if its radius
does not change in first order of the angle). Now we must only relate the constant of motion
ˇ to the impact parameter of the ray. Asymptotically (r !1 ) u! 0), the ray satisfies

Eq. (13.127)
r!1
����!

ˇ̌̌̌
du
d'

ˇ̌̌̌
D ˇ : (13.129)

In the same limit, the angle is given by ' � sin' D rsh
r
D rshu, where rsh is the impact

parameter of the incident ray; this relation implies

du
d'
D

1

rsh
: (13.130)

Comparing Eqs. (13.129) and (13.130) yields the apparent shadow radius rsh D
p
27=2 rs .

• Innermost stable circular orbit (ISCO) at risco D 3rs :

In Newtonian mechanics, the Kepler problem allows for stable orbits at any distance from the
central mass. (If you poke a mass on such an orbit slightly, its orbit might get deformed to an
ellipse, but it remains bounded.) Not so in the Schwarzschild metric: Solving the geodesic
equation for massive particles yields only stable circular orbits down to a minimal radius,
the so called ⁂ innermost stable circular orbit (ISCO). Matter that orbits below this radius is
eventually absorbed by the black hole or knocked out of this region to higher orbits (or to
infinity). This means that an accretion disk of hot matter can only be stable down to the ISCO,
so that risco marks the inner edge of the accretion disk (if there is one).

To calculate the ISCO,we start fromEq. (13.62) and plug in a constant radius r D R D const:

1

R
D
GM

h2
C
3

2
rs
1

R2
: (13.131)

This yields for circular geodesics the possible radii

R $
h2 ˙

p
h4 � 6GMrsh2

2GM
: (13.132)
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Remember [Eq. (13.57)] that h is the angular momentum (per unit mass) of the orbiting test
particle. In the limit of large angular momenta (h!1), we find two possible orbits for each
angular momentum:

R
Taylor
�

h2 ˙ h2.1 � 3GMrs=h
2/

2GM
�

8<: h2

GM
.C/

3
2
rs .�/

: (13.133)

The first solutionR D h2

GM
is the Kepler orbit of Newtonian mechanics (which we know is

stable). The second solutions approach the photon sphere and do not have a counterpart in
Newtonian mechanics; one can show that these circular orbits are unstable [↑Carroll [4]
(§5.4, pp. 205–212)]. The smallest stable (pseudo-Newtonian) orbit follows then from
Eq. (13.132) when the two solutions coincide, i.e.,

h4isco � 6GMrsh
2
isco

Š
D 0 ) h2isco D 3r

2
s c
2 ; (13.134)

for which Eq. (13.132) yields the ISCO radiusR D risco D 3rs .

Note that these values are specific to non-rotating Schwarzschild black holes and are generally
different (and more complicated) for more realistic (= rotating) ↑ Kerr black holes.

! Graphical summary:
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! Front view: (from slightly above the accretion disk [eye in sketch above])

The raytraced renderings are taken from https://rantonels.github.io/starless.
The renderer is available on Github: https://github.com/rantonels/starless.

• This demonstrates that no matter from which perspective you view a black hole (which is
illuminated by a thin and luminous accretion disk), you always see the entire disk and the
entire event horizon (actually multiple times).

• A nice visualization of the appearance of a black hole to a distant observer can be found on
Derek Muller’s YouTube channel Veritasium:

→ YouTube Video: How to Understand What Black Holes Look Like

• The popular renderings (like the one above, or the one in the movie Interstellar,
→ below) use thin and luminous accretion disks as light sources because they help to visualize
the warped spacetime structure in the vicinity of a black hole.

By contrast, real black holes (like Messier M87* depicted by the EHT collaboration, → below)
are more likely surrounded by thick and dim accretion regions instead [246]. The image of
such a black hole isn’t as pretty and “clean”, but still characterized by a central shadow
bounded by a pronounced bright ring from light that grazes the photon sphere [247]. The
EHT collaboration explains in Ref. [246]:

For accreting black holes embedded in a geometrically thick, optically thin emission region,
[…], the combination of an event horizon and light bending leads to the appearance of a
dark“shadow” together with a bright emission ring that should be detectable through
very long baseline interferometery […] experiments.

• For more details on the depiction of black holes under various lighting conditions (and the
roles played by the photon orbit rph and the shadow rsh), see Ref. [248].

9 | History & Theory milestones:

• For a long time, the role played by the singularity at rs of the Schwarzschild metric was
unclear. In 1939, Einstein eventually tried to show that objects that are smaller than their
Schwarzschild radius (= black holes) cannot form dynamically [249]. He concluded:

The essential result of this investigation is a clear understanding as towhy the“Schwarzschild
singularities” do not exist in physical reality. […] The “Schwarzschild singularity”
does not appear for the reason that matter cannot be concentrated arbitrarily. And this is
due to the fact that otherwise the constituting particles would reach the velocity of light.
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So Einstein neither liked nor believed in the existence of black holes. At the same time,
Oppenheimer and Snyder (tacitly ignoring Einstein’s results) showed that – and by
which mechanism – a collapse into a black hole is possible [250]; the limiting mass above
which this collapse occurs is known as the ↑Tolman-Oppenheimer-Volkoff limit [251,252]. See
Ref. [253] for a historical account on how black holes evolved from a mathematical curiosity
into a physical possibility.

• That the event horizon at the Schwarzschild radius is only a coordinate singularity that acts
as a “causal membrane” was finally worked out by Finkelstein in 1958 [254]. Shortly
after,Kruskal found his convenient coordinate system that allowed him to construct the
maximal extension of the Schwarzschild solution [255].

• In the early seventies, work by several physicists established what is today known as the
↑ No-hair theorem [256–258] (due to the required mathematical assumptions this is more a
conjecture than a theorem): All possible black hole solutions of the EFEs are characterized by
only three numbers: their mass, angular momentum, and charge. (These are exactly the three
numbers that parametrize the ↑ Kerr-Newman metric, i.e., the metric of a rotating, charged
mass.) In contrast to “normal” bodies like planets or stars – which can be distinguished by
additional features (like their surface structure [these are the “hair”]) – two black holes with
the same mass, angular momentum, and charge, look exactly the same.

• In contrast to the (potential) coordinate singularities at the event horizon, the singularities
in the center of black hole solutions are true (physical) singularities (were the curvature
diverges). These singularities are “outside” of space and time and not within the predictive
domain of general relativity (→ quantum gravity). For a long time, it was believed
that these “holes” in general relativity are mere artifacts of unnaturally symmetric
solutions. It was shown by Penrose and Hawking in the late sixties that this is not
so [259,260]: Spacetime singularities are generic features of many solutions of the EFEs –
They are part of general relativity, whether we like it or not.

• In 1975,Hawking performed quantum field theory calculations on the static background
metric of a black hole (this is not quantum gravity!) and showed that it would emit thermal
black body radiation [261]. This ↑ Hawking radiation does not escape from withing the event
horizon but still causes the black hole to loose mass. If the mass lost by this process is not
compensated by absorbed matter, the black hole slowly “evaporates” (which leads, inter alia,
to the famous ↑ Black hole information paradox). Both Hawking radiation and the evaporation
of black holes are so far hypotheses without experimental evidence.

10 | Observations:

• The first identified black hole was Cygnus X-1, which is accompanied by a star in close
proximity (this binary system belongs to the Milky Way). By observing the Doppler shift of
the spectrum of its companion, one can extract information about the star’s orbit, and from
this derive the presence (and mass) of the black hole [262,263]. Today, the mass of Cygnus
X-1 is estimated as 21Mˇ (solar masses).

• Modern astronomy provides a variety of (indirect) methods that have been successfully
employed for the identification and characterization of black holes. For example, the super-
massive black hole Sagittarius A* in the center of our Milky Way has been characterized
very precisely by observing the motion of stars and gas in its vicinity (↑ R. Genzel’s No-
bel Lecture [264] and references therein). Another example is the detection of an isolated
stellar-mass black hole in 2022 by means of ← microlensing [265].

• The first detection GW150914 of a gravitational wave in 2016 by the LIGO and VIRGO
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collaboration was well described by the merger of two black holes with masses� 35Mˇ and
� 30Mˇ, respectively (Fig. 13.8 and → Section 13.4); the product of the merger is predicted
to be a Kerr black hole with mass 62Mˇ. The detection of gravitational waves therefore
serves as independent (and indirect) evidence for the existence of black holes. These events
also allow for the test of general relativity in the very strong-field regime.

• The first direct depiction of the accretion disk and the shadow of a black hole was published
2019 by the↑Event HorizonTelescope (EHT) collaboration, a global network of radio telescopes.
The first black hole studied in this way was the supermassive black hole Messier 87* (�
6 � 109Mˇ) in the center of the galaxy Messier 87. In 2022, the collaboration published a
similar analysis for Sagittarius A* (� 4� 106Mˇ), the supermassive black hole in the center
of our Milky Way:

Figure 13.4. • Messier 87* (2019):
Messier 87 (M87) is a galaxy 55 million
light years away from Earth; M87* is the
supermassive black hole believed to lie at
the center of this galaxy. The analysis
that leads to and contextualizes this pic-
ture is detailed in a sequence of papers
by the Event Horizon Telescope Collabo-
ration [246,266–273] (the picture is from
Ref. [246]).

Figure 13.5. • Sagittarius A* (2022):
Sagittarius A* is the supermassive black
hole at the center of our Milky Way. The
analysis that leads to and contextualizes
this picture is detailed in a sequence of pa-
pers by the Event Horizon Telescope Col-
laboration [274–279] (the picture is from
Ref. [274]).
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11 | Visualizing black holes:

By now you have all the tools necessary to write computer code that simulates what one would
see close to a black hole: The rays emitted by light sources in the vicinity of the black hole (like
background galaxies and glowing gas in its accretion disk) follow light-like trajectories determined
by the geodesic Eq. (10.131), and the Christoffel symbols needed for this computation derive from
the metric of the black hole as a solution of the Einstein field Eq. (12.10) [the Schwarzschild metric
Eq. (13.25), if the black hole does not rotate and is uncharged]. If you want to be sophisticated, you
not only trace rays, but emit signals with fixed frequency in the proper time of each light source
and compute the frequency measured at the location of your virtual camera, thereby faithfully
reproducing gravitational and Doppler shifts in the color of light (Section 13.2.4).

• Luckily, you don’t have to write your own code. Here is a Python based raytracer for the
Schwarzschild metric to play with:

→ github.com/rantonels/starless

Example renderings with explanations can be found on

→ rantonels.github.io/starless

• If you don’t want to run code, NASA has you covered [280].

Here is a visually stunning simulation of what you would see during a plunge into a super-
massive (4:3 � 106Mˇ) Schwarzschild black hole:

→ Plunge into a Black Hole Explained (Video)

Compare the features in the video with our discussion above.

• Fun fact: In the 2014 science fiction film Interstellar, the protagonists land on a planet
orbiting the (fictional) supermassive black hole “Gargantua”. The VFX shots that show
the black hole were computed from the ↑ Kerr metric (i.e., the black hole rotates). Up
to artistic modifications (like purposefully omitting the Doppler effect and gravitational
redshift, ↑ Figure 15 of Ref. [281]), the depicted scenery is in accordance with general
relativity:

Figure 13.6. • The fictional black hole “Gargantua” in the movie Interstellar (2014): The
company Double Negative Ltd. wrote dedicated rendering software – based on mathematical
input from (now Nobel laureate) Kip Thorne – to simulate the ray propagation in the vicinity of
a spinning (Kerr) black hole [281–283]. The software was used to render the fictional black
hole “Gargantua” (a) in various scenes of the movie Interstellar (b) by Christopher Nolan; the
rendering in (a) is taken from [281]. Notably, the VFX artists won the 87th Academy Awards
for best visual effects; in that regard the author lists of Refs. [281,282] are quite remarkable: In
2015, Paul Franklin won an Oscar for visualizing phenomena of general relativity, and Kip
Thorne was awarded the 2017 Nobel Prize in Physics for describing phenomena of general
relativity (gravitational waves, not black holes).
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↓ Lecture 30 [00.00.00]

13.4. Gravitational waves

So far we only studied (asymptotically) static solutions of the Einstein field equations that are caused locally
by a source of gravity (a heavymass) and become asymptotically flat. But themetric has degrees of freedom
that are independent of matter because Ricci flatness (R�� D 0) is a weaker constraint than Riemann
flatness (R

��˛ˇ
D 0). Ricci-flat excitations of the metric field can traverse a spacetime without matter

and are called gravitational waves; they demonstrate the“non-Machianity” of general relativity
(← Section 9.3): Spacetime (= the metric field) exists as an independent dynamical entity!

Here we study gravitational fields in the weak-field limit of linearized gravity:

Details: → Problemset 6

1 | Linearized gravity:

i | Rationale: The deformations of spacetime due to gravitational waves (GW) are tiny.

At least here on Earth this must be true because otherwise we would have experienced the
dynamical nature of spacetime long ago. This approximation is of course not justified in the
strong-field regime (e.g., close to merging neutron stars or black holes).

! ^ Small deviations jh��.x/j � 1 from Minkowski space ��� :

g��.x/ D ��� C h��.x/CO
�
h2
�

(13.135)

Goal: Linearize general relativity in the perturbation h�� .

! Rules:

• Drop all non-linear terms in h�� and its derivatives h��;�…

• Raise and lower indices with ��� instead of g�� .

• The inverse metric in linear order is (check this!)

g�� D ��� � h�� with h�� D ��˛��ˇh˛ˇ : (13.136)

The idea is to approximategeneral relativity as a linear, Lorentz covariant field theory
of the tensor field h��.x/ on a static Minkowski background ��� . Since the decomposition
Eq. (13.135) of g�� is not unique (in linear order), this will be a gauge theory with gauge
field h��.x/ (→ below; recall also → Problemset 1). For details see ↑Carroll [4] (§7.1,
pp. 274–278).

ii | We can now express all relevant quantities in linear order of the perturbation h�� :

Christoffel symbols
10.79
���! O���� D

1

2
���

�
h��;� C h��;� � h��;�

�
(13.137a)

Riemann tensor
10.106
���! OR˛��ˇ D

1

2

�
h��;ˇ;˛ � h˛�;�;ˇ � h�ˇ;�;˛ C h˛ˇ;�;�

�
(13.137b)

Ricci tensor
10.114
���! OR�� D

1

2

�
h ;˛
��;˛ � h

˛
�;�;˛ � h

˛
� ;�;˛ C h

˛
˛;�;�

�
(13.137c)

Wemark linearized quantities with a hat O .
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iii | Encode the perturbation by the new field (this will be convenient in the following)

ˆ�� WD h�� �
1

2
���h with h WD h˛˛ : (13.138)

Eq. (13.137c)
ı
�!

OR�� D
1

2
h ;˛
��;˛ �

1

2

�
ˆ ˛
� ;˛;� Cˆ

ˇ

� ;ˇ;�

�
(13.139)

iv | Gauge symmetry:

^ Arbitrary small vector field ��.x/ � jh�� j � 1; define the transformation

Nh��.x/ WD h��.x/ � ��;�.x/ � ��;�.x/ (13.140)

Since �� is assumed to be of the same order as h�� , the new perturbation Nh�� is also of the
same order. Note that Eq. (13.140) is not a coordinate transformation!

Eq. (13.137b)
ı
�!

OR˛��ˇ
�
Nh��

�
D OR˛��ˇ

�
h��

�
(13.141)

! Eq. (13.140) is a gauge symmetry of linearized general relativity

This means that both h��.x/ and Nh��.x/ describe the same physical situation in linearized
gravity, and we can use the gauge freedom Eq. (13.140) to simplify equations.

Remember that the Einstein field equations follow from the Einstein-Hilbert action – which
is defined in terms of the curvature. The linearized field equations then follow from the
corresponding action with linearized curvature OR˛��ˇ . Because of Eq. (13.141), this action
is invariant under the transformation Eq. (13.140) (this is analogous to the invariance of
the electromagnetic field strength tensor F�� and thereby the Maxwell action under gauge
transformations). Consequently, the linearized Einstein field equations must have the sym-
metry Eq. (13.140). Since this is a local symmetry (choose ��.x/ non-zero on a compact
region of spacetime), it must be a gauge symmetry, i.e., it relates physically equivalent field
configurations (← Section 6.2).

v | Eq. (13.140)!

Nh D h � 2��;� (13.142)

With this we find the gauge transformation of the auxiliary fieldˆ:

Eq. (13.138)!

N̂
�� D ˆ�� � ��;� � ��;� C ��� �

˛
;˛ (13.143)

In particular:

N̂ ˛
� ;˛ D ˆ

˛
� ;˛ � �

;˛
� ;˛„ƒ‚…

� ���

(13.144)

Here it is � D �˛ˇ@˛@ˇ .
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vi | For givenˆ ˛
� , solve differential equation ��� D ˆ ˛

� ;˛ for ��

! Choose gauge w.l.o.g.

N̂ ˛
� ;˛ D 0 (13.145)

This gauge is called ⁂ Hilbert gauge (or Lorenz gauge or harmonic gauge); it is analog to the
Lorenz gauge A˛;˛ D 0 in electrodynamics.

In the following we fix this gauge and drop the bars: N̂ 7! ˆ.

vii | Eq. (13.139)
Eq. (13.145)
�������!

OR�� D
1

2
�h�� ) OR D

1

2
�h (13.146)

With this we find for the linearized Einstein tensor:

OG�� WD OR�� �
1

2
��� OR

13.138
13.146
D

1

2
�ˆ�� (13.147)

Eq. (12.10)! Linearized Einstein field equations:

�ˆ�� D �2� OT�� (13.148)

The hat on OT�� indicates that the HEMT is computed with ��� and not with g�� (i.e., in
zeroth order of h��). Eq. (13.148) is then a linear differential equation in h�� .

To get a small excitation h�� , the source T�� must already be of the same order in zeroth
order of h��; otherwise the assumption that h�� � 1 is inconsistent.

Eq. (12.11)! Trace inverted field equations:

�h�� D �2�
�
OT�� �

1

2
��� OT

�
(13.149)

! Linearized vacuum field equations ( OT�� D 0):

�ˆ�� D 0 , �h�� D 0 (13.150)

viii | Solutions must satisfy the Hilbert gauge Eq. (13.145):

Eqs. (13.145) and (13.148)!

@� OT
��
D 0 ,

1

c
@t OT

�0
D �@k OT

�k (13.151)

! Energy-momentum conservation

This means that for solutions of Eq. (13.148) to exist, the source OT �� must satisfy Eq. (13.151).

2 | Particular solution:

All solutions of Eq. (13.148) can be constructed as sum of a particular solution and the homogeneous
solutions. The latter correspond to plane waves and will be discussed → below. Here we focus on
the perturbations of the metric sourced by the HEMT OT�� :
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i | Inhomogeneous solution of Eq. (13.148):

ˆ��.t; Ex/
�
D �

�

2�

Z
V

d3y
OT��.tret; Ey/

jEx � Eyj
with tret D t �

1

c
jEx � Eyj (13.152)

This follows with the ↓ retarded Green’s function of the wave operator � that you already
know from your electrodynamics course.

ii | ^ Fourier transform (in time):

Q�.!; Ex/ D
1
p
2�

Z
dt e�i!t�.t; Ex/ (13.153a)

�.t; Ex/ D
1
p
2�

Z
d! ei!t Q�.!; Ex/ (13.153b)

Here, �.t; Ex/ is any function of spacetime, e.g.,ˆ�� or OT�� .

Eq. (13.152)!

Q̂
��.!; Ex/ $ �

�

2�

Z
V

d3ye�i !
c

jEx� Eyj

QOT��.!; Ey/

jEx � Eyj
(13.154)

iii | ^ Localized, distant, slowly moving source:

Approximations:

• Source localized & distant! jıEr j � Er

• Source slowly moving! ! � c
jıErj

With Ey � Ex � Er C ıEr
Eq. (13.154)
�������!

Q̂
��.!; Ex/ � �

�

2�

�ei
!
c
r

r

Z
V

d3y QOT��.!; Ey/ (13.155)

This is the lowest order of the ↓ multipole expansion, which yields the dominant contribu-
tion to the field far away from the source. To include higher multipole moments (beyond
quadrupole radiation, → below), the phase factor must be expanded in higher orders of ıEr .
For a compendium on the multipole expansion of gravitational radiation: ↑ Ref. [284].

iv | To proceed, we need a few Relations:

• Hilbert gauge Eq. (13.145)
Eq. (13.153)
�������!

1

c
@tˆ

�0
D �@iˆ

�i
) Q̂ �0 D

ic

!
@i Q̂

�i (13.156)
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We can use this to compute time components from spatial components:

f Q̂
ij
g

13.156
���! f Q̂

i0
g

13.156
���! Q̂ 00 (13.157)

!We only need to study the spatial components of the metric.

• Energy-momentum conservation Eq. (13.151)!

1

c
@t OT

�0
D �@k OT

�k
) @k

QOT �k D �i
!

c

QOT �0 (13.158)

v | With these preliminary steps, we find:

Q̂
ij .!; Ex/

13.155
� �

�

2�

�ei
!
c
r

r

Z
V

d3y QOT ij .!; Ey/ (13.159a)

D �
�

2�

�ei
!
c
r

r

h Z
V

d3y@k
�
yi
QOT kj
�

„ ƒ‚ …
D 0 since QOT kj

ˇ̌
@V

D 0

�

Z
V

d3yyi
�
@k
QOT kj

�i
(13.159b)

D
�

4�

�ei
!
c
r

r

Z
V

d3y
h
yi
�
@k
QOT kj

�
C yj

�
@k
QOT ki

�i
(13.159c)

13.158
D �i

�!

4�c

e�i !
c
r

r

Z
V

d3y
h
yi
QOT 0j C yj

QOT 0i
i

(13.159d)

D �i
�!

4�c

e�i !
c
r

r

Z
V

d3y
h
@l

�
yiyj

QOT 0l
�

„ ƒ‚ …
D 0 (← above)

�yiyj
�
@l
QOT 0l

�i
(13.159e)

13.158
D

�!2

4�c2
e�i !

c
r

r

Z
V

d3y
�
yiyj

QOT 00
�

(13.159f )

Here we used QOTij D
QOT ij (because we use ��� to pull indices) and that Q̂ ij D Q̂ j i .

We can now undo the Fourier transform in time:

ˆij .t; Ex/D
1
p
2�

Z
d! ei!t Q̂ ij .!; Ex/ (13.160a)

13.159
�

�

4�r

1

c2

Z
V

d3yyiyj
1
p
2�

Z
d! ei.t�r=c/!!2„ ƒ‚ …

�@2
t e

i.t�r=c/!

QOT 00.!; Ey/ (13.160b)

D �
�

4�r

d2

dt2

ˇ̌̌̌
tDtret

1

c2

Z
V

d3yyiyj OT 00.t; Ey/ (13.160c)

with retarded time tret D t � r=c.

vi | This motivates the definition of the…

⁂ Quadrupole moment tensor

Iij .t/ WD
1

c2

Z
V

d3y yiyj OT 00.t; Ey/ (13.161)

Note that OT 00 is an energy density so that OT 00=c2 is a mass density.
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which leads to the…

⁂ Quadrupole formula

ˆij .t; Ex/ � �
�

4�r

d2Iij
dt2

ˇ̌̌̌
tDtret

(13.162)

with retarded time tret D t � r
c
and r the distance between Ex and the source.

In conclusion: The gravitational waves produced by a localized & non-relativistic object
are proportional to the second derivative of the quadrupole moment of the energy density of
this object (evaluated at the retarded time tret). This retarded time tret D t � r

c
shows that

gravitational waves propagate with the speed of light c.

! Conclusions:

• Gravitational waves (GWs) propagate with the speed of light.
• GWs in the far-field are dominated by quadrupole radiation.

vii | Comments:

• Here is a comparison of gravitational and electromagnetic radiation:

Moment Gravity Electrodynamics

Monopole 7 7

(Energy conservation) (Charge conservation)

Dipole 7 3

(Momentum conservation)

Quadrupole 3 3

• We can directly check that the monopole moment of the energy density

M.t/ WD
1

c2

Z
V

OT 00.t; Ey/ d3y (13.163)

must be constant due to energy conservation:

dM
dt
D

1

c2

Z
V

@t OT
00.t; Ey/ d3y 13.151

D �
1

c

Z
V

@k OT
k0.t; Ey/ d3y D 0 : (13.164)

Hence there can be no gravitationalmonopole radiation (this also follows from←Birkhoff’s
theorem, Section 13.1.2). In the case of electrodynamics, it is U.1/ charge conservation
that forbids monopole radiation. But this exhausts all charge-related symmetries of
electrodynamics, which is why electromagnetic dipole (quadrupole,…) radiation is
possible.

However, in the case of gravitational waves mass is the charge, and there are more
conservation laws that can be exploited to pin down its higher-order moments. For
example, the conservation of linear momentum (coming from translation symmetry)
implies that the static dipole moment

Di .t/ WD
1

c2

Z
V

yi OT 00.t; Ey/ d3y (13.165)

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → APPLICATIONS & PREDICTIONS

420
PAGE

cannot oscillate either:

d2Di
dt2

D
1

c2
d
dt

Z
V

yi@t OT
00.t; Ey/ d3y 13.151

D �
1

c

d
dt

Z
V

yi@k OT
k0.t; Ey/ d3y (13.166a)

$
d
dt
1

c

Z
V

OT i0.t; Ey/ d3y„ ƒ‚ …
Total momentumP i .t/

13.151
D �

Z
V

@k OT
ik.t; Ey/ d3y D 0 : (13.166b)

This shows that momentum conservation is the root cause for the absence of gravitational
dipole radiation.

The argument that is sometimes made that “there are only positive masses” whereas
there are“positive and negative electric charges” is beside the point (one does not need
positive and negative electric charges to produce dipole radiation; → below). The differ-
ence is that there is a symmetry (momentum conservation) that forbids the oscillation
of the center of mass, whereas there is no symmetry that prevents the oscillation of the
center of charge:

• Einstein predicted gravitational waves first in 1916 when he studied the linearized ver-
sion of his field equations [285]. (At the time, Einstein still struggled with the gauge
invariance of his theory: He later realized that some of his solutions were actually un-
physical“coordinate waves”; see the addendum on p. 696 of Ref. [285].) He derived the
quadrupole formula Eq. (13.162) two years later in his paper“Über Gravitationswellen”;
see Eq. (23) and (25) in Ref. [16].

• At the time it was widely believed that gravitational waves do exist. (They were, after
all, a direct consequence of general relativity, other predictions of which had
been verified; although there was no experimental evidence for gravitational waves.)
However, Einstein later changed his view and doubted their existence. In 1936, he wrote
in a letter toMax Born [286]:

Together with a young collaborator [Nathan Rosen], I arrived at the interesting
result that gravitational waves do not exist, though they had been assumed a certainty
to the first approximation. This shows that the non-linear general relativistic field
equations can tell us more or, rather, limit us more than we have believed up to now.

At the same time, Einsteinwrote a paper (togetherwithNathanRosen) with the title
“Do Gravitational Waves Exist?” (the answer was “No”). The paper has an interesting
history, because its original version no longer exists, and the version that was eventually
published in 1937 comes to a completely different conclusion (the paper was then titled
“On gravitational Waves” [287]). On the unusual history of this particular paper (and
Einstein’s first confrontation with the modern peer review system) see Ref. [288].
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3 | Homogeneous solutions:

Let us now focus on the homogeneous solutions of the linearized field equations Eq. (13.148); i.e.,
the solutions of the linearized vacuum field equations Eq. (13.150). Gravitational waves far away
from their sources can be well approximated by these (plane wave) solutions:

i | We want so solve the linear wave equation

�h�� 13.150
D 0 with constraint h�˛;˛

13.145
13.138
D

1

2
��˛h;˛ (13.167)

ii | General form of solution! Plane waves:

h��.x/ D Re
h
A��eik�x

i
(13.168)

with wave vector k� and (symmetric) amplitude (tensor) A�� D A��.

We drop the real part in the following to simplify the notation.

iii | Constraints:

• Dispersion relation
13.167
���!

k�k�
Š
D 0 (13.169)

This is a constraint on the wave vector to solve the wave equation.

• Hilbert gauge
13.167
���!

A�˛k˛
Š
D
1

2
Ak� with A D A˛˛ (13.170)

This is a constraint on the amplitude to satisfy the Hilbert gauge.

iv | A�� D A�� symmetric! 10 components

Our next goal is to show that only 6 of them can be chose independently:

^ w.l.o.g. k� D .k; 0; 0; k/ with k � !=c > 0

That is, choose an inertial coordinate system in which the wave propagates in ´-direction.

Eq. (13.170)!

A00 � A03 D 1
2
A (13.171a)

A10 � A13 D 0 (13.171b)

A20 � A23 D 0 (13.171c)

A30 � A33 D 1
2
A (13.171d)

ı
�! Only 6 independent components: A00, A11, A33, A12, A13, A23

The remaining 4 are given as follows:

A10 D A13 ; A20 D A23 ; A30 D 1
2

�
A00 C A33

�
; A22 D �A11 : (13.172)
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v | We show now that only 2 (!) of these 6 parameters are physical degrees of freedom:

Remember that h�� is a gauge field [Eq. (13.140)].

^ Gauge transformation:

�� WD �i"�eik�x with ��� 13.169
D 0 (13.173)

"�: arbitrary (small, constant) vector (with j��j D j"�j � jh�� j � 1)

¡! Because of Eq. (13.144), this gauge transformation keeps the Hilbert gauge Eq. (13.145)
intact. Thus imposing the Hilbert gauge did not fix all gauge degrees of freedom. This is
similar to electrodynamics, where the Lorenz gauge allows for ↓ residual gauge transformations
that satisfy �� D 0.

Eqs. (13.140), (13.168) and (13.173)!

NA�� D A�� � "�k� � "�k� (13.174)

vi | Since "� is arbitrary (note that "� and A�� must be both of the order of h��), we can use
this residual gauge freedom to gauge-fix the amplitudes further:

Eq. (13.174)! [use again k� D .k; 0; 0; k/]

NA11 D A11 ; NA12 D A12 (13.175a)

NA13 D A13 � "1k ; NA23 D A23 � "2k (13.175b)

NA00 D A00 � 2"0k ; NA33 D A33 � 2"3k (13.175c)

This shows that by choosing "�, we can “tweak” the 6 independent components of the
amplitude without affecting the physical content of the solution.

Consider the trivial solution A�� D 0, which corresponds to flat Minkowski space (in
inertial coordinates). The gauge transformation Eq. (13.175) can now be used to find other
representations of the same flat metric, since the (linearized) Riemann curvature is invariant
under these transformations [Eq. (13.141)]. These gauge transformations are therefore
residuals of the general covariance of the (non-linear) Einstein field equations.

Fix gauge (and drop the bars: NA 7! A)! w.l.o.g. A�� D 0 except for

A11 D �A22 DW AC and A12 D A21 DW A� (13.176)

Choose "� appropriately to zero four of the six independent components in Eq. (13.175) and
use Eq. (13.172) to show that then three of the remaining four components vanish as well.

This gauge is called ⁂ TT-gauge (transverse traceless gauge)

In the TT-gauge the polarization tensor is traceless (A�� D 0) so that h D h�� D 0.

!

Gravitational waves have two physical polarizations (degrees of freedom).

This is analogous to electrodynamics, where one starts with four gauge fieldsA� and ends up
with only two transversal polarizations. The rule is that every generator of a gauge symmetry
cuts down the degrees of freedom by two. So in electrodynamics, the single U.1/ gauge

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → APPLICATIONS & PREDICTIONS

423
PAGE

symmetry yields 4�2�1 D 2physical degrees of freedom. Ingeneral relativity gauge
transformations are diffeomorphisms, which are generated by four infinitesimal translations
[← Eq. (11.90)]; so one expects again 10 � 2 � 4 D 2 physical degrees of freedom (there are
10 components in the metric).

vii | Polarizations:

Write A�� D AC e
��
C
C A� e

��
� with the two ⁂ linear polarization tensors

e
��
C
D

0BB@
0 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 0

1CCA
��

and e
��
� D

0BB@
0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1CCA
��

: (13.177)

With this we can write the Plane gravitational wave solutions
Eq. (13.168)
�������!

h
��

k;AC;A�
.x/ D Re

h
AC e

��
C
eik�x

C A� e
��
� eik�x

i
(13.178)

with wave vector Ek� (k�k� D 0) and linear polarizations AC; A� 2 C.

• Compare this to the ↓ plane wave solutions of electrodynamics in Lorenz gauge:

A�.x/ D Re
h
a1 "

�
1 e

ik�x
C a2 "

�
2 e

ik�x
i

(13.179)

Here, the wave vector k� satisfies also a linear dispersion (k�k� D 0); "
�
1;2 are the two

space-like (k"ik2 D �1) and transversal ("�i k� D 0) polarization vectors.

• In analogy to electrodynamics, we can also introduce ⁂ circular polarization tensors

e
��

R=L
WD

1
p
2

�
e
��
C ˙ ie

��
�

�
(13.180)

as an alternative basis; it is then A�� D AR e
��
R C AL e

��
L with circular amplitudes

AR=L D
1
p
2
.AC � iA�/ : (13.181)

viii | Helicity: (Details: → Problemset 6)

Consider spatial rotations by ' about the propagation direction (´-axis):

.R'/
�
� D

0BB@
1 0 0 0

0 cos' sin' 0

0 � sin' cos' 0

0 0 0 1

1CCA
��

: (13.182)

We say that a tensorial object has ⁂ helicity h 2 R, if it is an eigenvector under this transfor-
mation (or its tensor products) with eigenvalue eih' .

The circular polarization tensors Eq. (13.180) transform according to the rules of rank-2
tensors:

.R'/
�
˛.R'/

�
ˇe
˛ˇ

R=L
$ e˙2i'e

��

R=L
: (13.183)
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(Use cos' C i sin' D ei' to show this.)

This reveals that circularly polarized gravitationalwaves have helicityh D ˙2. AsEq. (13.183)
shows, this manifests as an invariance of gravitational waves under rotations by only ' D
� D 180ı (and not ' D 2� D 360ı as for “normal” vectors with helicity h D ˙1).
ı
�!

Gravitational waves have helicity h D ˙2.

• Operationally, this means that rotating your gravitational wave detector by only 180ı

about the axis of incidence makes gravitational waves look the same.

• Mathematically, only massive particles transform under spin representations [= (pro-
jective) representations of SO.3/]; by contrast, massless particles – like photons and
(hypothetical) gravitons – transform under helicity representations [= representations of
ISO.2/]. (This is so because massless particles propagate with the speed of light and do
not have a rest frame; consequently, one can only rotate them about their propagation
axis.) This is the mathematical reason why photons (and gravitons) have only two polar-
izations, whereas one would expect 2 � 1C 1 D 3 (2 � 2C 1 D 5) states for a true
spin-1 (spin-2) particle. Thus, strictly speaking, neither photons nor gravitons do have
spin – they have helicity. For details: ↑ Wigner’s little groups and Weinberg [289]
(§2.5, pp. 69–74).

4 | Effects on test particles:

Now that we know that the Einstein field equations allow for wave-like solutions, it is reasonable to
ask which physically observable effects one should expect if such a wave passes by:

i | First test:

To test whether the wave-like solutions of the metric Eq. (13.178) have physical consequences
(and are not just gauge), we can evaluate the curvature tensor:

Eqs. (13.137b) and (13.178)
ı
�!

OR0mn0 D
1

2c2
d2hmn
dt2

¤ 0 for m; n D 1; 2 (13.184)

There are also other non-zero components of the curvature tensor [recall the symmetries
Eq. (10.107)]. Note also thath��;˛;ˇ D �k˛kˇh�� for the planewavesEq. (13.178) andk� D
.k; 0; 0;�k/ (propagation in ´-direction). This implies that h��;˛;ˇ either vanishes or is
proportional to k2hmn, which is proportional to Eq. (13.184). Thus all non-zero components
can be written as time derivatives of h11 and h12.

! Oscillations in local spacetime curvature!

• On flat Minkowski space, all components of the curvature tensor vanish (independent
of the coordinates). Non-vanishing components therefore prove that spacetime is no
longer Minkowskian (again independent of the coordinates).

• Recall that spacetime curvaturemanifests physically as tidal forces via geodesic deviation
Eq. (10.140). Non-vanishing curvature components are therefore always physically (and
operationally) significant; they are not “coordinate or gauge effects.”
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ii | ^ Free-falling test mass! Follows geodesic equation:

du�

d�
C O����u

�u� D 0 with u� D
dx�

d�
(13.185)

Eqs. (13.137a) and (13.178)! O��00 D 0 (in TT-gauge)
ı
�! Time-like solution:

x�.�/ D

�
c�

Ex0

�
with Ex0 D const (13.186)

!Mass remains at rest in chosen coordinates!

This is of course only one of many possible geodesics; namely the one of a test mass placed
in Ex0 at rest in the chosen coordinate system. The crucial point is that it remains at Ex0, even
though a gravitational wave distorts spacetime.

¡! This result might be surprising at first. However, remember the conclusions of Section 9.2
regarding the role of coordinates in general relativity: The fact that the spatial
coordinates of a particle remain constant over time (proper or coordinate) has no physical
content a priori. Here is a (reprint of the) sketch to illustrate this point:

iii | ^ Two test masses on x-axis at Ex˙ D .˙a; 0; 0/ (initially at rest)

Eq. (13.186)! Geodesics:

x
�
˙
.�/ D

�
c�

Ex˙

�
with Ex˙ D const (13.187)

! Test masses have constant coordinate distance ExC.�/ � Ex�.�/ D .2a; 0; 0/!

¡! This result might be evenmore surprising. But again, remember Section 9.2: If coordinates
have no physical meaning, their coordinate distance has neither! Their physical distance is a
property of the values of the metric field g�� between them and can change with time, even
though their coordinates don’t. Remember this sketch:

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → APPLICATIONS & PREDICTIONS

426
PAGE

iv | ^ Proper length at x0 D ct D const (dt D 0)

dl2 11.30
D �gmn.x/ dxmdxn (13.188a)

13.135
D � Œ�mn C hmn.x/� dxmdxn (13.188b)

13.178
D Œ1 � h11.t; ´/�„ ƒ‚ …

C-Polarization

dx2 C Œ1 � h22.t; ´/�„ ƒ‚ …
C-Polarization

dy2 C d´2

� 2h12.t; ´/ dxdy„ ƒ‚ …
�-Polarization

(13.188c)

Remember that k� D .k; 0; 0; k/, i.e., the wave propagates in ´-direction. Eq. (13.188) shows
that such a wave does not change distances in ´-direction; this explains the “transverse” in
← transverse traceless gauge.

! Distance of the two test masses (along the x-axis):

�lx D 2a
p
1 � h11.t; ´/ ) �lx � 2a

�
1 � 1

2
h11.t; ´/

�
(13.189)

Here we used again that jh�� j � 1, i.e., the deformations of spacetime are small.

v | ^C-Polarized solution with frequency !=c D k and amplitude jACj � 1:

h��
13.178
D ACe

��
C

cos .!t � k´/ (13.190)

^ Position ´ D 0!

h11 D �h22 D AC cos.!t/ and h12 D h21 D 0 (13.191)

Eq. (13.189)! [Use that hmn D hmn, recall Eq. (13.136).]

�lx � 2a
�
1 � 1

2
AC cos.!t/

�
�ly � 2a

�
1C 1

2
AC cos.!t/

� (13.192a)

(13.192b)

Here,�ly is themeasureddistance between two testmasses on they-axis at Ex˙ D .0;˙a; 0/;
due to h11 D �h22 the length is phase-shifted by � wrt.�lx .

• The result Eq. (13.192) shows that a ring of free-falling test masses is periodically
squeezed and stretched into an ellipse since the deformations in x- and y-direction are
phase-shifted by � .

• An analogous analysis for �-polarized gravitational waves yields a similar dynamics
in the xy-plane – only rotated by 45ı (→ next). This means that a rotation by ˙45ı

converts aC into a �-polarized wave and vice versa; this reflects the helicity h D 2 of
gravitational waves.

vi | Conclusion:

Effect of a passingC or � polarized gravitational wave (traveling along the ´-axis) on the
measured distances�lx=y (not coordinate distances!) between a ring of free-falling test masses
in the xy-plane:

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → APPLICATIONS & PREDICTIONS

427
PAGE

• One can exploit this effect to detect gravitational waves (→ next).

• This picture motivates the labels “C” and“�” of the two polarizations.

• Similarly, circularly polarized gravitational waves e��
R=L

make the ellipse“rotate” left
or right, respectively (note that the particles do not rotate, only the ellipse of their
distances to the origin does).

• Let us estimate the length variations to be expected for a typical gravitational wave
caused by a black hole merger. To this end, we need an estimate for the amplitudeAC –
which depends both on the parameters of the source and the distance d to Earth:

ı.�lx/ � aAC � ajh11j
13:162
�

aG

dc4
d2I11
dt2

13:161
�

aG

dc4
.�2R2M/ : (13.193)

Here we assumed a binary system of two massive bodies (neutron stars or black holes)
of roughly equal massesM that orbit each other with frequency� and distance 2R.

Let us assume we monitor the distance of two test masses 2a D 2 km apart, and use
the parameters of the binary black hole merger that caused the first gravitational wave
event GW150914 detected by LIGO [290] (→ below):

M � 30Mˇ ; � � 75Hz ; R � 175 km ; d � 400Mpc : (13.194)

This yields for the length variations on Earth:

ı.�lx/ � 10
�20m D 10�5 fm : (13.195)

For comparison, the radius of a proton is rp � 10�15m D 1 fm.

This explains the technical complexity of gravitational wave detectors (→ next).
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5 | Detecting gravitational waves:

The previous analysis suggest that gravitational waves can be detected by continuously monitoring
the distance between a ring of free-falling test masses. The distance between the masses could be
measured by bouncing laser pulses between them and measuring the time needed for a round trip
with an atomic clock.

Technical difficulties:

• Problem: On Earth, is impossible setup test masses that remain free-falling in all directions.

Solution: It is sufficient to be free-falling in one direction to detect deformations of the metric
in this direction. For example, the mass of a simple pendulum is (approximately) free-falling
in the directions orthogonal to the string that holds the mass.

• Problem: The length variations due to gravitational waves are so tiny [Eq. (13.195)] that even
the best atomic clocks cannot resolve the fluctuations in the round-trip time.

Solution: Use a ↓ Michelson interferometer to imprint the relative length fluctuations of two
orthogonal arms onto the phase of a laser beam. Interference between light traveled along the
two arms then reveals miniscule variations in their relative length. By using a ↓ Fabry-Pérot
cavity for each arm, the effective size (and thereby the sensitivity) of the arms can be increased
significantly (since light traverses the arms multiple times).

! Rationale:

The time spent by the laser light in the interferometer must be small compared to the (inverse)
frequency of the gravitational wave. Then the interferometer measures the slowly varying relative
length of its arms.
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This is the operating principle of gravitational-wave detectors like LIGO (Fig. 13.7) which detected
the first gravitational wave in 2015 (Fig. 13.8):

Figure 13.7. • LIGO – Laser Interferometer Gravitational-Wave Observatory: (a) The LIGO col-
laboration operates two nearly identical detectors at two different sites in the United States (3000 km
apart), one in (b) Hanford and one in (c) Livingston (each with 4 km arm length). Operating two
detectors (or three, including VIRGO in Italy) has several benefits: First, simultaneous detections
allow for the rejection of false-positives caused by local perturbations. Second, using that gravitational
waves travel with the speed of light allows for the “triangulation” of the source by measuring the time
delay between signals at the different sites. Each site consists of a large ↓ Fabry–Pérot interferometer
(b,c)with two orthogonal arms (the Fabry–Pérot cavities). The crucial point is that the two mirrors that
make up each cavity play the role of test masses that fall freely (= are force-free) along the direction of
the cavity; i.e., in this direction the mirrors follow geodesics in spacetime. This is achieved by a intricate
multi-stage setup of pendula (d) that decouple the mirror from their environment. (e) Each of the test
masses (= mirrors) weighs 40 kg and operates in ultra-high vacuum (like most of the equipment) to
mitigate noise. Images from https://www.ligo.caltech.edu (© Caltech/MIT/LIGO Lab).
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6 | Observations:

• The first indirect evidence for the existence of gravitational waves was based on the ob-
servation of a neutron star circling a pulsar (the ↑ Hulse-Taylor pulsar, also known as PSR
B1913+16). Over time their orbital period changes, indicating a decay of the orbit [169–171].
This decay matches perfectly with the loss of energy predicted by general relativity
due to the emission of gravitational waves. These observations earnedHulse andTaylor
the 1993 Nobel Prize in Physics“for the discovery of a new type of pulsar, a discovery that has
opened up new possibilities for the study of gravitation.”

• The first direct detection of a gravitational wave was made in 2015 (and reported in 2016,
Fig. 13.8) by the LIGO and VIRGO collaboration [290] (LIGO = Laser Interferometer
Gravitational-Wave Observatory, VIRGO is named after the ↑ Virgo cluster). The event
GW150914 (detected on 14.09.15) was detected simultaneously by the two interferometers at
Hanford and Livingston (both USA), and was caused by the merger of two stellar-mass black
holes:

Figure 13.8. • GW150914: First detection of gravitational waves (2016): The merger of two
black holes GW150914 was detected independently by the two gravitational wave detectors of
the LIGO collaboration in Hanford and Livingston. The detection was reported in [290] (where
the panel is taken from); the consistency with general relativity was studied and confirmed
in [291].

The observed spacetime distortions were miniscule but matched the models derived from
general relativity [291]. The detection earnedWeiss, Barish andThorne the
2017Nobel Prize in Physics“for decisive contributions to the LIGO detector and the observation of
gravitational waves.” For a comprehensive account on gravitational waves, their detection, the
history of the field, and many references, see the three Nobel lectures by Weiss [292], Barish
[293] and Thorne [294]; for a technical summary by the Nobel committee see Ref. [295].

• The first detection of a gravitational wave that was accompanied by electromagnetic signals was
reported in 2017 (Fig. 13.9): The merger of two neutron stars GW170817 was detected inde-
pendently by all three gravitational wave detectors of the LIGO and VIRGO collaborations
and – for the first time – various other observatories in the electromagnetic spectrum; it is
therefore a breakthrough in ↑ multi-messenger astronomy. The detection was reported in [296]

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → APPLICATIONS & PREDICTIONS

431
PAGE

and the various other “messengers” are listed in [297].

The comparison of gravitational waves and electromagnetic signals were then used to con-
strain (violations of ) the equivalence principle and Lorentz invariance. In particular, the
difference vg � c of the speed of gravitational waves and the speed of light can now be
constrained to�3 � 10�15 c andC7 � 10�16 c [298] (in accordance with our result ← above,
namely that gravitational waves propagate with the speed of light). Also the dimensionality
of spacetime could be verified to beD D 3C 1 for both gravity and photons [299]; that is,
there is no evidence for (non-compact) extra dimensions!

Figure 13.9. • GW170817: First detection of a neutron star merger (2017): The merger of
two neutron stars GW170817 was detected independently by the gravitational wave detectors of
the LIGO and VIRGO collaborations and various other observatories in the electromagnetic
spectrum; it is a breakthrough in ↑multi-messenger astronomy. The detection was reported
in [296] and the various other “messengers” are listed in [297]; the panel is from Ref. [298].

• Here is the database of detected events of the LIGO/VIRGO/KAGRA collaboration:

→ Gravitational-wave Transient Catalog (GWTC)

The list shows that detecting gravitational waves has quickly become“daily routine” (at the
time of writing, there are already� 100 confidently-detected events).
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↓ Lecture 31 [05.08.24]

Epistemological disclaimer

In Part I and Part II we studied widely accepted and experimentally tested theories of nature:
special relativity and general relativity.

Here in Part III, we enter the realm of theories that are the brainchilds of theoretical
physicists only – without any experimental evidence supporting these theories! We do not even
know whether gravity is a quantum phenomenon to begin with…

Plan for this Excursion

This is a brief outlook on the fascinating but vast and complicated subject of quantum gravity; it is neither
a comprehensive review nor a replacement for dedicated courses on the various subjects.

In this excursion, we address the following questions:

• Chapter 14:

– Why to quantize gravity in the first place?

– How do we quantized non-gravitational theories?

– Why does this procedure fail for gravity?

– How to circumvent these problems?

• Chapter 15:

– What is the rationale of string theory?

– Why does the quantization of the bosonic string only work inD D 26 spacetime dimensions?

– Why is string theory a theory of quantum gravity?

– Where does supersymmetry enter the picture?

Warning

The following conventions are widely used in the quantum gravity literature:

In this part…

…we work in units where c D 1 and „ D 1.

…we use the sign convention ��� D .�1;C1; � � � ;C1/.

For example, the dispersion of a massive particle reads no longer p2 D m2c2 but p2 D �m2.
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14. Why is quantizing Gravity hard?

¡! Note that the Lorentz symmetry of special relativity is not a problem for quantum theory
(← Chapter 7). For example, the quantum field theories that constitute the Standard Model of particle
physics are all Poincaré invariant and fully consistent with special relativity.!

The problem of quantum gravity is the quantization

of the metric tensor field g�� of general relativity.

1 | Why to quantize gravity in the first place?

• Simple answer: Because everything else can be quantized!

Quantum electrodynamics
„!0
���! Maxwell’s electrodynamics

Quantum mechanics
„!0
���! Newton’s classical mechanics

What?
„!0
���! Einstein’s general relativity

The fact that every classical theory – except general relativity– can be understood as
the classical limit of an underlying quantum theory suggests that the superposition principle
is a fundamental feature of reality, and motivates the quest for a quantum theory of the
gravitational field (= the metric).

• Extrapolation of general relativity and quantum theory! Inconsistencies:

i | Quantum mechanics:

Heisenberg uncertainty: �x�p � „
2
! hp2i � .�p/2 � .„=2�x/2

^ Relativistic particle: E � cp! E2 � .„c=2�x/2

In words: Probing small distances requires high energies (e.g., particle colliders).

ii | general relativity:

…Energy = Gravitational mass: M � E=c2

…MassM concentrated in region rs D
2GM
c2 ! Black hole & Event horizon

iii | Combing general relativity and quantum mechanics yields:

rs �
„G

�xc3
(14.1)

Imagine you want to mark a point in space with precision ıl by placing a particle there.
Then the particle must have position uncertainty�x � ıl . For ıl ! 0, the particle
requires more an more energy until a black hole forms and its event horizon prevents
you from interacting with the particle. This happens when ıl � rs , i.e., latest when

ıl �
„G

ılc3
) ıl � lPlanck WD

r
„G

c3
� 10�35m : (14.2)
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!One cannot localize anything beyond the Planck length.

What this semiclassical argument shows is the impossibility to“zoom in” on the Planck
scale and find a world in which both general relativity and quantum mechanics
remain valid unmodified.

!

The concept of space (and time) itself becomes

inconsistent on the Planck scale lPlanck.

This argument goes back toMatvei Bronstein [300, 301]; he writes in 1936 in
Ref. [301] (§4, p. 150):

Ohne eine tiefgehende Umarbeitung der klassischen Begriffe scheint es daher wohl
kaum möglich, die Quantentheorie der Gravitation auch auf dieses Gebiet [der
kleinen Abstände] auszudehnen.

For a historical account on the early days of quantum gravity and the role played by
Bronstein see Ref. [302].

• An argument from reductionism:

Physics follows a reductionist approach to explain the world around us: All entities are split
into smaller and smaller pieces that follow simpler and simpler laws (molecules → atoms
→ nuclei → quarks). The complexity of macroscopic phenomena is then explained as the
emergent behavior of many simple constituents. This approach has worked remarkably well
in compressing the apparent complexity of the world into a few simple fundamental laws.

According to this view, the realm of the very small (studied by atomic and particle physics)
is fundamental, everything else is emergent. But every single experiment that explored the
realm of atomic or subatomic physics revealed a world goverened by the laws of quantum
mechanics. There is no classical behaviour on subatomic scales! Thus, if we take the
reductionist stance, we are forced to accept that quantum mechanics rules the world, and that
our classical, macrospopicworld is only an emergent perspective on this reality. Consequently,
gravity should emerge from underlying quantum phenomena as well.

The fly in the ointment is that no one has ever observed any effect of gravity – be it classical
or quantum – in any experiment small enough to be clearly dominated by quantum effects
because gravity is such a weak force: To see quantum effects, the studied systems must be
extremely small (on atomic scales); but then the involved masses are also tiny. Since the
gravitational coupling constantG is orders of magnitudes smaller than the electromagnetic
coupling, every experiment on atomic scales is dominated by electromagnetic forces, while
the gravitational force is practically absent.

To date, the smallest object that showed measurable gravitational effects had a mass of
m � 0:5 � 10�9 kg [303]. While this might seem light on everyday scales, it is still heavy on
atomic scales: The heaviest object that showed quantum interference effects (↓ double-slit
experiment) had a mass of m � 4 � 10�23 kg [304]. Because of decoherence (= coupling to
the environment), it is experimentally extremely challenging to conduct experiments with
relevant gravitational coupling while remaining coherent.

[You might wonder: m � 0:5 � 10�9 kg D 0:5mg is quite “heavy”. If one drops a particle
of dust (which certainly weighs much less than 0:5mg) in vacuum, it certainly falls to the
ground. Doesn’t this show that it interacts gravitationally? The answer is negative: This
experiment only verifies the weak equivalence principle WEP , namely that everything –
independent of its mass – is accelerated by g on the surface of Earth. The experiment reveals
the spacetime curvature due toEarth by using the dust particle as a test mass. What ismeant by
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“interacts gravitationally” is really “acts as a source of gravity,” i.e., creates its own curvature
of spacetime.]

• Could gravity be intrinsically classical?

While it is certainly a majority view among physicists that gravity emerges from an underlying
quantum theory, not everyone agrees on this. Roger Penrose, for example, advocates that
“quantum mechanics must be gravitized.” He denies that gravity has a quantum nature at
all, and that the collapse of the wavefunction is an objective dynamical process – induced
by gravity – that makes a unique, classical, macroscopic world emerge out of a microscopic
quantum world [173]. This view is in direct contradiction to most other interpretations of
quantum mechanics (collapse theories are not interpretations but modifications of quantum
mechanics) like ↑ Everett’s many-worlds interpretation or ↑ decoherence theory.

Recent proposals suggest methods to experimentally probe the relation between gravity and
the quantum-classical boundary [305–308] (see Ref. [309] for a review). These proposals are
based on recent (and foreseeable) technological advances in the control of quantum systems
and precision measurement techniques. Since there will be no experiments on the Planck
scale anytime soon, this alternative approach to assess the quantum nature of gravity is
perhaps the most promising route forward.

Ignoring the lack of experimental evidence, let us henceforth assume that gravity emerges from an
underlying quantum theory.

2 | How do we quantized non-gravitational theories?

To understand why physicists struggle to quantize the field theory called general relativity,
we must first understand how all the other fields are quantized:

Details: Any course on ↑ Quantum field theory [20].

i | ^ Relativistic field theory given by a Lagrangian:

L.�; @�/ D

L0‚ …„ ƒ
.@��/.@��/ �m

2�2„ ƒ‚ …
Quadratic part
! Free field

�

Lint‚ …„ ƒ
��n�4

C : : :„ ƒ‚ …
Non-quadratic part

! Interactions

(14.3)

Weuse here exemparily a scalar field�; the fields in the StandardModel aremore complicated,
but the concepts are the same.

! Action:

SŒ�� D

Z
ddxL.�; @�/ � S0Œ��C SintŒ�� (14.4)

For now, we consider arbitrary spacetime dimensions d .

So far, this defines a classical field theory with equations of motion ı�S
Š
D 0.

ii | The corresponding quantum theory is most conveniently defined via a ↓ path integral:

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



EX → WHY IS QUANTIZING GRAVITY HARD?

437
PAGE

Define ↓ Scattering amplitudes via ↓ path integrals:

M D h�outj�ini„ ƒ‚ …
Scattering
amplitude

�

Z �out

�in

D�„ ƒ‚ …
Sum over

all evolutions
(“Paths”)

Phase
determined
by action‚…„ƒ
e

i
„
SŒ�� (14.5)

• You can think of the initial (final) field configuration �in (�out) as state that encodes
the positions and momenta of many particles long before (after) they interact/collide.
The scattering amplitude M is then the probability amplitude of this particular process
happening. Such quantities can therefore be measured at particle colliders where such
scattering experiment are performed.

• The path integral makes Feynman’s interpretation of quantum mechanics explit, ac-
cording to which all possible evolutions that connect an initial state �in with a final state
�out happen simultaneously. The probability of the transition �in 7! �out is then given
by the (modulus square) of the sum of phases, each of which depends on the action of
the particular path taken. Why? Because for „ ! 0 this construction yields as allowed
transitions only the ones connected by trajectories that satisfy the classical equations of
motion. The path integral therefore has the correspondence principle that connects
quantum with classical physics built in.

• The benefit of the path integral approach over a canonical quantization via aHamiltonian
operator is that the former is based on the Lagrangian – which, for a relativistic field
theory, is a Lorentz scalar. This makes the path integral quantization manifestly Lorentz
covariant. By contrast, this symmetry is notmanifest in a canonical quantization scheme,
since the Hamiltonian is not a scalar but the zero-component of a 4-vector (the energy-
momentum vector).

Problem:

Without specifying the path integral, this is not

a mathematically well-defined theory; it is only a

(physically motivated) sketch of a theory.

This means that one must operationally define how exactly the “sum over all trajectories” is
to be evaluated:

iii | How to compute the path integral Eq. (14.5)?

(1) It is hard to mathematically implement an integral over“all smooth functions �”. A first
step is therefore to Fourier transform all fields and parametrize them by their Fourier
components (a countable infinite set of real numbers). The path integral can then be
performed by integrating over each of these Fourier components separately:

! Fourier transform:

�.x/

D�

)
!

8̂<̂
:
O�kY
k

d O�k
(14.6)
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(2) If Sint � 0, the exponential includes only contributions from S0 which are, by definition,
quadratic in the fields (and the Fourier components). The integrals to be evaluated are
then Gaussian and can be computed exactly. Such theories describe the propagation
of particles that do not interact, hence they are called free theories. How the particles
propagate is determined by their ↓ propagator, which can be directly computed from
the Gaussian path integral and the free action S0.

Interesting physics (= scattering) happens only when Sint ¤ 0; in this case, the integrals
are no longer Gaussian and one must resort to perturbative methods to find approximate
solutions of the path integral:

! Expand exponential in coupling parameter � of interactions:

M �

Z �out

�in

D� e
i
„
S0Œ��„ ƒ‚ …

Gaussian
exponent

! Propagator

�
1C i

„
Sint C

�
i
„
Sint

�2
C : : :

�
„ ƒ‚ …

Perturbation expansion in �
! Interaction vertices

(14.7)

If the coupling constant � / Sint of the interaction is small, this approximation yields
good results in low orders of the expansion.

This is true for quantum electrodynamics (QED), but not in the low-energy regime of
quantum chromodynamics (QCD) which makes the latter much harder to work with.

In summary, the path integral can be evaluated as a perturbation series. These calculations
are complicated, first because of the combinatorial problem to identify the different terms
of the expansion that must be evaluated, and second, because evaluating the integrations
associated to each of these terms is hard.

The first problem (writing down all terms up to a given order of the expansion) can be
significantly simplified by using the technique of ↑ Fenyman diagrams:

! Perturbation theory! Feynman diagrams:

• Each Feynman diagram can be translated via a dictionary of ↑ Feynman rules into a
mathematical expression (typically including integrals) that must be evaluated. The
infinite sum of all these expressions converges to the scattering amplitude.

• The amplitude is specified by the“legs”of the diagram: Say two particles withmomenta
kin and qin collide and scatter into two (potentially different) particles with momenta
kout and qout. Quantummechanics (via the path integral) tells us that the total amplitude
of this process is the sum of the amplitudes of all possible processes consistent with
these boundary conditions. The interaction Lagrangian Lint of the theory specifies
the rules for allowed processes; these rules can be condensed into a set of ↑ Feynman
rules specific for the theory. In general, each Feynman graph consists of vertices that
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come from Sint and contribute one coupling constant � to the overal expression. The
links between the vertices (excluding the “legs” that stick out and are fixed by the
boundary conditions) correspond to particles propagating between these interactions.
Mathematically, each link corresponds to a ↓ propagator of the free theory.

iv | Momentum conservation demands that the sum of in- and outgoing momenta at each vertex
of a Feynman diagram add up to zero. It is now easy to check that these constraints, together
with the fixed external momenta kin; qin; kout; qout do not fix the momenta of all propagators
(links) if Feynman diagrams contain loops. This makes sense: the particle propagating along
the loop can have any momentum without violating energy-momentum conservation at the
vertices. Since we do not measure these particles, the path integral tells us that we must add
up all possible values of these “loop momenta”:

Path integral! Integrate over all undetermined momenta! Loop integrals

! Problem: Divergent expressions for k !1 in loops! UV-divergences

• Remember that largemomenta k !1 correspond to small distances and high energies;
the limit k ! 1 is therefore called ⁂ UV-limit and the corresponding divergences
⁂ UV-divergences.

• The occurence of these divergences is rather generic, and not specific to particularly
“problematic” quantum field theories. One can interpret UV-divergences as indicators
for their breakdown at very small distances (= high energies); i.e., quantum field theories
are presumably effective descriptions of some other (UV-finite) theory that we do not
know. In this regard, they are similar to the singularities of general relativity in
that both can be interpreted as mathematical artifacts that signal the inconsistency (and
thereby invalidity) of the theory in some domain.

The crucial question iswhether theseUV-divergenciesmake thewhole endeavour (to describe
particles by quantum field theories) a lost cause? After all, if computations yield only infinite
results, we cannot make predictions about anything/ .

! Temporary fix: Introduce momentum cutoff ƒ <1 in all divergent integrals:

(This is called a ↑ regularization.)Z 1

0

dk 7!

Z ƒ

0

dk (14.8)

This certainly removes all UV-divergencies and makes your results (scattering amplitudes)
finite. The problem is that these now depend on the unphysical cutoff ƒ, so that they cannot
be measurable quantities anymore! We clearly didn’t solve the problem but only masked it.

! Idea:

Can we “hide” the terms that diverge for ƒ!1 in unphysical parameters?

The answer is “Yes” and the procedure is called ↑ renormalization. To get a feeling for the
conditions that must be met for this to work, we must quantify the divergence of Feynman
diagrams a bit more carefully:

v | Superficial degree of divergence:

The following line of arguments might seem sloppy; there are more rigorous derivations that
come to the same conclusion but require more input from ↑ quantum field theory [20].

a | Recall: „ D c D 1! Compton wavelength: �c D
h
mc
D

2�
m

! Dimension of length: Œ�c� DM�1 (M : dimension of mass)
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b | Dimension of action: ŒS� D 1 (since „ D 1)

c | S D
R
ddxL and Œddx � DM�d ! Dimension of Lagrangian: ŒL� DM d

Since all dimensions can be expressed inM , we say that “L has (mass) dimension d”.

d | From Eq. (14.3) follows (use Œ@� DM ):

Œ�� DM
d�2

2 and Œ�� DM d�nd�2
2 (14.9)

e | ^ Amplitude F of single Feynman diagram F with N external lines:

Has same dimension as (hypothetical) single interaction ��N ! Œ�� DM d�N d�2
2 :

! ŒF � D Œ�� DM d�N d�2
2

f | Let the Feynman diagram F have V interaction vertices!

F
ƒ!1
� �VƒD (14.10)

D: ⁂ Superficial degree of divergence of F

After performing the integrals to compute the amplitude F from the Feynman diagram
F , the only dimensionful quantities left areV powers of the coupling constant� (one for
each interaction vertex of the diagram) andD orders of the momentum cutoffƒ. In the
limitƒ!1, the asymptotic expression of F must therefore scale as �VƒD; note that
this is an implicit definition ofD. IfD > 0, the contribution F has a UV-divergence.

! (use Œƒ� DM )

Œ��V Œƒ�D D ŒF � DM d�N d�2
2 (14.11a)

) V logM Œ��CD D d �N
d � 2

2
(14.11b)

logM Œ��: ⁂ Mass dimension of the coupling constant �

!We find for the superficial degree of divergence of F :

D D d �

Depends on
diagram F‚ …„ ƒ

logM Œ��„ ƒ‚ …
Eq. (14.9):
d�nd�2

2

�V �

Depends on
amplitudeM‚ …„ ƒ�
d � 2

2

�
N (14.12)

We can conclude for d > 2: (D < 0) Amplitude F converges forƒ!1.)
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• If the mass dimension of � is zero or positive, diagrams with more“legs” (in- and
out-going particles) become less divergent and eventually converge.

• Whether diagrams with more interaction vertices (= higher order of perturbation
theory) start to converge or diverge depends on the sign of the mass dimension of
the coupling constant.

g | ! Classification:

This lead to the following classification of interacting quantum field theories:

• logM Œ�� > 0 (Coupling constant has positive mass dimension.)

!Only a finite number of Feynman diagrams (superficially) diverge,, .

!⁂ Super-renormalizable theory

While this case is in some sense optimal, it is less relevant for interesting quantum
field theories like the Standard Model; thus it plays no role in the following.

• logM Œ�� D 0 (Coupling constant is dimensionless.)

!Only a finite number of amplitudes (superficially) diverge, .

Here “amplitudes” refer to infinite sums of Feynman diagrams, classified by their
number of external “legs”N .

!⁂ Renormalizable theory

Most interesting quantum field theories (like the Standard Model) are of this type.

• logM Œ�� < 0 (Coupling constant has negative mass dimension.)

! All amplitudes diverge at sufficiently high order in perturbation theory/ .

This follows because every amplitude has contributions from Feynman diagrams
with arbitrary many vertices V so that – independent of N – the superficial degree
of divergenceD becomes positive for high-enough orders of perturbation theory.

!⁂ Non-renormalizable theory

h | Renormalization:

The following procedure of renormalization works (provably) for renormalizable (and
super-renormalizable) theories because it assumes that a finite number of amplitudes are
UV-divergent. One can then show rigorously that all UV-divergencies of such theories
can be traced back to this finite set of divergent amplitudes (↑ Weinberg theorem). This
implies that if these UV-divergences can be“cured”, all scattering amplitudes of the
theory become UV-finite. The procedure to“cure” a finite number of UV-divergent
amplitudes is called renormalization and goes as follows:

(1) Start with a regularized (UV-cutoff ƒ) (super-)renormalizable theory.

! There is only a finite number of UV-divergent amplitudes.

(2) For each divergent amplitude,“add” a counter term with unphysical bare parameter
to the Lagrangian.

Strictly speaking you don’t add the counterterms: You split the terms with bare
parameters into (fixed) physical parameters and (UV-divergent) unphysical param-
eters; the latter are the counter terms.

(3) One can then show that all UV-divergences can be absorbed by these (unobservable
& unphysical) bare parameters by fixing their corresponding (observable & physical)
renormalized parameters.
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(4) You end upwith a theory that yields finite scattering amplitudes in the limitƒ!1
and reproduces the observed physical parameters every order of perturbation
theory, .

The UV-divergencies are now“hidden” in the bare parameters and make them
diverge in the limitƒ!1. But this is not a problem because they do not affecet
observable quantitites.

i | This means in particular:

Renormalizable quantum field theories allow for the computation of

predictions by fixing a finite number of physical low-energy parameters.

• For QED this would be the physical electron massm and charge e; in the Standard
Model there are about 18 such parameters that determine the masses and interac-
tions of elementary particles. These must be measured and can then be used to
make predictions about scattering amplitudes. This is why the Standard Model
cannot predict the masses of elementary particles (e.g., the Higgs boson).

• You might wonder: If we must use masses and interaction strengths of particles as
input of our theories, what is it actually good for? Remember that the predictions
of quantum field theories are scattering amplitudes M. These are complicated
functions of the momenta (both absolute value and direction) of the in- and out-
going particles. It is this highly non-trivial functional form that is predicted by
the theory – which can be compared to scattering experiments. In the case of the
Standard Model, theory and experiment match perfectly!

• Here is a very accessible explanation of renormalization by John Baez:

https://math.ucr.edu/home/baez/renormalization.html

But conversely:

We do not know how to define and/or extract predictions

from non-renormalizable quantum field theories.

For a non-renormalizable QFT we would have to add infinitely many counter terms
and fix infinitely many physical parameters to absorb the infinitely many UV-divergent
amplitudes. This makes such theories useseless and conceptually ill-defined.

vi | Examples:

• ^ Scalar field Eq. (14.3) in d D 4 with n D 4:

logM Œ��
14.9
D d � n

d � 2

2
D 0 (14.13)

! �4-theory is renormalizable in d D 3C 1 spacetime dimensions.

• ^ Quantum electrodynamics (QED) in d D 4:

LQED.A; @A;‰; @‰/ D

L0‚ …„ ƒ
N‰.i=@ �m/‰„ ƒ‚ …
Free fermions

�
1

4
F��F

��„ ƒ‚ …
Free photons

�

Lint‚ …„ ƒ
e N‰�‰A� (14.14)
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e: Coupling constant (= electric charge of fermion‰)

! Dimensional analysis:

ŒA� $ M
d�2

2 DM 1 ; Œ‰� $ M
d�1

2 DM
3=2 14:14

HHH) logM Œe� $ 0

(14.15)

!QED is (superficially) renormalizable in d D 3C 1 spacetime dimensions, .

– Note that we only showed that QED is superficially renormalizable by essentially
dimensional anlysis (= power counting). This is not a rigorous proof that QED
really is renormalizable to all orders of perturbation theory – it is only suggestive
that it might be. However, one can show rigorously that QED is renormalizable to
all orders of perturbation theory, although such proofs are very technical [310].

– The same is true for the strong interactions of quantum chromodynamics (QCD)
and the electroweak interactions: One (more precisely: Gerard ’t Hooft)
can prove (to the standards of theoretical physicists) that the full Standard Model
is renormalizable to all orders of perturbation theory [311, 312]. This yields op-
erationally well-defined quantum field theories for three of the four fundamental
forces of nature:

* Electromagnetic force 3

* Weak force 3

* Strong force 3

3 | Why does this procedure fail for gravity?

After this preliminary work, the question to answer is clear:

Is general relativity– defined by the Einstein-Hilbert action – renormalizable?

i | ^ Pure gravity! Einstein-Hilbert action Eq. (12.54) with � WD
p
16�G:

SEHŒg� D
1

�2

Z
d4x
p
gR (14.16)

Problem: This is not in the form S0 C Sint required for perturbation theory!

This means that we cannot simply declare the gravitational constant �2 / G as the coupling
parameter and draw conclusions from its mass dimension.

Note that due to the non-linearity of the Einstein field equations, pure gravity (without
matter) is already an interacting field theory that must be solved perturvatively.

ii | Expand Eq. (14.16) around static background spacetime:

g�� � ���„ƒ‚…
Background

C �h��„ƒ‚…
Quantum

fluctuations

(14.17)

The choice to rescale the field by � is covenient to bring the action → below into the standard
form needed for perturbation theory.

Eq. (14.17)!

p
g $ 1C �

2
h �
� C

�2

8
h �
� h �

� �
�2

4
h��h

��
CO.h3/ (14.18a)

R $ �@2h�� � �@�@�h
��
CO.h2/ (14.18b)
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Expanding the Einstein-Hilbert action in the fluctuations h�� yields:

SEHŒh� $
Z

d4x
h ( 1

2
@�h��@�h

��
�
1
2
@�h��@

�h �
�

C
1
4
@�h �

� @�h
�
� �

1
4
@�h��@

�h��

)
„ ƒ‚ …

L0 ! Graviton propagator

C �.@h/2hC : : :„ ƒ‚ …
Lint ! Interactions

i
(14.19)

• Note that the �2 cancels in the quadratic terms, while coupling constants survive in the
higher-order interaction terms (this is why we rescaled the field in the first place).

• L0 should be familiar: You studied this theory on → Problemset 1 as a first attempt at a
relativistic theory of gravity.

• Here we only write one of the lowest-order interaction terms exemplarily (omitting
indices); it is useful to derive the mass dimension of � from the mass dimension of h��
(which, in turn, is fixed by the non-interacting quadratic part). That an interaction term
of this form exists follows from Eq. (14.18) via partial integration; see Ref. [313] for
details.

iii | In principle you can start now to derive the Feynman rules from Eq. (14.19) to compute
scattering amplitudes of the Einstein-Hilbert quantum gravity.

When evaluating the path integral (e.g., to compute the propagator), a complication arises:
Eq. (14.19) is a gauge theory [due to the diffeomorphism invariance of Eq. (14.16); → Prob-
lemset 6 and ← Section 13.4 and also Eq. (11.103)]. If one naïvely calculates the path integral
of a gauge theory, all expressions blow up because the gauge orbits don’t oscillate and pro-
duce infinities. To count physically distinct field configuration only once, one has to add a
gauge-fixing term to the Lagrangian. In doing so, one encounters a functional determinant
that leads to new, artificial fields called ↑ Fadeev-Popov ghosts. They are a necessary math-
ematical nuisance and expand the list of Feynman rules & diagrams. Because of this, the
interactions of the Einstein-Hilbert action, and the fact that h�� is a rank-2 tensor field, enu-
merating and evaluating Feynman diagrams of this theory is not fun (even ignoring potential
UV-divergences).

By fixing the gauge appropriately, one can compute the graviton ↑ Feynman propagator from
the quadratic part L0 of Eq. (14.19) (↑ Ref. [313]) and finds

DF
��˛ˇ .k/

�
D
��˛��ˇ C ��ˇ��˛ � ����˛ˇ

k2 C i"
: (14.20)

This is nice but eventually futile because the theory contains infinitely many UV-divergencies
that one cannot control (→ next).

iv | In Eq. (14.19), � plays the role of the coupling constant that controls graviton-graviton scatter-
ing. Hence its mass dimension determines the renormalizability of general relativity:

Dimensional analysis of Eq. (14.19):

Œh� $ M
d�2

2 DM 1 14:19
HHH) logM Œ�� D �1 < 0

! � has negative mass dimension!

Here is a sanity check: The gravitational constant can be written as G D „c=m2Planck with
Planck mass mPlanck. With „ D 1 D c it follows thatG has dimensions ofM�2, consistent
with our result above for � D

p
16�G.
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v | Conclusion:

general relativity is superficially non-renormalizable / .

¡! This does not prove that the Einstein-Hilbert action is not renormalizable; but if it were,
some sort of unexpected cancellations/symmetries would be necessary (→ next).

vi | Known results:

• One can show that at one-loop level, pure Einstein gravity (no matter fields) has – quite
unexpectedly! – no UV-divergences [314].

• However, when matter is involved, the one-loop diagrams of the Einstein-Hilbert action
becomeUV-divergent, see Ref. [314] for the example of a scalar field (see also references
in Ref. [315]).

• Unfortunately, pure Einstein gravity is proven to be UV-divergent at two-loop level
[315, 316]. This suggests that no unexpected cancellations/symmetries make the theory
renormalizable.

• It is therefore widely believed (though, tomy knowledge, not proven) that no unexpected
cancellations occur beyond two-loop order; therefore, Einstein gravity seems to be
perturbatively non-renormalizable.

• For an alternative (and pedagogic) explanation for the non-renormalizability of gen-
eral relativity see Ref. [317].

vii | In a nutshell:

• general relativity is different from the field theories of the Standard Model in
that its coupling constant has negative mass dimension.

• As a consequence, the only systematic procedure to operationally define quantum field
theories (namely: renormalization) does not work for general relativity.

• However, there is no rigorous proof that general relativity cannot be quantized
by another (non-perturbative?) method.

4 | How to circumvent this problem?

Since the conventional method to study quantum field theories fails for general relativity,
one needs new methods to tackle the problem. There are two very different approaches:

• Approach 1:

Try to “rediscover” general relativity

in some limit of a UV-finite quantum field theory.

Most prominent contender: → String theory (Chapter 15)

String theory does not only claim to provide a path for quantizing the gravitational field, but
also strives to explain the existence and interactions of all other particles (“matter”) in a
single, consistent framework. Its aspiration is therefore not only to be a theory of quantum
gravity but a “theory of everything” (ToE). The emergence of general relativity is
only one of its aspects.
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• Approach 2:

Try to come up with an alternative (non-perturbative?) method

to quantize the metric field of general relativity.

Most prominent contender: ↑ Quantum loop gravity

Quantum loop gravity “takes general relativity seriously” and directly tries to quan-
tize the theory by discretizing its degrees of freedom and proposing a UV-finite action & path
integral that determine the dynamics of the geometry of spacetime. Quantum loop gravity
(in its basic incarnation) does not contain matter fields; it is “just” a theory of quantum
gravity. In contrast to string theory, quantum loop gravity does not claim to be a “theory of
everything”.
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↓ Lecture 32 [06.08.24]

15. Sneak Peek: Bosonic String Theory

This primer on bosonic string theory is an amalgamation of various sources, mostly lecture scripts (by
Carmen A. Núñez, Arthur Hebecker, and David Tong), and the introductory textbook by Barton
Zwiebach [7].

1 | What is the rationale of string theory?

• Hypotheses:

– ^ Fixed background spacetime g��

In contrast to general relativity, string theory has no manifestly background
independent formulation. The dynamics of the spacetime geometry is described by
quantum fluctuations (of gravitons) on top of a classical, static background metric.

– Postulate elementary entities: Relativistic strings

The strings of string theory are elementary entities that propagate (and interact) on
the fixed background spacetime; think of them as “rubber bands,” i.e., they can be
stretched. These strings can be closed (= loops) or open (→ later). Note that strings
are not emergent from other degrees of freedom – string theory does not explain were
strings come from.

– Postulate an action that determines…

* … dynamics of single string and

* … interaction between strings.

This action is motivated as a generalization of the action of a free point particle.

– Hope:

* Quantized excitations of strings = Fundamental particles

* Joining/splitting of strings = Fundamental interactions between particles

* No point-like particles! No UV-divergences for ƒ!1

* Classical limit! general relativity

• Intuition:

Closed strings can oscillate. Their lowest-frequency modes look as follows:
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Note that the left oscillation is invariant under rotations about the symmetry axis, whereas
the two modes on the right transform into each other under rotations by˙45ı – just as a
gravitational wave with helicity˙2 would (← Section 13.4).

!We should expect a graviton state from closed strings!

– At this point, it is unclear whether these modes are truly massless after quantization (as
required for excitations of a long-range interaction like gravity).

– The“breathing mode” corresponds to a scalar particle called → dilaton which comes
along with the graviton in string theory; this means that string theory actually predicts
a scalar-tensor theory of gravity (← Section 12.3). For consistence with reality (in gen-
eral relativity there is no dilaton), there must be a mechanism to render the
dilaton massive (= short-ranged).

2 | How to identify gravity?

Since string theory follows Approach 1, we will not start from general relativity and the
Einstein-Hilbert action. But how do we know then that string theory is actually a quantum theory
of gravity? How do we identify the “gravity” part? We could of course hope that the Einstein field
equations fall into our lap, but this is naïve. String theory is a quantum theory and the EFEs are
classical – and the classical limit of a quantum theory is often not evident at all.

A quantum theory of gravity should somehow quantize the gravitational field of general rela-
tivity, i.e., the metric tensor field g�� that describes the geometry of spacetime. To identify
gravity is then tantamount to identifying the (excitations/quanta of the) metric. Hence we arrive at
the fundamental question what makes a field “the metric” in the first place? Up to now we always
postulated the existence of a Riemannian manifold equipped with a metric tensor. We show below
that this is not necessary. A field does not become“the metric” by declaration, but by the way it
interacts with other fields. This yields an operational method to identify gravity in any theory:

i | Observation (Section 13.4): Gravitational waves…

• … propagate with the speed of light.

• … have helicity˙2.

!Gravitons should be massless spin-2 particles.

! If we want to “find gravity” we should search for massless rank-2 tensor fields h�� .

Since 1˝1 D 0˚1˚2 (irreducible representations of SO.3/, ↓ angular momentum coupling),
spin-2 particles are described by rank-2 tensor fields: h�� . This makes sense if you recall
Eq. (13.183) which directly links the two spacetime-indices of the tensor field with the helicity
˙2 under spatial rotations. It also makes sense because a metric tensor g�� is a (symmetric)
rank-2 tensor field. That the field is massless is also directly related to the fact that gravity is a
long-range interaction (like electromagnetism).
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! Question: What makes a massless rank-2 tensor field “the metric”?

ii | ^ Massless rank-2 tensor field h�� on static Minkowski space ��� :

The field h�� is not (yet) the metric – it is just an ordinary tensor field on Minkowski space!

Massless!Only quadratic derivatives allowed
ı
�!Four possible terms: (Details:↑ Ref. [313])

@�h��@�h
�� ; @�h��@

�h �
� ; @�h �

� @�h
�
� ; @�h��@

�h�� (15.1)

• All other conceivable contractions are related to these terms modulo partial integration
(= total derivatives).

• Termswithout derivative likeh��h�� lead to a constant shift in the relativistic dispersion
of the field theory, i.e., to massive excitations.

iii | ^ Additional matter fields �: LMatter.�; @�/! HEMT T ��Matter with @�T
��
Matter

:
D 0

Assumption:

h�� couples to energy & momentum via T ��matter.

This is our only assumption that makes the massless rank-2 tensor field“special”. We will
see that this assumption (plus some self-consistency condition) is all that is needed to elevate
h�� from an ordinary tensor field to “the metric”.

!Most general action:

SŒh; �� WD

Z
d4x

h � a @�h��@�h
��
C b @�h��@

�h �
�

Cc @�h �
� @�h

�
� C d @�h��@

�h��

�
C

�
2
h��T

��
Matter CLMatter

i
(15.2)

with arbitrary couplings a; b; c; d; � 2 R.

Since T ��Matter is symmetric, the tensor field is w.l.o.g. symmetric as well: h�� D h��.

iv |
ı
�! Equation of motion for h�� :

Œ : : : @2h : : : ���„ ƒ‚ …
Depends on a; b; c; d

D
�
2
T
��
Matter (15.3)

This EOM is linear in h�� since the action is quadratic.

! Energy-momentum conservation:

@� Œ : : : @
2h : : : ��� D �

2
@�T

��
Matter

:
D 0 (15.4)

We want this to be identically satisfied for h�� :

@� Œ: : : @
2h : : :��� � 0

ı
H) a D 1

2
; b D �1

2
; c D 1

4
; d D �1

4
(15.5)

The solution is unique up to a global rescaling that can be absorbed into � via a rescaling of
the tensor field.

This means that energy momentum conservation for the matter fields is enforced by the
coupling to h�� rather than a constraint on the dynamics of h�� itself.
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v | Hence we end up with the most general action that meets our requirements:

SŒh; �� D

Z
d4x

�
L0.h; @h/„ ƒ‚ …
← Eq. (14.19)

C
�
2
h��T

��
Matter CLMatter

�
(15.6)

¡! The quadratic Lagrangian of the tensor field is identical to L0 in Eq. (14.19) (in which h��
is the deviation of the metric g�� fromMinkowski space ���). Recall that Eq. (14.19) was
derived from the Einstein-Hilbert action Eq. (14.16). This result shows that the seemingly
arbitrary structure of L0 in Eq. (14.19) is actually not arbitrary at all – it is the only possible
quadratic action for a massless rank-2 tensor field that couples to a conserved current.

vi | Inconsistency of Eq. (15.6):

Eq. (15.6) is conceptually inconsistent because it implies the existence of two “types” of
energy & momentum: The first type is the energy & momentum of matter fields, which
couples to h�� . But h�� is a dynamical field and therefore carries energy & momentum of
its own – to this second type h�� does not couple. This doesn’t make sense and we should
get rid of this two-class society of energy & momentum:

This is not just a conceptual inconsistency: Enforcing energy-momentum conservation on a
subsystem (the matter fields) while coupling this subsystem to another dynamical field (the
tensor field) cannot be consistent (i.e., allow for solutions of the combined EOMs). You
studied this on → Problemset 1.

! Assumption (updated):

h�� couples to energy & momentum of all fields (including itself!).

!We therefore should replace the matter HEMT by the total HEMT of the theory:

T
��
Matter 7! T �� WD T

��
Matter C T

��

h
(15.7)

But this makes the Lagrangian self-referential: T ��
h

is computed from the part of the La-
grangian that includes h�� – which includes T ��

h
. Thus you will be forced to add higher and

higher order terms of h�� to make h�� couple to its own energy-momentum tensor. This
infinite series can be summed and yields a new, non-linear theory for the tensor field h�� :
the Einstein-Hilbert action!

One can show [102]
�
�!

SŒh; �� becomes the Einstein-Hilbert action of the field
g�� WD ��� C h�� which couples minimally to LMatter:

Eq. (15.6) 7! Eq. (12.65)

This means that g�� D ��� C h�� becomes the metric – while the static background ���
becomes unobservable – simply by demanding that the massless tensor field h�� couples to
the energy & momentum of all fields.

vii | Conclusion:

Massless tensor h��
… that couples to T ��

)
)

(
g�� � ��� C h�� : Metric

& Einstein-Hilbert action„ ƒ‚ …
general relativity
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• So in principle, we should look for quantized, massless excitations that transform under
a spin-2 representation (have two symmetric spacetime-indices). If these excitations
couple to energy&momentum, they are the excitations of themetric field, i.e., gravitons.

We will not do the latter in string theory, as it requires studying the interactions of
strings. However, we will use a different argument to show that the gravitons of string
theory have metric meaning.

• Let me reformulate the conclusion of this part, as its importance cannot be overstated:

Imagine you are given the action of everything Eq. (12.65), but all fields (metric and
matter alike) have been labeledX i were i runs through all components of all fields; for
good measure, all interactions are given by one big sum of many terms. To interpret
this theory, do you need to know which field plays the role of the metric of spacetime?
According to our findings above, the surprising answer is “No”: The metric field g��
is not the metric by declaration – it behaves as the metric because it can be interpreted
as a massless rank-2 tensor that couples to the total energy-momentum tensor. Being
the metric means that the values of the field correlate with the relational properties we
call “length” and“time”, and these correlations are established by its coupling to the
energy-momentum tensor (which, unsurprisingly, generates local translations in space
and time).

• The above line of arguments shows again that the Einstein field equations are very
generic: One does not need much input to end up with general relativity; recall
Section 12.1.

3 | Reminder (← Section 5.3): Relativistic point particle:

¡! Throughout this chapter we consider objects onD dimensional Minkowski space.

i | ^ Action onD-dimensional Minkowski space R1;D�1:

SŒX� D �m

Z
d�
q
� PX� PX� / Proper time along trajectoryX� (15.8)

This is a functional of time-like trajectories X� W R! R1;D�1:

In string theory, points in spacetime are conventionally denoted by capital letters: X�.

This action Eq. (15.8) is…

• Poincaré/Lorentz invariant

• Reparametrization invariant [� 7! N� D N�.�/] (← Section 5.4)
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ii | ! Canonical momentum:

p� WD
@L

@ PX�
D

m PX�q
� PX� PX�

(15.9)

Note: TheseD momenta are not independent! ! Constraint:

p2 D �m2 (Mass shell condition) (15.10)

iii | The action Eq. (15.8) is not easy to work with because of the square root.
Can one get rid of it?

! ^ Alternative action with auxiliary variable e D e.�/:

SŒe;X� WD
1

2

Z
d�
�
e�1 PX� PX� � em

2
�

(15.11)

! Classically equivalent to Eq. (15.8)

To check this, compute the EOM for the auxiliary variable e,

@L

@e
D 0 , e2 D �

1

m2
PX� PX� ; (15.12)

and plug this back into Eq. (15.11) which immediately yields Eq. (15.8).

Benefits of Eq. (15.11):

• No square root.

• Well-defined for massless particles (= null trajectories).

• Quadratic in derivatives!Quantization via path integral straightforward.

For these reasons, we will use a similar construction for the relativistic string → below.

15.1. The classical relativistic string

4 | Relativistic string:

We generalize the relativistic point particle (which traces out a 1D world line in spacetime) to a
relativistic string (which traces out a 2D world sheet):

¡! This is still classical, relativistic physics; there is no quantum mechanics involved!

i | ^ Parametrization of 2D world sheet inD spacetime dimensions:

X� W R � I„ƒ‚…
World sheet

! R1;D�1„ ƒ‚ …
Spacetime

with .�; �/ 7! X�.�; �/ (15.13)

I � R: Some interval for � (will be specified later)

Interpretation of world sheet coordinates:

• � : Time (coordinate) along trajectory of string

• � : Point (coordinate) on string
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¡! You should think of the parameter range as the base space and spacetime as the target space;
the string positionsX� are thenD fields on the 2D base space (the world sheet). This implies
that the first-quantized theory of a relativistic string will be a 1+1-dimensional quantum field
theory.

ii | What is a reasonable String action?

We do not derive this action but motivate it as generalization of the relativistic point particle:

^ Tangent vectors to world sheet embedded in spacetime:

X� WD @�X
�„ƒ‚…

DW PX�

@� and X� WD @�X
�„ƒ‚…

DWX 0�

@� (15.14)

! Induced ⁂ world sheet metric:

gab WD �.Xa; Xb/ D @aX
�@bX� (15.15)

with a; b 2 f�; �g � f0; 1g.

The world sheet is a 2D submanifold ofD-dimensional spacetime. The Minkowski metric
��� then induces a metric on the world sheet; just like the surface of a ball inherits a metric
from the Euclidean space in which it is embedded.

!World sheet area element:

dA D
p
j detgabj d�d� (15.16)

• Integrating this over � and� yields the surface area of theworld sheetwrt. theMinkowski
metric of spacetime.

• This is a mathematical fact from Riemannian geometry; it has nothing to do with string
theory. Remember that the determinant of a 2 � 2-matrix is the area of a parallelogram
determined by the four numbers of the matrix. You can also think of the worldsheet
as a two-dimensional Riemannian manifold. From Eq. (10.101) it follows then that the
coordinate-independent volume form on such a manifold is dV D

p
gddx D

p
Ngdd Nx;

in d D 2 dimensions this is simply the area: dA D
p
gd2x.

For details: ↑ Zwiebach [7] (§6.1-§6.3, pp. 100–110).

Remember: Relativistic particle action (15.8) / Length of world line

! Idea: Relativistic string action / Area of world sheet
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!⁂ Nambu-Goto action:

SNGŒX� WD �T

Z
dA

15.15
15.16
D �T

Z q
. PX �X 0/2 � . PX/2.X 0/2 d�d� (15.17)

Note that PX is time-like whereasX 0 is space-like, so that the expression under the square
root is positive. Expressions like PX �X 0 are short for PX�X 0

� etc.

¡! This is a classical 2D field theory on the world sheet withD fields: X�.�; �/.

There is only one parameter that will show up in various permutations:

• T : ⁂ String tension

• ˛0 �
1

2�T
: ⁂ Regge slope

• ` �
p
2˛0 D

1p
�T

: ⁂ String length

iii | Symmetries of SNG:

It is always good to know the symmetries of a theory, both global and local (gauge):

• D-dimensional Poincaré invariance:

NX�.�; �/ D ƒ��X
�.�; �/C a� (15.18)

– This follows from Eq. (15.17) because the integrand is a scalar and Poincaré trans-
formations are isometries of Minkowski space. This symmetry is therefore a
consequence of our chosen background spacetime.

– This is a global symmetry on the world sheet as it transforms the fields independent
of the point .�; �/ on the world sheet. It is also an internal symmetry, in that it
mixes only the components of the fields and does not mess with the world sheet
points. (Recall that the world sheet – and not spacetime – is the base space of our
field theory!)

• Reparametrization invariance = 2D diffeomorphism invariance:

NX�. N�; N�/ WD X�.�; �/ with N� D N�.�; �/ and N� D N�.�; �/ (15.19)

– This symmetry reflects the geometric nature of the Nambu-Goto action: The area
of the world sheet traced out by the string is independent of the coordinates .�; �/
used to parametrize the world sheet. It is therefore a local gauge symmetry on the
world sheet.

– The transformation Eq. (15.19) marksX� as scalar fields on the world sheet (the
Lorentz index only labels different fields!).

– This symmetry follows from the invariance of the area element Eq. (15.16) under
reparametrizations (coordinate transformations on the world sheet); cf. Eq. (10.101)
forD D 2.

iv | Define the following quantities (P �� are the canonical momenta of the field theory):

P �� WD
@L

@ PX�
$ �T

. PX �X 0/X 0
� � .X

0/2 PX�q
. PX �X 0/2 � . PX/2.X 0/2

(15.20a)

P �� WD
@L

@X 0�
$ �T

. PX �X 0/ PX� � . PX/
2X 0

�q
. PX �X 0/2 � . PX/2.X 0/2

(15.20b)
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ı
�! Equation of motion (for arbitrary boundary conditions):

@P ��

@�
C
@P ��

@�
D 0 : (15.21)

This is the equation ofmotion of a relativistic string on aD-dimensionalMinkowski spacetime.
It looks deceptively simple, but is actually extremely complicated due to Eq. (15.20). Luckily
we will not have to solve it in this form.

v | Alternative action:

Similar to the point particle Eq. (15.8), The Nambu-Goto action is not well-suited for quanti-
zation due to the square root. We can find the analog of Eq. (15.11) by introducing an auxiliary
field that makes the metric on the world sheet dynamical:

!⁂ Polyakov action:

SPŒh; X� WD �
T

2

Z
p
hhab@aX�@bX

�„ ƒ‚ …
DWLP=.� T=2/

d�d� (15.22)

with dynamical world sheet metric hab (a; b 2 f0; 1g) and h D j det.hab/j.

• The Polyakov action (15.22) is classically equivalent to the Nambu-Goto action (15.17).

To check this, calculate the EOMs for hab from Eq. (15.22) and plug them back into
Eq. (15.22) to obtain Eq. (15.17).

• We denote the world sheet metric by hab (and not by gab) to emphasize that hab is
dynamical and not necessarily the metric gab induced on the world sheet by the static
spacetime.

• The metric hab has Lorentzian signature .�;C/.

• ¡! There are now two metric tensors involved: hab is the dynamical metric on the
two-dimensional string world sheet, whereas ��� (hidden in the contraction of the
�-indices with� D 0; � � � ;D�1) is the static backgroundmetric of theD-dimensional
spacetime on which the string propagates (here the Minkowski metric):

@aX�@
aX� � hab@aX�@bX

�
� hab���@aX

�@bX
�

World sheet metric (dynamic) Spacetime metric (static)

(15.23)

• The Polyakov action descibesD massless ← Klein-Gordon fields X� minimally coupled
to the world sheet metric hab; recall Eq. (11.37) and remember that the fieldsX� are
scalars, so that no covariant derivatives are needed (recall also → Problemset 4).

vi | Symmetries of SP:

• D-dimensional Poincaré invariance: (global & internal symmetry)

NX�.�; �/ WD ƒ��X
�.�; �/C a� and Nhab.�; �/ WD hab.�; �/ (15.24)

This symmetry is inherited from the Nambu-Goto action and reflects the fact that the
integrand of the Polyakov action is still a spacetime scalar (and that Poincaré transforma-
tions are isometries of Minkowski space). Note that the world sheet metric transforms
as a scalar under these transformations.
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• Local gauge symmetries: (on the world sheet)

– Diffeomorphism invariance:

a | Let us first define an alternative notation: �0 WD � and �1 WD �
A reparametrization/diffeomorphism can then be written in a compact form:

N� WD N�.�; �/

N� WD N�.�; �/

)
, N�a WD N'a.�/ (15.25)

Here we use the shortcut � � f�0; �1g D f�; �g.

The fields transform then as follows under diffeomorphisms:

NX�. N�/ WD X�.�/ (Scalar) (15.26a)

Nhab. N�/ WD
@�c

@ N�a
@�d

@ N�b
hcd .�/ (Covariant rank-2 tensor) (15.26b)

Again, this reflects the fact that the parametrization of the string world sheet is
unphysical and therefore a gauge symmetry.

¡! This transformation tells us that theD components X� are scalar fields on
the world sheet. By contrast, they transform as vector components on Minkowski
space (← Poincaré symmetry).

b | There is an important special class of diffeomorphisms:

N�a D 'a.�/ is a ⁂ conformal diffeomorphism (or ↑ conformal map) iff

Nhab. N�/ D
@�c

@ N�a
@�d

@ N�b
hcd .�/ D �.�/ hab.�/ (15.27)

for some �.�/ > 0.

* Conformal diffeomorphisms do not change angles. This is apparent from
the rescaling of the metric tensor by�.�/, which only changes the length of
tangent vectors, recall Eqs. (10.9) and (10.10).

* Conformal diffeomorphisms include ← isometries of the world sheet metric,
i.e., coordinate transformations that do not change the components of the
metric at all: �.�/ D 1.

– Weyl invariance:

The Polyakov action is invariant under the transformation

QX�.�; �/ WD X�.�; �/ and Qhab.�; �/ WD e
2�.�;�/hab.�; �/„ ƒ‚ …

⁂ Weyl transformation

(15.28)

for some real-valued function �.�; �/.

* A transformation of this form is called ⁂ Weyl transformation.

* ¡! Note that Weyl transformations are active transformations of the world sheet
metric, they are not coordinate transformations. Hence, Weyl transformations
are not conformal diffeomorphisms.

* Use Qhab D e�2�.�;�/hab to show the invariance of Eq. (15.22).
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* The rescaling by e2� is a convenient way to make sure that the prefactor is
positive for all functions � (which it must be for the newmetric to remain regular
everywhere).

To sum up:

– Conformal diffeomorphisms are a special class of diffeomorphisms that change the
components of the world sheet metric only by a local factor (i.e., they act on points
of the world sheet and move them around).

– Weyl transformations are a particular class of transformation of the values of the
metric field by rescaling it locally without moving points on the manifold around.

Since the Polyakov action has both, Weyl invariance and diffeomorphism invariance…

Diffeo. invariance: .h;X/
'
�! . Nh; NX/ ) SPŒ Nh; NX� D SPŒh; X� (15.29a)

Weyl invariance: h
�
�! Qh ) SPŒ Qh;X� D SPŒh; X� (15.29b)

…we can combine them:

^ Conformal diffeomorphism '!

SPŒh; X�
Diff
D SPŒ Nh; NX�

Conf
D SPŒ Qh; NX�

Weyl
D SPŒh; NX� (15.30)

That is, we can use the Weyl symmetry to “undo” the effect of a conformal diffeomor-
phism on the metric, such that only the fields are affected by the conformal map. We
call such transformations of the fields conformal transformations.

! Conformal transformation ' is symmetry of SP on fixed background metric hab .

!

The Polyakov action is a ⁂ conformal field theory. (15.31)

– Note that a particular class of conformal transformations are global rescalings of the
world sheet: .�; �/ 7! .��; ��/; i.e., conformal field theories are scale invariant.
Thismakes such theories (though not the Polyakov action) useful tools in condensed
matter physics to describe second-order phase transitions (where systems become
scale invariant due to fluctuations).

– The conformal symmetry will not survive the quantization of the Polyakov action
in general; this is called ↑ conformal/trace/Weyl anomaly. Since the conformal
symmetry is a (unphysical) gauge symmetry of the relativistic string, this poses a
fundamental problem. The conformal symmetry can only be restored if (1) the
spacetime dimension isD D 26 and (2) themetric of spacetime satisfies theEinstein
field equations.
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↓ Lecture 33 [07.08.24]

5 | ^ Hilbert energy-momentum tensor:

Tab.�; �/
11.106
D �

2
p
h

ı.
p
hLP/

ıhab
11.118
D T

�
@aX

�@bX� �
1
2
hab@cX

�@cX�
�

(15.32)

Use Eq. (11.118) or your result from → Problemset 4 for the Klein-Gordon field to show this. Note
that we defined the HEMT here with the opposite sign [cf. Eq. (11.106)]; this is because we use
the opposite signature .�;C/ for the metric hab . The sign makes the energy density T00 positive
(which is how the sign of the HEMT is conventionally chosen).

Symmetries constrain the HEMT as follows:

Diffeomorphism invariance (15.26)
11:109
����! T ab

Ib

:
D 0 (divergence-free) (15.33a)

Weyl invariance (15.28)
ı
�! T aa � 0 (traceless) (15.33b)

To show that the trace vanishes due to Weyl invariance is straightforward. First, define

Qhab WD e
2�hab ; (15.34)

and then compute the variational derivative of LP. Qhab; X
�/ wrt. �:

0
Weyl
D

ıLP

ı�

15.28
D

ıLP

ı Qhab

ı Qhab

ı�

11.100
D �

p
hT abe2�hab D �

p
hT aa e

2� : (15.35)

This implies T aa � 0 without imposing the equations of motion; it is an identity. [This is a
consequence of the fact that the fieldsX� do not change under Weyl transformations.]

6 | Equations of motion:

• Varying Eq. (15.22) wrt. the world sheet metric hab yields the HEMT:

ıhSP
Š
D 0

15.32
(H) Tab

Š
D 0 (15.36)

Tab has no derivatives of the metric [Eq. (15.32)]! Constraint

• Varying Eq. (15.22) wrt. the fieldsX� yields:

ıXSP
Š
D 0 , @a

�p
hhab@bX

�
�
Š
D 0 , �X�

Š
D 0 (15.37)

with Laplace-Beltrami operator � D rara [← Eq. (10.97)].

Recall → Problemset 4 and Eq. (11.38).

This EOM looks much more tracktable than the EOM (15.21) of the Nambu-Goto action.
But we should not forget that it must be augmented by the constraint Eq. (15.36).

7 | Boundary conditions:

If the world sheet is finite (here in � direction), the variation of the action has boundary terms that
must also vanish (in addition to the EOMs above):
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^ World sheet with � 2 R and � 2 I D Œ0; l� for 0 < l <1:

ıXSP $
C1Z

�1

d�

lZ
0

d�

Š
D0‚ …„ ƒ

ı.
p
hLP/

ıX�„ ƒ‚ …
! EOM (15.37)

ıX� � T

C1Z
�1

d�
h Š

D0‚ …„ ƒ
p
h ıX� @

�X�„ ƒ‚ …
Boundary term

i�Dl

�D0
(15.38)

To show this, use Eqs. (11.98) and (11.100) (forX� instead of g��) and apply them to the Polyakov
action Eq. (15.22).

There are three possibilities to make the boundary term vanish:

• Closed string:

A closed string requires that the points � D 0 and � D l in I are identified; in particular:

X�.�; 0/
Š
D X�.�; l/ and @�X�.�; 0/

Š
D @�X�.�; l/ (15.39)

These conditions make the difference of the two boundary terms in Eq. (15.38) vanish.

For consistency, also the metric must be periodic: hab.�; 0/
Š
D hab.�; l/.

! All fields are periodic in � -direction

! String = Closed loop

• Open string:

An open string has endpoints; there are two possibilities to make each of the two boundary
terms in Eq. (15.38) vanish separately on these endpoints:

– Neumann boundary conditions:

@�X�.�; 0/
Š
D 0

Š
D @�X�.�; l/ , na@aX

�
j@M

Š
D 0„ ƒ‚ …

Coordinate independent

(15.40)

Here M denotes the 2D world sheet and na is the normal on the boundary 1D @M.

! Ends of string move freely in spacetime

Note that the positions X�.�; 0/ andX�.�; l/ are not fixed.

– Dirichlet boundary conditions:

The constraints Eq. (15.39) and Eq. (15.40) are Poincaré/Lorentz covariant equations.
With these boundary conditions, the internal Poincaré invariance of the theory remains
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in tact. If we allow for a violation of this symmetry, there is a third possibility to make
the boundary terms vanish:

�
ıX�

��Dl

�D0

Š
D 0 )

�
@�X

�.�; 0/ D 0

@�X
�.�; l/ D 0

�
)

�
X�.�; 0/ D const

X�.�; l/ D const

�
(15.41)

! String ends are fixed (here: in spacetime)

For an open string, one canmix Neumann andDirichlet boundary conditions for the different
componentsX� because the boundary terms in Eq. (15.38) are a sum over� D 0; : : : ;D�1.
If X0 and p of the spatial componentsX i satisfy Neumann boundary conditions, the string
can move freely on a p-dimensional hyperplane in space; this hyperplane (extended by one
dimension in time) is called a ↑ Dp-brane.

! Strings can be attached to a ↑ D-branes (D = Dirichlet)

After quantizing strings attached to a D-brane, one finds that some of their oscillator modes
can be interpreted as quantum fluctuations of the D-brane itself (their coherent states deter-
mine the expecation value of the D-brane position in spacetime). Hence one finds, quite
surprisingly, that D-branes are actually dynamical objects – and not static & classical back-
ground structures.

In the following we only consier closed strings and open strings withNeumann boundary conditions.

8 | Flat gauge: (also called conformal gauge)

Mathematical fact: Every two-dimensional pseudo-Riemannian manifold is conformally flat:

!8 hab 9 Coordinates such that

hab D �
2.�; �/�ab D �

2.�; �/

�
�1 0

0 1

�
ab

(15.42)

for some non-vanishing conformal factor �.�; �/.

¡! Conformal flatness does not imply the vanishing of the Riemann curvature tensor.

This is a peculiar feature of two dimensions: On a d -dimensional manifold the metric tensor has
d.d C 1/=2 independent components. The diffeomorphism group (coordinate transformations)
has d generators [← Eq. (11.101)], which leaves d.d � 1/=2 degrees of freedom of the metric that
cannot be fixed by coordinate transformations. In d D 2 this is exactly one degree of freedom,
namely the conformal factor in Eq. (15.42).

We can now use the Weyl invariance (15.28) of the Polyakov action to drop the conformal factor:

Weyl invariance ! hab D �ab ⁂ Flat gauge (15.43)

All calculations that follow are perfomed in flat gauge:

9 | Conjugate momentum & Poisson algebra:

In flat gauge, the Polyakov action & Lagrangian are quite simple:

S flat
P ŒX�

15.22
D

T

2

Z
d�d�

�
. PX/2 � .X 0/2

�„ ƒ‚ …
DWLflat

P =.
T=2/

(15.44)
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To prepare for canonical quantization, we need the conjugate momentum of X�:

! Conjugate momentum:

…�.�; �/ WD
@Lflat

P

@ PX�
D T PX� (15.45)

with satisfies the ↓ canonical Poisson algebra: (defined at equal time!)˚
X�.�; �/;…�.�; �

0/
	
D ı.� � � 0/ ı�� (15.46)

This is the field-theory analog of fxi ; pj g D ıij that you encountered in your course on classical
mechanics. The Poisson bracket for fields is defined via functional derivatives. However, we will
expand the fields into a discrete set of modes → below anyway, so that we can impose this Poisson
algebra directly on the modes (without the need for functional derivatives).

10 | Classical solutions of EOM (15.37) for X�:

In flat gauge, the Laplace-Beltrami operator yields a simple wave equation:�
@2� � @

2
�

�„ ƒ‚ …
�

X� D 0 (15.47)

We will now write down the general solutions of this EOM for a closed and an open string.

¡! Do not forget that this is only one of the EOMs; it must be augmented by the constraint Eq. (15.36).
We will study the implementation of this constraint on the solutions → later.
ı
�! General solution:

X�.�; �/ D X
�
R.� � �/„ ƒ‚ …

“Right mover”

CX
�
L .� C �/„ ƒ‚ …

“Left mover”

(15.48)

HereX�
R=L

are arbitrary (differentiable) functions of a single variable.

In → light-cone coordinates �˙ D � ˙ � the EOM (15.47) reads @C@�X
� D 0. Integrating twice

yields the general solutionX� D X�R.�
�/CX

�
L .�

C/.

i | ^ Closed string:

a | Wemust implement the boundary conditions Eq. (15.39) on the solutions Eq. (15.48).

Let w.l.o.g. l D � : (this can always be achieved by reparametrizing the world sheet)

X� 2 R and X�.�; � C �/ D X�.�; �/ : (15.49)

!We want to parametrize real-valued, � -periodic and differentiable functions.

! Fourier series
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b |
ı
�!Most general solution:

X
�
R D

1
2
x� C ˛0p�.� � �/C i

q
˛0

2

X
n¤0

˛
�
n

n
exp Œ�2in.� � �/� (15.50a)

X
�
L D

1
2
x� C ˛0p�.� C �/C i

q
˛0

2

X
n¤0

Q̨
�
n

n
exp Œ�2in.� C �/� (15.50b)

Here we use the slope parameter ˛0 D .2�T /�1 for convenience. Note that we ex-
tracted the n D 0 component as 1

2
x� from the sum. The linear part / p� is not

periodic in � but becomes so in the sum Eq. (15.48). All prefactors are chosen for
convenience.

The solutions are parametrized by the following free parameters:

• x�; p� 2 R: Center of mass initial position & momentum of string

The interpretation of x� and p� is easily confirmed:

x� $
1

�

Z �

0

d� X�.0; �/ (15.51)

and

p� $
1

2�˛0

Z �

0

d� @�X�.�; �/
15.45
D

Z �

0

d� …�.�; �/ : (15.52)

• ˛
�
n ; Q̨

�
n 2 C: Fourier components of string oscillation modes

Reality condition: X� 2 R ,

˛��n D .˛
�
n /

� and Q̨
�
�n D . Q̨

�
n /

� (15.53)

When checking this, do not forget that n 2 Z so that n 7! �n.

It will be convenient to define for the closed string: ˛�0 � Q̨
�
0 �

q
˛0

2
p�.

c | Poisson algebra Eq. (15.46) in mode space
ı
()

fx�; p�g D ���

f˛�m; ˛
�
ng D imımCn�

��

f Q̨
�
m; Q̨

�
ng D imımCn�

��

f˛�m; Q̨
�
ng D 0

(15.54a)

(15.54b)

(15.54c)

(15.54d)

• ¡! Note the complex i in the Poisson algebra of the Fourier modes. After quantiza-
tion, this will make pairs .˛�n ; ˛

�
�n/ into creation and annihilation operators of a

harmonic oscillator mode.

• The Poisson algebra is the starting point for a canonical quantization procedure
(→ below). So what is the point of the classical solutions Eq. (15.50)? There are two
aspects to consider:
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First, for � D 0, the expansion Eq. (15.50) is a completely general parametrization
of configurationsX� of the string that are consistent with its boundary conditions.
This makes the Fourier coefficients ˛�n ; Q̨

�
n [together with x� and the reality con-

straint Eq. (15.53)] a convenient (and discrete) set of dynamical variables to encode
the fieldX�. The Fourier expansion exploits the symmetry of the problem under
translations along � , and leads to a decoupling of the Poisson brackets between
different modes. (Note that only brackets of the form f˛�n ; ˛

�
�ng do not vanish.)

Second, eventually we want to quantize the fields X�. Since the Heisenberg
field operators of free fields obey the classical equations of motion (↑ Quantum
field theory [20]), we can simply quantize the mode operators and plug them into
Eq. (15.50) to obtain the Heisenberg field operators for � ¤ 0 (thereby skipping
the solution of the Heisenberg equation, i.e., the application of the time-evolution
operator).

ii | ^ Open string & Neumann boundary conditions: (no D-branes!)

a | Wemust implement the boundary conditions Eq. (15.40) on the solutions Eq. (15.48).

Let again w.l.o.g. l D � :

X� 2 R and @�X
�.�; 0/ D 0 D @�X

�.�; �/ (15.55)

b |
ı
�! General solutions:

X�.�; �/ D x� C 2˛0p�� C i
p
2˛0

X
n¤0

˛
�
n

n
exp Œ�in�� cos .n�/ (15.56)

You can derive this from the closed string solutions Eq. (15.50) by imposing the con-
straint Eq. (15.55) which cuts the degrees of freedom in half.

The solutions are parametrized by the following free parameters:

• x�; p� 2 R: Center of mass initial position & momentum of string

• ˛
�
n 2 C: Fourier components of string oscillation modes

! Only one set f˛�n g of oscillator modes!

Reality condition: X� 2 R ,

˛��n D .˛
�
n /

� (15.57)

It will be convenient to define for the closed string: ˛�0 �
p
2˛0p�

(Note that this definition is different from the closed string!)
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c | Poisson algebra Eq. (15.46) in mode space
ı
()

fx�; p�g D ��� and f˛�m; ˛
�
ng D imımCn�

�� (15.58)

This is the subset of Eq. (15.54) where the modes Q̨�n have been dropped.

11 | ^ Constraint Eq. (15.36):

Now that we have the solutions of the EOM (15.37) (for open and closed strings), we should also
impose the constraint Eq. (15.36) on them. Here we only simplify the contraint in flat gauge, but do
not enforce it yet on the level of oscillator modes. We do this → later after some more gauge fixing.

Tab.�; �/
15.32
15.43
D T

�
@aX

�@bX� �
1
2
�ab�

cd@cX
�@dX�

�
Š
D 0 (15.59)

ı
�! In components this reads:

T00 D T11 D
1
2

�
. PX/2 C .X 0/2

� Š
D 0 (15.60a)

T01 D T10 D PX �X
0 Š
D 0 (15.60b)

We can now check Eq. (15.33b) explicitly:

T aa D �
abTab D T11 � T00 D 0 (15.61)

As explained above, this is a consequence of the Weyl invariance of the Polyakov action.

The constraint equations can be combined in a convenient form:

Eq. (15.60) ,
�
PX ˙X 0

�2 Š
D 0 (15.62)

This will be our starting point to enforce the constraint → later.

12 | Conserved quantities:

As preparation for → later, let us briefly discuss the conserved quantities that follow from the global
Poincaré symmetry of the Polyakov action:

Poincaré symmetry Eq. (15.24)! Noether currents = ⁂ World sheet currents

[Remember: Poincaré transformations = Translations + Rotations + Boosts]

¡! The Poincaré symmetry is an internal symmetry, and the corresponding Noether currents
live on the 2D world sheet (not on spacetime!). This means that latin indices a; b; : : : label the
components of the currents, whereas greek (spacetime) indices �; �; : : : label different types of
currents, corresponding to different spacetime symmetries.

• �-Translations: ı�X� D ı
�
�

(Recall Eqs. (6.79) and (6.89) and note that a �-translation shifts the value of the fieldX�.)

Eq. (6.84)
ı
�! P�a D T @aX

� with @aP
a� :
D 0 (15.63)

! Conserved charge: Total 4-momentum:

P�
6.86
WD

Z �

0

d�P�0 D T
Z �

0

d� PX� 15.52
D p� (15.64)
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When using Eq. (6.84) to derive this, be very careful: Here the symmetry is labeled by a
spacetime index (a 7! �) whereas“spacetime” is now the world sheet (� 7! a). The field is
still a scalar, but there areD of them labeled by another spacetime index (� 7! X�). Since
the Poincaré symmetry is an internal symmetry, it is ıax� 7! ı��

a D 0, i.e., it does not
transform the world sheet coordinates.

• ��-Rotations: ı˛ˇX� D �˛�Xˇ � �ˇ�X˛ [← Eq. (6.78), we drop the arbitrary 1
2
]

(“Rotations” here refers to both spatial rotations and boosts.)

Eq. (6.84)
ı
�! J��a D T

�
X�@aX

�
�X�@aX

�
�

with @aJ
a�� :
D 0

(15.65)

! Conserved charge: Total 4-angular momentum:

J�� D

Z �

0

d�J��0 D T

Z �

0

d�
�
X� PX� �X� PX�

�
(15.66)

After quantization, this charge becomes an operator that generates rotations & boosts on the
Hilbert space of the string (just like the momentum operator generates translations). It will
be crucial to determine the critical dimension of bosonic string theory.

13 | Hamiltonian:

In flat gauge, and with the mode expansion at hand, it is now straightforward to derive the Hamilto-
nian of the Polyakov action:

i | As usual, we get the Hamiltonian via Legendre transformation from the Polyakov Lagrangian:

H D

Z �

0

d�
h
PX �… � Lflat

P

i 15.44
15.45
D

T

2

Z �

0

d�
�
. PX/2 C .X 0/2

�
(15.67)

Using the Fourier expansion of the fields, this can be rewritten in terms of oscillator modes:

Open string: H
15.56
D

1

2

X
n

˛�n � ˛n

Closed string: H
15.48
15.50
D

1

2

X
n

.˛�n � ˛n C Q̨�n � Q̨n/

(15.68a)

(15.68b)

• Here we introduced the shorthand notation ˛n � ˛�n � ��� ˛
�
n ˛

�
�n.

• Note that these sums include the n D 0mode, i.e., the momentum p� of the string:

Open string (˛�0 D
p
2˛0p�): 1

2
˛0 � ˛0 D ˛

0p2 (15.69a)

Closed string ( Q̨�0 D
p
˛0=2p�): 1

2
.˛0 � ˛0 C Q̨0 � Q̨0/ D

1
2
˛0p2 (15.69b)

These terms account for the kinetic energy of the string.

• To derive Eq. (15.68), use that for n;m 2 NZ �

0

d� cos .n�/ cos .m�/ D
�

2
ın;m D

Z �

0

d� sin .n�/ sin .m�/ : (15.70)
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ii | The constraint equation implies that the Hamiltonian vanishes on-shell:

Eqs. (15.60a) and (15.67) ) H
:
D 0 (15.71)

This is similar to Section 5.4 [in particular Eq. (5.93)] were we found the Hamiltonian of
the relativistic particle to vanish as well. We identified the reparametrization invariance as
the root cause, which is a local (gauge) symmetry that produces constraints via Noether’s
second theorem. Here, the Hamiltonian generates translations in � – but � is only one of
many possible time-like parametrizations (due to the diffeomorphism invariance on the world
sheet); it has no physical interpretation. Consequently, the Hamiltonian that generates
translations in this parameter has no physical significance either.

iii | Eq. (15.71)!Mass shell condition:

We study open and closed strings separately:

• ^ Open string: Combining our previous results implies:

1
2
˛0 � ˛0 C

X
n>0

˛�n � ˛n

15.68a
15.71
D 0 , ˛0p2

15.69a
D �

X
n>0

˛�n � ˛n (15.72)

Thus the norm of the 4-momentum of the string is determined by its oscillation modes.

! Recall that the norm of a 4-momentum is a Lorentz scalar called (rest) mass:

p2
5.4
D �M 2

) M 2
D

1

˛0

X
n>0

˛�n � ˛n (15.73)

M : Rest mass of the open string

– If you think about it, this result makes sense: The oscillations of the string con-
tribute to its internal energy. And in Section 5.2 we argued that in a relativistic
theory, any type of internal energy contributes to the rest mass of an object.

– Note that .˛�n /� D ˛
�
�n makes terms like ˛��n˛

�
n D j˛

�
n j
2 non-negative. However,

not also that ˛�n � ˛n D ��� ˛
�
�n˛

�
n, so that the Lorentzian signature of ���

produces positive and negative terms in the sum. The current form of Eq. (15.73)
is therefore potentially problematic, since the left-hand side is the mass squared.

• ^ Closed string: Along the same lines, one finds for the closed string the constraint:

1
2
˛0p2

15.68b
15.71
15.69b
D �

X
n>0

.˛�n � ˛n C Q̨�n � Q̨n/ (15.74)

… so that the rest mass of the string is given by:

p2
5.4
D �M 2

) M 2
D

2

˛0

X
n>0

.˛�n � ˛n C Q̨�n � Q̨n/ (15.75)

M : Rest mass of the closed string
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↓ Lecture 34 [08.08.24]

15.1.1. Light-cone gauge

We could quantize the string right away by replacing the Poisson brackets of the oscillator modes with
commutators. However, our theory still has unfixed residual gauge degrees of freedom that lead to
problems after quantization. Here we identify and fix these gauge degrees of freedom, and finally impose

the constraint Tab
Š
D 0. The result will be a classical formulation of the relativistic string that can be

canonically quantized without any issues (almost…):

14 | Remember: We are in Flat gauge Eq. (15.43): hab D �ab D diag .�1;C1/ab
But remember also: Polyakov action has ← conformal symmetry Eq. (15.30)

Conformal symmetries are residual gauge symmetries on the world sheet that allow for the transfor-
mation of the fieldsX� without modifying the world sheet metric hab .

! ^ Combinations of diffeomorphisms & Weyl transformations consistent with flat gauge:

• ^ Infinitesimal diffeomorphism: N�a D �a C "a.�/ [← Eq. (11.90)]

Eq. (11.103)! ıhDiff
ab D �.@b"a C @a"b/ � "

c@c�ab„ ƒ‚ …
D0

(15.76)

The signs are different from Eq. (11.103) because the tensor is covariant.

• ^ Infinitesimal Weyl transformation (15.28): (|�|�1)

Qhab D e
2��ab � .1C 2�/�ab ) ıh

Weyl
ab
D 2��ab (15.77)

15 | ! Infinitesimal conformal transformation:

ıhDiff
ab C ıh

Weyl
ab

Š
D 0 , 2��ab D @b"a C @a"b (15.78)

This differential equation must be solved for "a and �.

16 | To proceed, it is convenient to introduce new coordinates on the world sheet and on spacetime:

• On spacetime, introduce ⁂ light-cone fields:

X˙
WD

1
p
2
.X0 ˙XD�1/ (15.79)
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and analogously p˙ WD
1p
2
.p0 ˙ pD�1/ etc.

The choice of the space-like componentsXD�1 is arbitrary. Rewriting the theory in these
variables singles out the direction � D D � 1 and breaks manifest Lorentz covariance. This
is the price we have to pay for a quantization without gauge-degrees of freedom (→ below).

• On the world sheet, define ⁂ light-cone coordinates:

�˙
WD � ˙ �

ı
H)

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

@˙ D
1
2
.@� ˙ @� /

� D �4@C@�

ds2 D �d�Cd���
�CC �C�

��� ���

�
D

�
0 �1=2

�1=2 0

�
�
�CC �C�

��� ���

�
D

�
0 �2

�2 0

�
(15.80)

Light-cone coordinates are simply inertial coordinates rotated by˙45ı; i.e., both coordinate
vectors point along null cones and are therefore light-like.

17 | Eq. (15.78)
ı
�! Constraints on conformal transformations in light-cone coordinates:

@�"
�
C @C"

C
D 2� ) � D �."/ (15.81a)

@C"
�
D 0 ) "�

D "�.��/ (15.81b)

@�"
C
D 0 ) "C

D "C.�C/ (15.81c)

!Non-infinitesimal conformal transformation:

N�C
D N�C.�C/ and N�C

D N��.��/ (15.82)

The above derivation shows that for each such diffeomorphism aWeyl transformation � exists to
keep the metric in flat gauge (hab D �ab). We do not need to known the specific form of � because
we drop the conformal scaling factor anyway. So the point is that we can make any transformation
of the form Eq. (15.82) while keeping the flat gauge fixed.

18 | Define a rescaled time coordinate:

N�.�C; ��/ WD 1
2

�
N�C.�C/C N��.��/

�
, � N� D �4@C@� N� D 0 (15.83)

Note that the two expressions are equivalent. But this implies that the only constraint on the new
world sheet coordinate N� D N�.�C; ��/ D N�.�; �/ is that is satisfies the wave equation. Conversely,
whenever we have a function on the world sheet that satisfies the wave equation, we can w.l.o.g. set
it equal to (an affine function of ) � .

Compare this to the EOM (15.47) that the fieldsX� satisfy:

�X�.�; �/ D 0 ) �XC.�; �/ D 0 (15.84a)

) XC.�; �/ D XC

R .�
�/CXC

L .�
C/ (15.84b)

That we focus on the light-cone fieldXC is arbitrary; it becomes useful below.
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19 | Thus we can always choose world sheet coordinates .�; �/ (we omit bars) such that…

XC.�; �/ D 2˛0pC� ⁂ Light-cone gauge (15.85)

• In this gauge, theC-oscillator modes of the string are not excited and“frozen.”

• That we pick out XC seems arbitrary at this point; it becomes useful → below. [We could
have chosen any (linear combination of )X� to be an affine function of � .]

20 | We are finally in the position to Enforce the constraint Eq. (15.62):

Tab
Š
D 0 ,

�
PX ˙X 0

�2 Š
D 0 (15.86)

Expand the contraction in the square in light-cone fields:

�2
�
PX ˙X 0

�C„ ƒ‚ …
D 2˛0pC

Light-cone gauge,

�
PX ˙X 0

��
C

D�2X
iD1

�
PX ˙X 0

�i �
PX ˙X 0

�i
„ ƒ‚ …

�

�
PX˙X 0

�2

?

Š
D 0 (15.87)

We omit transversal sum symbols over i D 1; : : : ;D � 2 in the following.

! The constraint can be satisfied by setting:�
PX ˙X 0

��
WD

1

4˛0pC

�
PX ˙X 0

�2
?

(15.88)

! Also theX� degrees of freedom are no longer dynamically independent.

!Wemust quantize only theD � 2 transversal componentsX i (and pC).

21 | ^ Open string (for simplicity, similar arguments hold for the closed string)

Recall that the mode expansion for the open string reads:

Eq. (15.56)! X�
D x�

C 2˛0p�� C i
p
2˛0

X
n¤0

˛�
n

n
e�in� cos.n�/ (15.89)

We use this (and the mode expansions forX i ) to express Eq. (15.88) in terms of modes:

Eq. (15.88)
ı
�! (to show this set � D 0)

p
2˛0˛�

n D
1

pC

 
1

2

1X
mD�1

˛in�m˛
i
m

!
�

1

pC
L?
n (15.90)

(Note that this includes
p
2˛0p� D ˛�

0 [for the open string].)

with ⁂ Transversal Virasoro modes:

L?
n WD

1

2

1X
mD�1

˛in�m˛
i
m (15.91)

That ˛�
n / L

?
n is quadratic in the transversal modes ˛in is evident from Eq. (15.88).
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22 | To sum up, we have fixed the flat gauge and the light-cone gauge. In these gauges, the dynamics of
the classical relativistic string is described by the following canonical pairs of variables:

Transversal modes: X i and …i (i D 1; : : : ;D � 2)„ ƒ‚ …
Equivalently: xi , pi , ˛i

m (m ¤ 0)

Light-cone position & momentum: x� and pC

Note that xC D 0 is frozen [Eq. (15.85)] and p� / ˛�
0 is determined via Eq. (15.90) and therefore

also no longer dynamical.

These variables satisfy the Poisson algebra Eq. (15.58) for i D 1; � � � ;D � 2:

fxi ; pj g D ıij

fpC; x�
g D 1

f˛im; ˛
j
ng D imımCnı

ij

(15.92a)

(15.92b)

(15.92c)

The generalization to the closed string is straightforward and will not be shown in detail.

With this we are ready to quantize the open string! But before we do this, one last thing…

23 | Witt algebra:

The Poisson algebra of the transversal oscillator modes determines the Poisson algebra of the
transversal Virasoro modes (using the bilinearity and product rule for the Poisson bracket):

Eqs. (15.91) and (15.92)
ı
�!

n
L?
m; L

?
n

o
D i.m � n/L?

mCn ⁂ Witt algebra (15.93)

• Canonical quantization is the prescription to replace classical Poisson brackets of phase space
functions by the commutators of operators on a Hilbert space. However, this prescription
is not well-defined for quadratic functions like the Virasoro modes. We will find that after
quantization (and a suitable definition of quantized Virasoro operators) the Witt algebra will
be modified by a ↑ central extension. This unexpected modification signifies a ↑ quantum
anomaly, and is directly linked to the critical dimensionD D 26 of bosonic string theory.

• The Witt algebra shows up due to the conformal symmetry Eq. (15.82) of the Polyakov
action. That the Witt algebra (interpreted as an abstract Lie algebra) describes conformal
transformations in two dimensions can be seen as follows:

Remember that conformal transformations on (some region of ) R2 ' C are given by ↓ mero-
morphic functions f .´/ on C; these can be expanded in a Laurent series:

Q́ � f .´/ D ´ �
P1

nD�1 an´
n : (15.94)

An infinitesimal conformal transformation (janj � 1) changes a scalar field �.´/ (for sim-
plicity assumed to be holomorphic) as follows:

�.´/
Scalar
D Q�. Q́/

Taylor
� Q�.´/ �

�P
n an´

n
�
@´ Q�.´/ : (15.95)
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Thus the generators of such transformations have the form

ıa� � Q�.´/ � �.´/ �
�P

n an´
n@´

�
�.´/ �

�P
n anL1�n

�
�.´/ (15.96)

with generator basis Ln WD ´1�n@´. The Lie algebra of these generators is:

ŒLm; Ln� �.´/ D .´
1�m@´/.´

1�n@´/�.´/ � .´
1�n@´/.´

1�m@´/�.´/ (15.97a)

D .m � n/´1�m�n@´ �.´/ (15.97b)

D .m � n/LmCn �.´/ : (15.97c)

That is, the Witt algebra is the Lie algebra of the “group” of conformal transformations.
(The missing i can be obtained by redefining Lm 7! �iLm.)

15.2. Quantization of the relativistic string

We quantize the string canonically, by replacing phase-space variables by operators and the Poisson algebra
by a commutator algebra. The result will be a “first quantized” string, i.e., a relativistic quantum theory
that describes a single string. Mathematically, this is achieved by techniques of “second quantization”
because the string is described by a field theory.

There are three approaches to quantize the bosonic string:

• ↑ Covariant canonical quantization

Pros: Manifestly Lorentz covariant | Cons: Unphysical states & ghosts (= negative norm states)

This route starts by canonically quantizing Eq. (15.58) without fixing the light-cone gauge and
enforcing the constraint Eq. (15.62) on the classical level. It is akin to ↑ Gupta-Bleuler quantization
of the electromagnetic field.

• Light-cone quantization (→ Section 15.2.1)

Pros: No unphysical states & ghosts | Cons: Not manifestly Lorentz covariant

This is the approach taken below; it is akin to the quantization of the electromagnetic field in
Coulomb gauge usually presented in courses on advanced quantum mechanics.

• ↑ Covariant path integral quantization

This is the modern approach used in string theory (it is more abstract & versatile, but less suited
for a first introduction).

This approaches leverages the full machinery of quantum field theory and is akin to the ↑ Faddeev-
Popov quantization of the electrommagnetic field [20].

Based on our preliminary work in Section 15.1 we can already conclude:

The “first quantized” string is described by a quantum field theory

of D scalar fields X� that live on the 1+1-dimensional world sheet.

There is also a “second” quantization of string theory: ↑ string field theory.

15.2.1. Light-cone quantization

¡! We focus again on the open string for simplicity and state results for the closed string → later.
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1 | Remember: ↓ Canonical quantization:

Poisson bracket : f � ; � g !
1

i„
Œ O� ; O� � : Commutator (15.98)

In the following we set „ D 1 an omit hats O for operators.

2 | Eq. (15.92)! Operator algebra for open string:

h
xi ; pj

i
D iıij�

pC; x�
�
D ih

˛im; ˛
j
n

i
D mımCnı

ij

(15.99a)

(15.99b)

(15.99c)

For the closed string, this algebra is extended by modes Q̨ im in a straightforward way, cf. Eq. (15.54).

^ m > 0!Only non-vanishing commutator:

h
˛im; ˛

j
�m

i
D mıij„ ƒ‚ …

Harmonic oscillator?

!

8<: aim WD
1p
m
˛im

ai�m WD
1p
m
˛i�m

9=; ! h
aim; a

j�
m

i
D ıij„ ƒ‚ …

Harmonic oscillator,

(15.100)

The excitations of an open string are thus described by a set of harmonic oscillator modes, labeled
by the (transversal) direction i D 1; : : : ;D � 2 and modem D 1; 2; : : : of the oscillation.

3 | Virasoro modes Eq. (15.91)
Quantization
�������! Virasoro operators:

Problem: Ordering ambiguity for L?
0 :

L?
n¤0 D

1

2

1X
mD�1

˛in�m˛
i
m„ ƒ‚ …

Commute!

but L?
0 D

1

2

1X
mD�1

˛i�m˛
i
m„ ƒ‚ …

Do not
commute!

(15.101)

What is the correct ordering for quantization?

We do not know! So let us play it safe and not fix the ordering prematurely:

i | To this end, we first define the operator L?
0 as ↑ normal ordered:

L?
0 WD

1
2
˛i0˛

i
0 C

1X
nD1

˛i�n˛
i
n„ƒ‚…

Normal
ordered

15.100
D ˛0 pipi„ƒ‚…

DWp2
?

C

1X
nD1

n ai�n a
i
n„ ƒ‚ …

DWN?

(15.102)

N?: Transverse ⁂ level operator

Normal ordering is a prescription (a ↑ meta operator) to order strings of non-commuting
creation- and annihilation operators such that creation operators are on the left and annihila-
tion operators on the right (this ordering is done without commutation relations). The result
is an operator with vanishing expectation value wrt. the vacuum/ground state j0i. Normal
ordering is often indicated by enclosing an expression by colons: W � W .
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ii | But we do not know the correct ordering for quantization! Conveniently, all possible orderings
can be brought into the normal ordered form Eq. (15.102) by using the commutator algebra
Eq. (15.100); the result is always L?

0 with some constant offset A D const � 1.

!Wherever we used L?
0 in the classical theory, we make the replacement…

L?
0 7! L?

0 �A (15.103)

… in the quantized theory.

A D const � 1: Unknown “normal ordering” constant

Wehenceforth carry the undetermined constantA along;maybewe encounter some condition
that constrains A along the way…

The appearance of the undetermined normal ordering constant Amight be surprising. However,
canonical quantization is not always a unique recipe to bootstrap a quantum theory from a given
classical theory. This is only true for the most simple models – if they do not contain terms like x �p
that lead to ordering ambiguities. Quantization is not a “fire-and-forget” procedure that assigns
every classical theory a unique quantum theory that is magically“true”. Classical theories are limits
(= approximations) of underlying quantum theories for macroscopic systems. As such, they often
do not contain enough information to recover the quantum theory unambiguously (↑ Groenewold’s
theorem [318]).

4 | This implies in particular: (remember that ˛�0 D
p
2˛0p� for an open string)

2˛0p�
D
p
2˛0˛�

0

15.90
15.103
WD

1

pC

�
L?
0 �A

�
(15.104)

Formally, 1=pC is the inverse operator of pC; it will be canceled → below anyway, so that a formal
definition is not necessary.

5 | ^ Mass shell condition:

With these preparations, we find the quantized version of the mass shell condition Eq. (15.73):

M 2
D �p2 D 2pCp�

� p2?

15.104
D

1

˛0

�
L?
0 � A

�
� p2?

15.102
D

1

˛0

�
N?
� A

�
(15.105a)

(15.105b)

(15.105c)

This result has two immediate implications:

• The mass of a string depends on the eigenvalues of the level operatorN? (= its excitations).
This will lead to the identification of various particles in the → string spectrum (Section 15.2.2).

• The (so far undetermined) normal ordering constant A is important! Its value determines
the masses of the particles; in particular – depending on the value of A – the mass squared
can become negative (which would imply a space-like 4-momentum).

6 | ^ Virasoro operators:

What is the commutator algebra of the transverse Virasoro operators?
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Witt algebra Eq. (15.93)
Eq. (15.99)
������!⁂ Virasoro algebra:

h
L?
m; L

?
n

i
$ .m � n/L?

mCn C
D � 2

12
m.m2 � 1/ ımCn„ ƒ‚ …

↑ Central extension

(15.106)

D � 2 � c: ↑ Central charge (the prefactor 1
12

is conventional)

• The Virasoro algebra is the most important algebra in string theory. As it descends from
the conformal symmetry of the classical action, it is also the centerpiece of more general
↑ conformal field theories, where the central charge c is not necessarily linked to the spacetime
dimension (this is rather special to string theory).

It is well-known from conformal field theory that a free scalar (boson) has central charge
c D 1. Thus, in bosonic string theory, each scalar field X� contributes c D 1 to the total
central charge. In light-cone gauge, there are only D � 2 transversal fields X i that are
dynamical, so that the total central charge is c D D � 2.

• For a detailed derivation of Eq. (15.106) see ↑ Zwiebach [7] (§12.4, pp. 254–257).

• We found that the Lie algebra of the quantized generators of conformal transformations is
different from their classical Poisson algebra Eq. (15.93). [Put differently: The Lie algebra of
Virasoro operators does not follow from their classical algebra via the substitution Eq. (15.98).]
This suggests that the original conformal/Weyl symmetry of the classical action might not be
shared by the quantized theory. In general, the phenomenon that a classical symmetry does
not survive quantization is called a ↑ (quantum) anomaly. In the case of string theory, it is
Weyl symmetry that can be spoiled; this particular anomaly is called ↑ Weyl anomaly.

• Side note:

The additional term in Eq. (15.106) is called a ↑ central extension of theWitt algebra Eq. (15.93)
because it extends the old algebra by a new element of the form const � 1 that commutes
with all other elements (L?

m); such elements (of a group or an algebra) are called ↑ central in
mathematics. If one exponentiates a centrally extended Lie algebra, the new central element
leads to additional phase factors in the multiplication rules of the corresponding Lie group,
so called ↑ cocycles. These modified multiplication rules define ↑ projective representations of
the original Lie group (these are essentially group representations “up to phase factors”).
Now remember that quantum mechanics is concerned with state vectors in Hilbert spaces
up to global phases; mathematically speaking, the physical state spaces of quantum theories
are ↑ projective Hilbert spaces. Physical symmetries on such spaces are then implemented
by the aforementioned projective representations. This line of arguments shows that the
appearance of central extensions of symmetry algebras in quantum mechanics is directly
linked to the fact that global phases are unphysical.
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↓ Lecture 35 [09.08.24]

7 | Lorentz covariance:

Here we finally answer the question:

Why does the quantization of the bosonic string only work inD D 26 spacetime dimensions?

Note that so far there is no restriction on the normalization constant A and/or the spacetime
dimensionD (= number of scalar fieldsX�).

However, remember that we sacrificed manifest Lorentz covariance when fixing the light-cone
gauge. (The return of this investment was a ghost-free quantum theory, i.e., a theory without
negative-norm states in the Hilbert space; cf. ↑ Covariant quantization.) As our formulation is no
longer manifestly Lorentz covariant, we cannot be sure that our quantum theory is still relativistic
(that is, carries a representation of the Poincaré group).

If there is no representation of the Poincaré group on the Hilbert space of a given quantum theory,
it is not relativistic. Remember that representations of symmetry groups are exactly that: they
represent physical actions in the real world (translations, rotations, boosts,…) by linear operators
on an abstract, mathematical state space (the Hilbert space). The defining feature of a relativistic
quantum theory is that it specifies how e.g. a boost modifies the quantum state that describes your
system, and that the combination of such transformations yields a multiplicative structure called
“Poincaré group.” (Note that the Hamiltonian of the theory is part of this representation as it is
the generator of translations in time.)

So let usmanually check whether theHilbert space of the quantized (open) string is a representation
of the Poincaré group:

i | Remember: Lie algebra of Lorentz group Eq. (4.69):
(→ Problemset 5 of special relativity course)�

J�� ; J ��
�
D ���J�� � ���J �� � ���J�� C ���J �� : (15.107)

Here on aD-dimensional spacetime: �; � D 0; 1; : : : ;D � 1. Note that J�� are abstract
elements of a Lie algebra, not operators.

^ In particular the generator:

J�i
D

1
p
2

�
J 0;i � JD�1;i

�
(15.108)

If something bad happens to Lorentz symmetry, it most likely is related to this genera-
tor because X� is a rather non-trivial function of the dynamical fields X i via Eqs. (15.89)
and (15.90).

Eq. (15.107) implies
ı
�! h

J�i ; J�j
i
D 0 (15.109)

The question is now whether there are operators J i� (= representations) acting on the Hilbert
space of the quantized string that satisfy this commutation relation. If not, we lost Lorentz
symmetry and have a problem…

ii | Noether charges Eq. (15.66)
Eq. (15.99)
������! Representations of Lorentz group (?):
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The very fact that the Witt algebra got spoiled by quantization should make us wary; after all,
the Lorentz algebra might be affected by an anomaly as well!

(For once we mark these operators with a hat O to mark them as representations.)

OJ��
15.66
WD T

Z �

0

d� W
�
X� PX� �X� PX�

�
W„ ƒ‚ …

Normal ordered

$ x�p� � x�p�„ ƒ‚ …
Orbital angular momentum

� i

1X
nD1

1

n

�
˛��n˛

�
n � ˛

�
�n˛

�
n

�
„ ƒ‚ …
Internal angular momentum (spin)

(15.110)

• OJ�� is an operator on the light-cone Hilbert space H spanned by the transversal modes
(→ Section 15.2.2). This Hilbert space must be a representation of the Lorentz group,
i.e., the commutator algebra must be Eq. (15.107) and Eq. (15.109) must hold.

• The fact that OJ�� has a contribution that can be interpreted as internal angular momen-
tum (= spin) already suggests that different excitations of the string describe particles
not only with different masses but also with different spin.

• Eq. (15.110) is a definition of the quantization of the classical charge J�� . Due to the
occurrence of quadratic terms in oscillator modes, it suffers from an ordering ambiguity
similar to the Virasoro mode L?

0 . The operator is then again defined via ← normal
ordering, such that the ground state/vacuum is Lorentz invariant. Note that the second
summand in Eq. (15.110) is indeed normal ordered since the modes ˛��n (˛�n ) are
creation (annihilation) operators [← Eq. (15.100)].

• Aglobal, continuous symmetry gives rise to a classically conserved quantity viaNoether’s
theorem (for example: spatial translation symmetry leads to conservation of the total
momentum). Quantizing the theory makes this quantity into an operator (for exam-
ple: the momentum operator). In the absence of quantum anomalies, this operator is
the generator of the original symmetry transformation (for example: the momentum
operator generates spatial translations).

iii | In particular, we must set for the crucial operator Eq. (15.108):

OJ�i
WD x�pi � 1

2

�
xip�

C p�xi
�

„ ƒ‚ …
Symmetrized ! Hermitian

�i

1X
nD1

1

n

�
˛�

�n˛
i
n � ˛

i
�n˛

�
n

�
(15.111a)

15.104
15.90
D x�pi�

1

4˛0pC

h
xi .L?

0 � A/C .L
?
0 � A/x

i
i

�
i

p
2˛0pC

1X
nD1

1

n

�
L?

�n˛
i
n � ˛

i
�nL

?
n

� (15.111b)

• Due to p�, the Virasoro operator L?
0 enters the stage. To account for its ordering

ambiguity, we must augment the expression by the (yet undetermined) normal ordering
constant A.

• Note that the generators of a symmetry group should also be Hermitian, such that the
representation of the group is unitary (symmetries must not change the absolute values
of overlaps of state vectors; ↑ Wigner’s theorem). The mode term in Eq. (15.110) is
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clearly Hermitian since ˛��n D ˛
�
�n. However, without a careful ordering of operators,

this is not true for the orbital angular momentum term: since xi does not commute
with p� [due to Eqs. (15.90) and (15.104)], the second term must be symmetrized. For
details: ↑ Zwiebach [7] (§12.5, pp. 260–261).

iv | Plug Eq. (15.111b) in Eq. (15.109):

From Eq. (15.111b) we should expect the normal ordering constant A to show up. The
commutator of Virasoro operators also certainly plays a role, so that the Virasoro algebra
Eq. (15.106) with its central charge c D D � 2 enters the computation. It is therefore not
surprising that the result depends on A andD:h

OJ�i ; OJ�j
i 15.111b

15.106
D �

1

˛0.pC/2

1X
mD1

�m

�
˛i�m˛

j
m � ˛

j
�m˛

i
m

�
„ ƒ‚ …

¤0 ! ↑ Quantum anomaly /

(15.112)

with anomaly factors

�m D m

�
26 �D

24

�
C
1

m

�
D � 26

24
C .1 � A/

�
: (15.113)

So like theWitt algebra, the Lorentz algebra suffers from a quantum anomaly: the quantization
modifies the algebra. Thus, whatever we quantized, it is no longer a relativistic string/ .

Except…

! Lorentz symmetry is broken unless 8m 2 N W �m D 0 ,

A D 1 and D D 26 (15.114)

• This result states that a relativistic string propagating on Minkowski space can only
be quantized consistently inD D 26 spacetime dimensions. The constant A D 1 has
consequences of similar importance for the masses of the particles predicted by the
theory (→ Section 15.2.2).

• There are two perspectives on this result:

– String-theory advocate:,,,

Wow! String theory doesn’t leave us any choice – it predicts spacetime to beD D 26
dimensional (orD D 10 dimensional in superstring theory).

– String-theory opponent:/

Bullshit! Our spacetime is notD D 26 butD D 4-dimensional. This theory cannot
describe reality; it is a mathematical peculiarity, nothing more.

Unfortunately, as just shown, we cannot simply “tweak” the theory to match
D D 4; the quantum version of the relativistic string is rigid: D D 26 or we’re
out of business! A creative cop-out is to keep and“hide” the unwanted 22 spatial
dimensions by curling them up into tiny circles (or more complicate ↑ Calabi-Yau
manifolds; ↑ compactification). Thismodification of course affects the dynamics and
interaction of strings propagating in the “large” four dimensions of our spacetime.
How exactly the string dynamics is modified depends on how exactly one curls
up the additional dimensions. Unfortunately, there are many different ways to do
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this (“unfortunately” is a word needed quite often in string theory); this leads to
the ↑ string theory landscape, the ↑ anthropic principle raising its ugly head, and,
eventually, the demise of the scientific principle…

• In ↑ covariant (canonical) quantization, Lorentz covariance is manifest throughout the
computation (all operators have Lorentz indices), but for D ¤ 26 the constructed
representation is not unitary (= there are ghosts [negative-norm states] in the physical
state space). By contrast, in light-cone quantization there are only positive-norm states
in the Hilbert space, but forD ¤ 26 the operators J�� no longer satisfy the Lorentz
algebra and Lorentz covariance is lost.

15.2.2. Bosonic string spectrum

Now thatwe quantized the (open) bosonic string, we can start to build itsHilbert space [= the representation
of the commutator algebra Eq. (15.99)]. The (now quantized) excitations of the string are identified with
elementary particles of various masses and spins. Finding the Hilbert space is straightforward since
Eq. (15.99) consists of canonical position and momentum operators, together with (multiple copies) of the
harmonic oscillator algebra, both of which you studied in your first course on quantum mechanics.

We start with the open string:

8 | ^ Open string:

i | Eq. (15.99)! Canonical pairs .x�; pC/ and .xi ; pi /

!Momentum space representation:

jkC; Ek?i � jki ⁂ String ground states (15.115)

with

8m�1 W a
i
mjki D 0 and .pC; Ep?/jki D .k

C; Ek?/jki (15.116)

for i D 1; : : : ;D � 2.

These states describe a single string in its oscillatory ground state with momentum .kC; Ek?/.

ii | We can now create excitations of the string by acting with mode creation operators ai�n on
these ground states:

! Fock space Ho spanned by open string states

j�; ki WD

1Y
nD1„ƒ‚…

Oscillation
Mode

24Y
iD1„ƒ‚…

Transversal
direction

�
ai�n

��n;i

jki with �n;i 2 N0 : (15.117)

! j�; ki = State of particle with mass squared (remember that A D 1 is now fixed)

M 2
j�; ki

15.105
15.102
D

1

˛0
.N?

� � 1/j�; ki with N?
� D

1X
nD1

24X
iD1

n�n;i :

(15.118)
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• The state j� D 0; k D 0i describes a string with zero momentum and no oscillations,
not the vacuum (“no string”).

• Since there are infinitely many levelsN?
�
D 0; 1; 2; : : : (and the irreducible represen-

tations of the Poincaré group live within these levels), string theory predicts infinitely
many particles!

• The operators J�� generate a representation of the Lorentz group on the Hilbert space
spanned by the states Eq. (15.117). This representation decomposes into a direct sum
of ↓ irreducible representations of states that mix under Lorentz transformations. Since
M 2 D �p2 / .N? � 1/ is a Lorentz scalar, only states of the same level N? can
transform into each other under Lorentz transformations.

According to ↑ Wigner’s classification, physical particles correspond to irreducible repre-
sentations of the Poincaré group. (A particle type is the linear subspace of quantum
states that can be transformed into each other by Poincaré transformations. This is why
we say that an electron with spin up and an electron with spin down are the same type
of particle: If you rotate your experiment, you can make one into the other.)

This means that we should identify particles by the linear subspaces within each level
of string the Hilbert space that are invariant under Lorentz transformations. Due to
the light-cone gauge, this is a non-trivial task: We have only transversal modes ai�n ,
but know that massive particles need more. These are provided by other modes in the
same level, but the identification of the irreducible representations is rather involved
for massive particles.

We can now study the particles that arise from the lowest levels of the string spectrum:

iii | ^ Lowest-mass excitations:

a | Level N? D 0: (this is the particle that corresponds to the string ground state)

jki with mass M 2
D �

1
˛0 < 0 ! ⁂ Tachyon (Scalar)

! Unstable vacuum /

• Since there is only one state jki for each momentum in the lowest level, the particle
must be a scalar (no internal degrees of freedom).

• Particles withM 2 < 0 are called tachyons. They have a space-like 4-momentum
(p2 D �M 2 > 0) and therefore “move faster than the speed of light.” This,
however, is a misleading interpretation in the context of quantum field theories,
where they are symptoms of an unstable vacuum state [64, 65] (← Section 4.4).
The existence of this state makes bosonic string theory unstable and motivates its
extension by fermions and supersymmetry; ↑ superstring theory.

To understand the effect of negative squaremasses in a scalar field theory (here: the
quantum field of the tachyons), recall that the generic �4-Lagrangian that governs
such fields has the form

L D 1
2
.@�/2 �m2�2 � ��4 � 1

2
.@�/2 � V.�/ ; (15.119)

with (bare) particlemassm and interaction�; the potential isV.�/ D m2�2C��4.
For � D 0, the classical EOM is the Klein-Gordon equation: .@2 C m2/� D 0.
Note that for a lower-bounded potential energy it must be � > 0.

For positive squaremassm2 > 0, the classical ground state is clearly� D 0 D const.
However, for negative square massm2 < 0 (now � is a tachyon field!), the lowest
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potential energy is found for j�j D
p
�m2=2� ¤ 0. This indicates ↓ spontaneous

symmetry breaking, and therefore an instability of the (tachyon-)vacuum � D 0.
What then happens is that the system transitions into the new vacuum by“con-
densing tachyons”; this vacuum has new excitations which have positive square
mass (the Higgs mode). This is exactly what happens with the Higgs field in the
Standard Model: The Higgs symmetry breaking can be understood as “tachyon
condensation”, and the excitations of the new (symmetry-broken) vacuum are the
Higgs bosons.

The bottom line is that tachyons in the spectrum of a quantum field theory are not
superluminal “science-fiction particles” but harbingers of a vacuum decay.

b | Level N? D 1:

This level can only be reached by applying a single creation operator of the n D 1-mode:

D � 2 D 24 states‚ …„ ƒ
ji; ki � a

i�
1 jki with mass M 2

D 0 ! Massless vector boson

! Photon ,

• Since i D 1; � � � ; 24 these states transform under the vector representation of
SO.24/, as one would expect for massless vector bosons inD D 26 dimensions.
This allows us to identify them with the photons of electrodynamics inD D 26

dimensions:

ji; ki D a
i�
1 jki„ ƒ‚ …

String states@N? D 1

$ a
i�

k
j0i„ƒ‚…

Photon states
inD D 26„ ƒ‚ …

Same Poincaré representation & momenta & mass

(15.120)

Remember that in D D 4-dimensional electrodynamics there are D � 2 D 2

transverse polarizations for massless photons. These form helicity representations
of SO.2/. Analogously, the D � 2 D 24 transverse polarizations above form a
representation of SO.24/, the symmetry group of photons inD D 24 spacetime
dimensions.

• The fact that there areD � 2 states on the first level is independent of the normal
ordering constant A D 1. The latter, however, makes these states massless (M 2 D

0) and thereby consistent with the representation theory of the Poincaré group:
D�2 states can form a vector representation of SO.D�2/ – but not of SO.D�1/.
The latter is a subgroup of the Lorentz group SO.1;D�1/ andwould be needed for
massive particles. By contrast,massless particles transform exactly under SO.D�2/
(because you can only rotate them about their momentum vector).

Fun fact: By this line of arguments you can actually infer A D 1 from the require-
ment of Lorentz covariance even before you know thatD D 26.

c | Level N? > 1: Massive bosonic particles…

For example, N? D 2 can be reached by either applying ai�1 a
j�
1 or ai�2 to the string

ground state; the mass of these particles isM 2 D 1=˛0 > 0. In total there are 1
2
.D �

2/.D C 1/ states on level N? D 2 (324 states for D D 26). These states form the
representations of a so called ↑ massive tensor boson.
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9 | ^ Closed string:

We start with the generalization of the results for the quantized open string to the closed string
(without derivations). We can then study the closed string spectrum in analogy to the open string
spectrum:

i | Quantized closed string in light-cone gauge:

a | Eq. (15.54)! Operator algebra for closed string:

h
xi ; pj

i
D iıij�

pC; x�
�
D ih

˛im; ˛
j
n

i
D mımCnı

ij

New! )
h
Q̨
i
m; Q̨

j
n

i
D mımCnı

ij

(15.121a)

(15.121b)

(15.121c)

(15.121d)

• All commutators not shown vanish, of course.

• The only difference to the open string is that there is another independent copy
Eq. (15.121d) of oscillator modes.

• According to Eq. (15.50), the interpretation of the two mode sets is that they create
right- and left-moving oscillations on the string, respectively.

b | The only subtlety concerning the closed string is that there is a constraint connecting
the left- and right-moving zero-modes:

˛
�
0

def
D

r
˛0

2
p�

def
D Q̨

�
0 ) ˛�

0 D Q̨
�
0 ) L?

0 D
QL?
0 (15.122)

• While ˛�n and Q̨�n are independent oscillator modes for n ¤ 0, they are the same
center-of-mass mode for n D 0 (there is only one string with one center-of-mass!).

• The analog of Eq. (15.104) for the closed string reads

p
2˛0˛�

0 D
2

pC
.L?
0 � 1/ and

p
2˛0 Q̨

�
0 D

2

pC
. QL?
0 � 1/ ; (15.123)

i.e. the normal-ordering constants A D 1 and QA D 1 required for Lorentz covari-
ance are the same for left- and right-movers. (The critical dimensionD D 26 is
also the same.)

With the analog of Eq. (15.102)

L?
0 D

˛0

4
p2? CN

? and QL?
0 D

˛0

4
p2? C

QN? (15.124)

this constraint translates into the…

!

N?
D QN? ⁂ Level-matching condition (15.125)

with level operators

N?
WD

1X
nD1

n ai�n a
i
n and QN?

WD

1X
nD1

n Qai�n Qa
i
n : (15.126)
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!

The level-matching condition Eq. (15.125) excludes some states from the Fock space
generated by the oscillator modes ai�n and Qai�n ; i.e., only a subspace of the Hilbert space
contains physical states.

c | The mass shell condition follows in analogy to Eq. (15.105):

M 2
D

2

˛0

�
N?
C QN?

� 2
�

⁂ Mass shell condition

• Combine Eqs. (15.122) to (15.124) to show this.

• The �2 differs from the open string case Eq. (15.118) since the normal ordering
constant contributes twice in the sum (for both left- and right-moving modes).

ii | Fock space:

The closed string Fock space Hc is spanned by the states

j�; Q�; ki WD

"
1Y
nD1

24Y
iD1

�
ai�n

��n;i

#
„ ƒ‚ …

Right-moving modes

�

24 1Y
mD1

24Y
jD1

�
Qaj�m

�Q�m;j

35
„ ƒ‚ …

Left-moving modes

jki (15.127)

Here again �n;i ; Q�n;i 2 N0.

if and only if they satisfy the level-matching condition Eq. (15.125):

1X
nD1

24X
iD1

n�n;i DW N
?
�

Š
D QN?

� WD

1X
nD1

24X
iD1

n Q�n;i : (15.128)

This equation cannot be solved explicitly, it must be studied on a case-by-case basis!

iii | ^ Lowest-mass excitations:

a | Level N? D QN? D 0:

jki with mass M 2
D �

4
˛0 < 0 ! Another ← Tachyon (Scalar)

• The closed string tachyons aremathematically analogous to the open string tachyons.

• Closed string tachyons are lesswell understood than open string tachonys. Zwiebach
[7] writes (§13.3, p. 291):

The closed string tachyon is far less understood than the open string tachyon. […]
The instabilities associated with closed string tachyons are expected to be instabilities
of spacetime itself. They remain largely mysterious.

Congratulations! You have officially entered physics mystery land…
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b | Level N? D QN? D 1:

Such states must have always one left- and one right-moving mode with n D 1 excited:

j‰; ki WD
X
i;j

Rij a
i�
1 Qa

j�
1 jki with M 2

j‰; ki D 0 (massless) (15.129)

Rij : arbitrary .D � 2/ � .D � 2/ square matrix

! Decompose this matrix w.l.o.g. as follows:

Rij„ƒ‚…
.D�2/2

D

Symmetric
& traceless‚…„ƒ
Sij„ ƒ‚ …

1
2
.D�2/.D�1/�1

C

Antisymmetric‚…„ƒ
Aij„ ƒ‚ …

1
2
.D�2/.D�3/

C

Scalar � Identity‚…„ƒ
D ıij„ ƒ‚ …
1

(15.130)

The expressions below thematrix components denote the number of degrees of freedom.

These three parts transform each as an irreducible representation under Poincaré trans-
formations, i.e., these states correspond to different types of massless particles:

! Three massless particle types:

jS ; ki WD
P
i;j Sij a

i�
1 Qa

j�
1 jki Graviton states ,

jA; ki WD
P
i;j Aij a

i�
1 Qa

j�
1 jki ⁂ Kalb-Ramond states /

jD; ki WD
P
i D a

i�
1 Qa

i�
1 jki ⁂ Dilaton state /

(15.131a)

(15.131b)

(15.131c)

• Remember from our discussion of gravitational waves (Section 13.4) that classical
excitations of the metric field can be parametrized (after exploiting the gauge
symmetry of general relativity) by a symmetric, traceless field h�� with only
transverse modes. InD spacetime dimensions, this means that a gravitational wave
can be encoded in a .D � 2/ � .D � 2/matrix hij that is symmetric and traceless;
it has therefore

1
2
.D � 2/.D � 1/ � 1 D 1

2
D.D � 3/ (15.132)

physical degrees of freedom; inD D 4 one finds the two degrees of freedom that
we identified in Section 13.4 as two possible polarizations.

But Eq. (15.130) shows that there are exactly as many states jS ; ki as demanded
by Eq. (15.132), which tells us that these are the required massless “spin-2” states
needed for a graviton. (Note that it is not obvious that this field couples to the
other particles of the theory via the energy-momentum tensor.)

For details: ↑ Zwiebach [7] (§10.6, pp. 209–212).

• The Kalb-Ramond states are the excitations of an antisymmetric, massless tensor
field B�� that is similar to the electromagnetic gauge potential A�. It acts as a
source of ← torsion for the affine connection on spacetime [← Eq. (10.41)].

• The dilaton states are the excitations of a massless scalar field, the ↑ dilaton field.
Intuitively, the dilaton is the quantization of the “breathing” mode mentioned
← earlier. The dilaton modifies the theory of gravity predicted by string theory
to a tensor-scalar type (← Section 12.3); it also controls the interaction strength of
strings.

For details: ↑ Zwiebach [7] (§13.4, pp. 294–296).

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



EX → SNEAK PEEK: BOSONIC STRING THEORY

484
PAGE

15.3. ‡ Closing remarks

We conclude our excursion with a few comments on advanced topics:

For more details the reader is referred to David Tong’s script on String Theory [319].

• How do strings interact?

So far we described the states of a single string (open or closed) propagating on a D D 26-
dimensional spacetime.

1 | ^ Difference between theories of point particles and strings:

– The action of a free point particle lives on a 1D worldline – and is therefore undefined
on a vertex where two particles meet (the crossing of two lines is not a manifold).

! Interaction terms must be added by hand.

– The action of a free string lives on a 2D worldsheet and is well-defined everywhere on
the worldsheet of two strings that merge and separate again.

! The Polyakov action is already well-defined for interacting strings.

2 | Given the gauge symmetries of the Polyakov action (= diffeomorphism invariance &Weyl
symmetry), are there possible terms that we could add to modify string interactions?
ı
�! Polyakov action can be extended by only one term:

QSP WD �

Z
d�d�

p
h
hT
2
hab@aX

�@bX� C

Weyl & Diff.
invariant‚ …„ ƒ
�

4�
R.h/

i
(15.133a)

� SP Œh; X� � ��Œh� (15.133b)

R.h/: Ricci scalar on worldsheet (This is not the curvature of spacetime!)

The general covariance of the new term is obvious. It’s Weyl invariance (up to a total
derivative!) can be checked by a straightforward calculation.

3 | Interpretation:

^ Worldsheet without boundaries
ı
�!

�Œh� D
1

4�

Z
d�d�

p
hR.h/

Gauss
Bonnet
D 2.1 � g/ 2 Z (15.134)

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



EX → SNEAK PEEK: BOSONIC STRING THEORY

485
PAGE

g: Number of “handles” of the worldsheet (g is called the ↑ genus of the worldsheet.)

! � depends only on the topology of the worldsheet.

I.e., the action � is invariant under geometrical deformations of the worldsheet.

4 | Superposition principle! Sum over all worldsheet topologies and geometries …

… consistent with the string scattering process under consideration:XZ
Topologies
Metrics

ei
QSP �

X
Topologies

e2i�.g�1/„ ƒ‚ …
�g

2i.g�1/
s

Z
Fixed

topology

DXDheiSP Œh;X� (15.135)

gs D e
�: ⁂ String coupling constant

– String theory has therefore only two parameters: The string tension T and the string
coupling constant gs . These two numbers determine the scattering amplitudes of
all particles predicted by the theory. This is of course a fascinating prospect: The
Standard Model has� 18 free parameters (masses and coupling constants) that ask for
an explanation. Unfortunately (,), none of these parameters have been derived from
(super-)string theory so far.

– String theory calculations typically make use of two perturbative expansions: one in ˛0

(to capture interactions on the worldsheet) and one in gs (summing over the number of
“holes” in the worldsheet).

• Where is general relativity? Where are the Einstein field equations?

This was a course on special relativity andgeneral relativity, and ourmost precious
result was the Einstein field Eq. (12.10) that controls the geometry of spacetime.

String theory claims to be a theory of quantum gravity; to earn this title, it should reproduce the
Einstein field equations in some limit. Since string theory is formulated on a static background
metric (→ below) – and not in a background-independent form – general relativity emerges
in a rather esoteric way:

1 | Let us first generalize the Polyakov action to arbitrary cuved spacetimes:

Eq. (15.22)
��� 7! g��.X/
����������!

S flat
g ŒX� WD �

T

2

Z
g��.X/@aX

�@aX� d�d�„ ƒ‚ …
↑ Non-linear � -model

(15.136)

! Interacting quantum field theory with infinitely many coupling constants g��.x/

This explains why used flat Minkowski space ��� to quantize the bosonic string.

Actions like Eq. (15.136) with fields that map into non-linear manifolds (here: curved space-
time) are called ↑ non-linear � -models; a well-studied class of interacting quantum field
theories that also have applications in condensed matter physics.

! Question: Is g��.x/ arbitrary?

Surprising answer: Not if we want the conformal gauge symmetry to be unbroken!
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2 | To show this ^ Small fluctuations of the fields around x�0 :

X�.�; �/ � x
�
0 C
p
˛0Y �.�; �/ (15.137)

) g��.X/ $ ��� �
˛0

3
R�˛�ˇ .x0/„ ƒ‚ …

Riemann curvature
tensor

Y ˛Y ˇ CO.Y 3/ (15.138)

Here we use ← locally inertial coordinates [← Eq. (10.89)] on spacetime to make the first
derivatives of the metric vanish. One can show that the (non-vanishing) quadratic order is
then given by the ← Riemann curvature tensor (↑ Riemann normal coordinates).

Eq. (15.136)! Interacting quantum field theory on 2D worldsheet:

S flat
g ŒY � � �

1

4�

Z
d�d�

h
���@aY

�@aY �„ ƒ‚ …
Free fields

�
˛0

3
R�˛�ˇY

˛Y ˇ@aY
�@aY �„ ƒ‚ …

Interaction

i
(15.139)

One can now apply the well-honed machinery of quantum field theory to this action:

! Feynman rules & Perturbation theory in ˛0 …

3 | Remember: The conformal symmetry Eq. (15.30) of the Polyakov action is a gauge symmetry.

! Consistency requires that it remains unbroken after quantization.

This means that a ← quantum anomaly that spoils this symmetry cannot be tolerated.

!How to check the conformal symmetry of Eq. (15.139) after quantization?

Idea: Calculate ↑ renormalization flow of couplings g�� :

Conformal symmetry , Scale invariance , RG fixed point

– Note that conformal transformations include global scale transformations; scale invari-
ance is therefore a necessary (and under most circumstances sufficient) condition for
conformal symmetry.

– The idea of the ↑ renormalization group (RG) is to study how the couplings in a La-
grangian change if one “zooms” our. Mathematically, one integrates out a thin shell of
high-energy momenta from the partition sum (in perturbation theory for interacting
QFTs) and studies how this changes the coupling constants of the obtained effective
action (here: g��). As a result, one obtains differential equations that encode the
change of coupling constants with changing length/energy scale �. This is called the
↑ renormalization flow, and the function that determines the flow of a coupling constant
is called its ↑ beta function:

ˇ��.g/ WD �
@G��.X I�/

@�
: (15.140)

A vanishing beta functions means that the theory “looks the same” on all length scales,
i.e., is scale invariant.

4 | Apply standard techniques to compute RG flow of Eq. (15.139) in first order of ˛0:

�
�! ˇ��.g/ D ˛

0R�� CO.˛02/ (15.141)

R�� : Ricci tensor of g��

The resulting RG flow is called the ↑ Ricci flow; it is an important concept for the RG analysis
of non-linear � -models in general.
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5 | We can finally piece everything together:

No conformal anomaly! ) ˇ��.g/
Š
D 0

) R��
Š
D 0

) Vacuum Einstein field equations ,

) general relativity ,

– This means that the conformal anomaly only cancels inD D 26 spacetime dimensions
and if the spacetime metric satisfies the Einstein field equations!

– Similar results can be obtained with matter fields, i.e., also the coupling to the energy-
momentum tensor follows from the constraint of conformal invariance.

– Computing the beta function to higher orders in ˛0 (= evaluate Feynman diagrams
with more than one loop) yields quantum corrections to the Einstein field equations (as
expected for a theory of quantum gravity).

• How do the gravitons of string theory relate to the spacetime metric?
So far we only found massless states of the closed string that transform under the correct represen-
tation of the Poincaré group (that of a symmetric, traceless rank-2 tensor field). We called these
states “gravitons” – but it is not clear that (and how) these states relate to the metric of spacetime
(which enters string theory not as a dynamical field but as a static background).

Here is a sketch (!) how one can establish this relation:

1 | ^ String scattering amplitude of i D 1; : : : ; N string states:

Scattering amplitudes are calculated from the path integral via the insertion of so called
↑ Vertex operators. Each in- and out-going string state corresponds to a particular vertex
operator (↑ Operator-state correspondence):

M.V1; : : : ; VN / �

Z
DXDh eiS

flat
g Œh;X�QN

iD1 Vi Œh; X� (15.142)

Vi : ↑ Vertex operators

2 | One can show that the Vertex operator of single graviton state has the form:

jS ; ki $ VS ;k �

Z
d�2 S��.@aX�/.@aX�/ eik�X

�

(15.143)

Here k� is the momentum of the graviton and S�� encodes its polarization; cf. Eq. (15.131a)
in light-cone gauge.

3 | We are interested in the effect of quantized gravitons on the classical background metric.
Hence we should study graviton states that are “as classical as possible” (= minimize un-
certainty relations). These states are ↓ coherent states that describe superpositions of many
graviton excitations; just like classical laser light is not described by single photon states but
by coherent states of photons.

Remember that the coherent state of a bosonic mode (e.g., a photon mode) is obtained by
exponentiating the creation & annihilation operators:

Coherent state: j˛i D e˛a
��˛�a

j0i (15.144)

! ^ Vertex operator for Coherent state of gravitons:

V Coherent
S ;k � eiVS ;k (15.145)
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4 | We can now study how the presence of such a coherent state affects scattering amplitudes:

^ Scattering amplitude with coherent state:

M �

Z
DXDh eiS

flat
g V Coherent

S ;k : : :„ƒ‚…
Other
vertex

operators

(15.146)

Observation: The coherent graviton state has the same form as the Polyakov action:

eiS
flat
g eiVS ;k D exp

n
i

Z
d�2

h
g��.X/C S��e

ik�X
�
i

„ ƒ‚ …
DW Ng��.X/

@aX
�@aX�

o
(15.147)

Ng��.X/: New background metric

! This demonstrates that…

Coherent graviton state�Modification of classical background metric

In conclusion, one can think of the static background metric g�� as a “condensate” of
gravitons around which the quantum theory is developed. Gravitons are then the quantum
fluctuations on top of this condensate.

• What about Superstring Theory?

Here we studied bosonic string theory: We only found particles with integer spin that commute
when exchanged (↑ Spin-statistics theorem). Since our world very much relies on the existence of
fermions with half-integer spin (electrons etc.), this begs the question:

Where are the fermions?

1 | Answer: They are put in by hand:

S flat
SS ŒX;‰� WD �

1

4�˛0

Z
d�d�

h
@aX

�@aX�„ ƒ‚ …
Polyakov

(Bosonic string)

C ˛0 N‰�a@a‰�„ ƒ‚ …
Worldsheet fermions

i
„ ƒ‚ …

↑ Superstring

(15.148)

‰
�
˛ .�; �/: ↑ Majorana fermions

These are real-valued two-component ↑ Grassmann fields; i.e., ˛ D 1; 2 and� D 0; : : : ;D�
1 and‰�˛‰�ˇ D �‰

�
ˇ
‰
�
˛ .

– You shouldn’t be worried about the vector index on the two-component spinors‰�;
they play the same role as for the worldsheet scalars X�.

– We interpreted the bosonic fields X� as the spacetime positions of the string. The
worldsheet fermions ‰� do not have such a natural interpretation. They describe
internal fermionic degrees of freedom that propagate along the string itself.

– The action Eq. (15.148) has a new continuous symmetry that mixes the bosonic fields
X� with the fermionic Grassmann fields‰�; this symmetry is called ↑ supersymmetry
and gives ↑ Superstring Theory its name. (Supersymmetry guarantees the absence of
tachyons and is therefore needed for the theories consistency.)
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– The Dirac adjoint is N‰� WD ‰��0 and the two Dirac matrices (the worldsheet is
two-dimensional!) can be chosen as

0 D

�
0 �1

1 0

�
; 1 D

�
0 1

1 0

�
acting on ‰� D

�
‰
�
1

‰
�
2

�
I (15.149)

they satisfy fa; bg D 2�ab .

– While there are good mathematical reasons to add fermions to the string action (→ next),
there is no physical intuition that underlies their existence. These fermionic degrees of
freedom on the string are simply postulated, just like the existence of the string itself.
Superstring theory therefore does note explain the existence of fermions (like some
↑ topologically ordered condensed matter systems are able to). If you don’t find this
satisfying, I would agree.

2 | Teaser:

Besides the emergence of fermionic particles (= spacetime fermions) in the spectrum of the
superstring, this extended theory has additional advantages over the bosonic string:

String theory + Supersymmetry„ ƒ‚ …
Superstring theory

!

8̂<̂
:

Critical dimensionD D 10 < 26 ,/

Fermions included ,

No Tachyon ,

– The bosonic string (= Polyakov action) is essentially unique. This is not so for the
superstring: There are five distinct ways to define consistent supersymmetric string
theories: Type I, Type IIA, Type IIB, HeteroticE8 �E8, and Heterotic SO.32/. They
are conjectured to be limits of a single theory dubbed ↑ M-Theory.

• Meta-Knowledge:

The calculations in this chapter were rather involved. It is important, however, to keep in mind that
this is physics from the 1970s; this version of string theory is not representative for the sophistication
of the field today. Here is a sketch to provide perspective:
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