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Preliminaries

Requirements for this course

For this course, we assume that students are familiar with the following concepts:
« Non-relativistic quantum mechanics and second quantization
« Lagrangian and Hamiltonian formalism of classical mechanics
« Special theory of relativity and tensor calculus

« Complex analysis (contour integrals, residue theorem, ...)

Literature recommendations

« Weinberg: The Quantum Theory of Fields (Volume 1) [1]
ISBN 978-0-521-67053-1
Standard reference, very rigorous & mathematical, #formulas/#text = high

o Itzykson & Zuber: Quantum Field Theory [2]
ISBN 978-0-486-44568-7
Standard reference, #formulas/#text = high

« Peskin & Schroeder: An Introduction to Quantum Field Theory [3]
ISBN 978-0-201-50397-5
Standard reference for courses on QF T, #formulas/#text = medium

o Zee: Quantum Field Theory in a Nutshell [4]
ISBN 978-0-691-14034-6
Compact and pedagogical introduction to the field, #formulas/#text = low

For a first introduction to QFT, Peskin & Schroeder is a good choice (which we will use in this
course). Then, if you are hooked and want to understand QFT in depth (in particular its
mathematical foundations) read Weinberg afterwards.

Goals of this course

The goal of this course is to gain a thorough understanding of relativistic quantum field theory,
the concepts of Feynman diagrams, renormalization for quantum electrodynamics, and to
extend this knowledge to non-abelian gauge theories. In particular (x optional):

« Relativistic quantum mechanics (Klein-Gordon and Dirac field)
 Quantization of free fields
o Perturbative analysis of interacting fields

« Feynman rules and diagrams
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LECTURE 0

« Elementary processes and first corrections of quantum electrodynamics
« Renormalization

« Path integral formalism

» Non-abelian gauge fields

 Spontaneous symmetry breaking and the Higgs mechanism «

« Structure of the Standard Model x

This course follows and partially covers Part I (field quantization, perturbation theory, Feynman
rules) and Part II (path integrals, renormalization) of “An Introduction to Quantum Field
Theory” by Peskin & Schroeder. If there is time, we close with a brief perspective on Part III
(non-abelian gauge theories, standard model).

Notes on this document

« This document is not an extension of the material covered in the lectures but the script
that I use to prepare them.

+ Please have a look at Peskin & Schroeder for more comprehensive coverage; the
corresponding pages are noted in the headers (- PS:xx-yy).

« The content of this script is color-coded as follows:

Text in black is written to the blackboard.

Notes in red should be mentioned in the lecture to prevent misconceptions.

Notes in blue can be mentioned/noted in the lecture if there is enough time.

Notes in green are hints for the lecturer.
« One page of the script corresponds roughly to one covered panel of the blackboard.
« Enumerated lists are used for more or less rigorous chains of thought:
1 Thisleadsto...
2 | this. By the way:
i Thisleadsto...
i~ thisleadsto...
iii | this.

3 Let’s proceed ...

Acknowledgments

o Manya Willberg translated some of my ugly sketches into nice TikZ figures.

o Johannes Migerle spotted various typos in the script.
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Key

The following abbreviations and glyphs are used in this document:

¢f | confer (“compare”)
dof | degree(s) of freedom
eg | exempli gratia (“for example”)
etc | et cetera (“and so forth”)
etal | et alii (“and others”)
te | id est (“thatis”)
viz | videlicet (“namely”)
vs | versus (‘“against”)
wlog | without loss of generality
wrt | with respect to
< | “consider”

“therefore”

+

[lo

non-obvious equality that may require lengthy, but straightforward calculations
non-trivial equality that cannot be derived without additional input

“it is easy to show”

“it is not easy to show”

logical implication

logical conjunction

logical disjunction

repeated expression

B O < > U I* lo g«

anonymous reference
w/o | “without”

w/ | “with”

> | internal forward reference (“see below/later”)

¢ | internal backward reference (“see above/before”)

1 | external reference to advanced concepts (“have a look at an advanced textbook on...”)
4 | external reference to basic concepts (“remember your basic course on...”)

© | reference to previous or upcoming exercises

* | optional choice/item

# | implicit or explicit definition of a new technical term (“so called ...”)
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© Topics of Lecture 1

1. Ontology of quantum field theory in high-energy physics and condensed matter physics
2. Basics of classical field theory (Hamiltonian, Lagrangian)

3. Symmetries and conservation laws

© Topics of Problemset 1

1. Functional derivatives
2. Lorentz covariance

3. Maxwell equations

Before we start our journey, here a few general remarks:

e Quantum field theory (QFT) is concerned with the quantization of fields that live on
smooth manifolds (e.g. Euclidean space-time, Minkowski space-time).

« The most prominent example (which you probably already encountered in one form or
the other) is the quantum theory of the electromagnetic field, which also initiated the field at
the beginning of the 20th century.

« As Maxwell theory has special relativity “built in,” its QFT must be relativistic as well
(i.e., the Lorentz group must be a global symmetry). Relativistic QF T’ are standard in
high-energy physics and will be the focus of this course.

o QFTs are riddled with snfinsties in their expressions, which makes it hard to define them
rigorously as mathematical objects (this is still true for most of them).

 In the mid of the 20th century, the technique of renormalization was developed to
systematically deal with these infinities and extract physical predictions. This was a
crucial step to make quantum electrodynamics (and the standard model afterwards) a
useful and accepted QFT.

« At the same time, the development of Feynman diagrams as a systematic approach to
perturbation theory paved the way to successful applications of QFTs, in particular
quantum electrodynamics.

« In the second half of the 20th century, the toolbox of QFT was imported from high-
energy physics into condensed matter physics for effective, large scale & low energy
descriptions of many-body systems (such as magnets and superconductors); in particular,
it proved useful for the description of phase transitions (* Conformal Field Theories).
These QFTs are typically not relativistic as the Lorentz group is not a symmetry of
condensed matter systems.

 In the context of condensed matter physics, the method of renormalization is less
opaque and has a physical interpretation. These insights led to a better understanding of
renormalization in high-energy physics as well.

o While the methods of QFT in high-energy physics and condensed matter physics are
very similar, their ontology is very different:
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- In high-energy physics, fields are elementary and particles are emergent

- In condensed matter physics, particles are elementary and fields are emergent

— In this course, fields are the fundamental entities of the world; particles are emergent,
effective models for localized excitations of these fields.

1 Elements of Classical Field Theory

1.1 Lagrangian and Hamiltonian Formalism

Recap: Classical mechanics of “points”

With “points” we mean a discrete set of degrees of freedom.
1 <t Degrees of freedom ¢; labeledbyi =1,..., N
2 Lagrangian L({gi}. {di}.0) = T — V

We write g for {¢;} = {q1,...,9N}-
T is the kinetic, ' the potential energy.

3| Action S[q] = [dt L(q(1).4(t).1) €R
This is a functional of trajectories ¢ = ¢ ().

4 | Hamilton’s principle of least action:

8514l

£ & SS:/dtSLéo (11)
8q

8 denotes functional derivatives/variations (© Problemset 1).

5 Euler-Lagrange equations (i = 1,..., N):

— — ——— =90 1.2)
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Analogous: Lagrangian Field Theory

Now we consider a continuous set of degrees of freedom:

1 < One or more fields ¢ (x) on spacetime x € R!:3/R* with derivatives 9,,¢ (x)
where dg = 0; and 0;=1,2,3 = Ox,y 2
(R1:3: Minkowski space, R*: Euclidean space; in the following, we focus on R1:3)

2 | Lagrangian density £(¢, d¢, x)
Most general form: &£ ({¢x }, {09}, {x*}). No explicit x*-dependence in the following!
— Lagrangian L = [ d3x £(¢,0¢)
(We omit the “density” in the following.)

3 Action:
S[¢] = /dtL = /a’z d3x £(¢,¢) = /d4x £(¢,d¢) (1.3)

S[¢] is a functional of “field trajectories” in R1-3.

4 | Action principle:
= §S[¢p] = /d“x §& (1.4a)

0L
/d X {—qu + 30, ¢)8(8M¢)} (1.4b)

Add zero and use 8(3,¢) = 9, (5¢)

(s (] o
= [t {agoe- () %+ (33,9 (49

Gauss theorem

~ 0% . f02 2%
‘A“%mm%%*/“%w (5, 20 000

=0

Note that ¢ is fixed on the boundary 9 and therefore 6¢ = 0.
The second term vanishes because the integral must vanish for arbitrary variations §¢.

5 Euler-Lagrange equations (one for each field ¢):

oL 0L
7~ (a5,5) = "

Note the Einstein summation over repeated indices.
This expression is manifestly Lorentz invariant if £ is a Lorentz scalar.

Recap: Hamiltonian Mechanics

Lagrangian Legendre transformation Hamiltonian 1.6)
L(g.4.1) Conjugate momentum H(g.p.t) = pq—L(g.q.1)
=% © ¢=4q(p)
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Analogous: Hamiltonian Field Theory

1 <X = X; £ i discrete spatial coordinates:
We omit the time dependence of the fields to simplify the notation.

) oL 9

S e pE) = = = 43y L($ (), p(F
== e = / y 2F). G
d ) Jdf
~Y Ay —2L@(). d()) = ——d>
; Y % @), $(7)) P
N———
(ng % 5=z =m(X)

(1.72)

(1.7b)

Spatial derivatives of the fields are represented by finite difference quotients and covered

by the dependence on the (undifferentiated) fields.

— Momentum density conjugate to ¢ is 7 = %
2 Hamiltonian:
n(%)dx Yz L($(X),6(%)) d3x
’—/T . ——
H=Y p® ¢& - L
X

Therefore

H = [d3x {m(x)p(x) — £(¢. )}

Hamiltonian density # (¢, 7)

Note that ¢ = ¢ (). Here we restored the time dependence of the fields: X — x.

© Example 1.1: Free scalar field

1 Realfield ¢ : R3 xR — R with (X,7) — ¢(X,1) = ¢(x)
2 Lagrangian (density): £ = %(a,¢)2 — %(qu)2 — %mzqﬁz = %(3,@)2 — %mquz

guv = diag (1, —1,—1,—1). Note that then 9,,0* = 92 — V2.
3 Interpretation:

,,,,,,,,,,,,,, Gai S Sa SEEE SwPi potential energy

<  ~(9)?

¢kinetic energy ~ (0;¢)2 \,,stretching“w (V¢)?

stiffness of the harmonic potential!
Continuum of spring-coupled pendula for m = 0 < 1D rubber band

(1.8)

(1.9)

It is (0,0)% = 0,00"¢ = (0:¢)> — (xp)?> — (3y¢)* — (0;¢)? with signature

In &£, m is refered to as mass. This is not the inertial mass of the pendula but the
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4 Equation of motion (“field equation”):
—m?p—3,("p) =0 & (0,0" +mP)p =0 (1.10)

This is the classical (1) # Klein-Gordon equation.

5 Conjugate momentum field: 7= = % =¢

6 Hamiltonian (density):

H =m¢ 2(]5 + 2(V¢) + P ¢ (1.112)
_1 2 l 2 1 242
=57 + 2(V¢) + S ) (1.11b)

The Hamiltonian is H = [ d3x ¥ (¢, 7).

1.2 Symmetries and Conservation Laws
What follows is based on Sénéchal “Conformal Field Theory” (pp. 36-42,45-46) [5].
1 < General transformation of field ¢ — ¢':
x> x ' =x'(x) and ¢(x) = ¢'(x) = F(¢(x)) (1.12)

Two effects: coordinates and (values of the) field transformed
These are active transformations that change physics. x’ = x’(x) is not a (passive)
coordinate transformation; the frame of reference remains fixed in the following!

© Example 1.2: Rotation of a vector field q;

i < 3-component field qz = (p1, P2, $3) and R € SO(3) rotation:

¢'(x)
, R X
X~ ) R $(x)
. e X
\‘,()

i X' = Rxand @' (x') = Rp(x) = R$(R™'x')
This defines a  vector field.
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2 Change of the action under ¢ — ¢’

8= 519 = [ d 2@/ (). 0,8/ 0) (1130
Rename integration variables x — x’
= f d%' L(¢'(x'), 9,4 (x')) (1.13b)
Definition
— [ 4t £ @), 8,7 @) (1130
Substitution
= [atc |5 2 (Fown @) o

dx ox’H

Skip first step, use colors for primes.

© Example 1.3: Translations

1 xX':==x+aand ¢'(x') == p(x) = p(x' —a)
This defines a s scalar field.
2 F =1 trivial, ¢'(x') = F(¢(x)) = p(x(x')), and 27 =5,

3 | Action:

S[¢'] = / d9x 2(¢' (1), ' () = / % LB (). 9u () = S[P]  (11a)

The action is translation invariant: S = S’!
This follows generally from the missing x-dependence of &£ for scalar fields.

© Example 1.4: Scale transformations

1 x':=Axand ¢'(x") ;= A72p(x) = A 29 (A" 1x')
A is the # scaling dimension of the field ¢

2 F(p)=2A"2¢and 22 =21716% and [3X| = 29
3 Action:
S[¢'] = A4 [ d% LA (x), AT1720,6(x)) (1.150)
< Massless scalar field: S[¢] = %fddx (0,.0)?
— 1972728 [ 4t 230, 0,9(0) = A92208lg] s
—» S8 =SiffA=2-1
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This is an example of a ™ Conformal Field Theory (CFT).

© Example 1.5: Phase rotation

1 x':=xand ¢/(x)) := e?¢(x)
— There are symmetries that only transform the fields but not the coordinates.

2 F(p)=e% and & = 8y, and

dx’®

=1

ax’
dx
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© Topics of Lecture 2

1. Infinitesimal transformations and continuous symmetries
2. Noether’s theorem and conserved quantities

3. Application to the energy-momentum tensor

Infinitesimal Transformations

We are interested in continuous symmetries (¥ Lie groups).

1 < Infinitesimal transformations (IT):

ST and ¢0) = $() + wa o

(x) (1.16)

x* = xP 4w,

Swyg dwg

Here, w, denotes infinitesimal parameters of the transformation (sum over a implied!).
They may vary from point to point: w, = w4 (x) (see below).

2 | Generator of IT:

Sw(x) := ¢'(x) — ¢(x) = —iwa Gad(x) (117)
With (omit first line and refer to previous equation)
5F
P'(x") = p(x) + wg——(x) (1.182)
Swq
SxH 5F
= ¢ () — Wa 0 p () + Wae (x') + O(w?) (L18b)
Swg Swg
it follows (replace x’ by x; these are just labels!)
) SxH §F
iGap = Eam ~ Sun (1.19)

This function describes the infinitesimal change of the field at the same point.

© Example 1.6: Translations

1 x% = xt 4wkt =xH + w"—gﬁ with gzﬁ, = gk
2 8 F

Swv

3 iGu¢ = 4,0,¢ — 0 and therefore

= 0 (For a scalar or a vector field.)

Gy =—idy, = Py (1.20)

— The “momentum operator” generates translations.
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© Example 1.7: Scale Transformations

G = —ix"*d, = D — Generates “dilations” in spacetime.
This simple form is valid for a scalar field with scaling dimension A = 0 so that —f = 1L

© Example 1.8: Spatial Rotations

Guv = i(xu0y —xy0y) + Sy for p,v =1,2,3

The first term generates coordinate rotations (Vv orbital angular momentum operator).
S,.v are spin matrices that generate field transformations (for non-scalar fields).
Question: What generates G, if either 1 = 0 or v = 02 Answer: Boosts.

Noether’s Theorem

1 < Transformation Eq. (1.16) which is a

Symmetry of the action :&  S[¢] = S[¢'] (1.21)

for w, independent of x (s rigid transformation).

2 | Assume that Eq. (1.16) is not rigid: w, = wg(x)

We assume that w, is sufficiently smooth so that d,,w, is infinitesimal as well, i.e.,

O(wg) = (9(8Mwa).

3 ]acob1an =38, + 0y (wa TP )
Use det(1 —l— A) =1+ Tr[A] + (9(A2).

o (1ai)

4 Inverse Jacobian matrix: {?x% =8, — 0y (wa g;‘) a)
This is true in linear order of w, and 9, wg.
5 Use Eq. (1.13d):

SxH
[ddx [1 + dyu (wam)} (1.22)
5F [, 8x” 5F
(¢*‘w“8 [5 O (ﬁ“8wa)}x[?”ﬁ+a”(““8wa)])

8wa

6 | Expand in 1st order of w, and

7 <88 =8-S — Only terms g
Because the transformation is a symmetry of the action by assumption, i.e., for
w, = const (a rigid transformation) it is §' = S'!

This is equivalent to the definition of a symmetry (of the action).

8 = For generic, non-rigid transformation we find

8S = /d x jHrowa (1.23)
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with the current

0L dxV 0L &F

12 A, — P —
v =0 Swg  9(3,9) Swg

SR FIERS

(1.24)

: 5xV 5F
associated to the IT T and Fooo-

This is only true for transformations that are symmetries of the action!
9 Integration by parts — §S = [ d%x w, ,j4"
Here we assume that the variations w, (x) vanish on the boundaries (possibly at infinity).

10 <t ¢ that obeys the equations of motion — §S = 0 for arbitrary variations ¢’ = ¢ + 3¢
In particular, for arbitrary non-rigid transformations wg, (x)!

It follows Noether’s (first) theorem:

0ujll =0 Vygq (1.25)

s

This is a conservation law with conserved current j'.

11 Conserved charge:

P :=/ d4=1x j0 (1.26)
Space
Indeed:
an d—1 .0 Noether d—1 .k Gauss .k
= d“ " xdoj, = - d°7x 0 j; = — doy j;, =0
dr Space Space Surface
(1.27)

Here we assume that jX = 0 on the boundaries —typically at spatial infinity, i.e., the
universe is closed. k = 1,2, 3 denotes the spatial coordinates.

© Note 1.1

The current Eq. (1.24) is called canonical current as there is an ambiguity:

Jl= gl +0,BEY with BEY = —BJ# arbitrary = 0d,jF =0 (1.28)

© Note 1.2

Symmetric Lagrangian =  Symmetric action = Symmetric EOMs  (1.29)

— Conserved currents

Continuous symmetries of the EOMs do #ot imply conserved currents!

Example: £ = %(a¢)2 — %mzqﬁz yields the EOM (02 + m?)¢ = 0 which clearly is
symmetric under rescaling of the field: ¢’(x) = A¢(x). However, the Lagrangian density
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& is not invariant under this transformation (neither does it change by a total derivative),
so that Noether’s theorem does not apply!

Application: The Energy-Momentum-Tensor (EMT)

Special relativity:
Global spacetime symmetries (Lorentz transformations + Translations = Poincaré group)

General relativity:
Local spacetime symmetries (1 Diffeomorphisms — Gauge symmetries)

1 < Infinitesimal spacetime translations: x'# = x# 4 gt — 852 — sl 85 _

Sev VY Fev T
2 < Translation-invariant action: S’ = §
This includes translations in time!
3 Conserved currents:
oL 5xP oL
TH =!—— 09,0 —§*L; — = ——0,¢0—8"% 30
Y T30, P TP v T a0, P T (1.50)
——
80
v v, ax v v
THY = g"PTH, = " —ghtv L (Energy-Momentum Tensor)
9(0.9)
(1.31)
with 9, 7*” = 0 and four conserved charges
P’ = /d3x 7o (1.32)

Note that these quantities are only conserved for classical so/utions of the EOM:s.

4 | Energy (v = 0) (skip first step):

P° = /d3x 7% = /d3x {%d)—:ﬁ} = /d3x H(p,mw)=H (1.33)

— The Hamiltonian is the component of a 4-vector and not Lorentz invariant!
By contrast, the Lagrangian 7s Lorentz invariant (for relativistic field theories).

5 Kinetic momentum (v = i):

Pl = /d3x 7% = /d%%(—a@) = —fd3xn8i¢ (1.34)

7 is the canonical momentum.
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© Note 1.3

In general THY # TV for the canonical EMT. But:

TH = TH + 8,KPHY with KPHY = —KHPY (135)

Choose K"V such that THY = TVH (+ & Belinfante(-Rosenfeld) EMT)

Using the EMT as source of the gravitational field in general relativity requires a symmetric
EMT because the Einstein field equations read R, — % guwR =8nG/ c* Ty with the
(symmetric) Ricci tensor R,,,, and the (symmetric) metric g ..

© Example 1.9: Electromagnetism (EM) in vacuum

Details ® Problemset 1

Four-component gauge field: A% = (¢, A, 42, 43)

EM field tensor: Fy, = 9,4, — 0, Ay
Contains E- and B-field components.

Lagrangian: £em(A, 04) = —%FMF/“’
Action: Sem = [d* Lem
Euler-Lagrange equations: d,, F'*¥ = 0 (inhomogeneous Maxwell equations)

Sem 18 Lorentz invariant and translation invariant (= Poincaré invariant)
— EMT = conserved currents

Why is this obvious?
Canonical EMT: Ty = 5 (%fin,\)av Aj — g Lem

Symmetric EMT using KAV := FHA4V:

- 1
& = 8" FppFP* — FIPF, (1.36)

o T9 = 1(E2 + B?) (v Energy density)
« T% = (E x B); (+ Pointing vector)

o« TU = 0y; (* Maxwell stress tensor)
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© Topics of Lecture 3

1. Canonical quantization of the Klein-Gordon field

2. Heisenberg picture: Time evolution of the quantized Klein-Gordon field

© Topics of Problemset 2

1. The classical complex Klein-Gordon field
2. The quantized complex Klein-Gordon field

2 The Klein-Gordon Field

2.1 Canonical Quantization

1 Theory:
i = Real field ¢ (x) (© Problemset 2 for the complex analog)
i | Lagrangian: £ = 2(3,.9)> — 3m2¢? (# free scalar field)
i | EOM: (0% + m?)¢ = 0 (Klein-Gordon equation)

iv | Hamiltonian: # = %nz + %(V(ﬁ)z + %mzqﬁz

2 Canonical quantization:

[6(). 7(7)] = 16D E - 7)
[6(3),9(7)] =0 21)
[7(®). 7()] =0
with ¢ = ¢, 77 = 7 (“real” field operators) and ¥ € R3.
This is completely analog to the canonical quantization of “points” known from
undergraduate courses on quantum mechanics if Kronecker deltas are replaced by delta
distributions: [g;, pi] = i8;; — [¢(F), w(¥)] = 8P (X — 7).
For now, we are in the Schrédinger picture where the fields do not depend on time!
3 Goals:
« Representation of field operators * Eq. (2.1)
 Spectrum of Hamiltonian

« Time evolution of field operators ¢ (X) > ¢(x)
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4 | Motivation:

(The following facts are used to come up with a tentative representation for the field
operators; that it is correct can be later checked rigorously.)

i = Fourier transform of KG equation in space:

s = [

[02 + (15> + m®)] $(p.1) =0 23)

FER
(27:;3 ¢ PiG(p. 1) 22)

Then

— Decoupled harmonic oscillators with frequency w; = /| p|? + m?
and constraint ¢*(p,1) = ¢(—p, 1) (since ¢* = ¢).

ii = < Hamiltonian Hsyo = %Pz + %a)zX2
Introduce X = J%—w(a +afyand P = —i \/g(a —a%)ywith[a,a’] =1
— Hspo = w(ata + %) (diagonal!)
Here: P < 7(p)and X < ¢(p)

5 | This motivates the Field operators

d3p 1 P53 -
5. | P _,iDX t —ipx
$(x) == I Er (ape +age )
d3p 1 i P53
— . px
—J (@n)3 V205 (ap +a—ﬁ) ¢
(2.4)
$(P)
; p o [@5 T\ iFR
m(X) = / )’ (i) T3 (a[, —a_l.;) e
7(p)
(Use colors to skip second line.)
The —p is necessary to make the fields “real”: ¢" = ¢ and n7 = 7.
with momentum modes
[4.4]] = @m)*@ (5~ ) 29
(All other commutators vanish.)
> Eq. (2.5)A Eq. (2.4)=>Eq. (2.1) (Check this at home!)
6 | Hamiltonian:
o [ g ] i
H = [ W“)ﬁ(uﬁaﬁ + 3 [aﬁ,aﬁ]) (2.6)
S —
x§(0)=00

Ignore the infinite term since only relative energies are physical!
This infinity accounts for the zero-point energies of all harmonic oscillator modes.
Dropping this infinity is called normal ordering (- later).
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7 Eigenstates & Spectrum:

° 1 — T
« — [H,aﬁ] = 05a;
— < Vacuum |0) with a3{0) =0

— Eigenstates a;ag ...|0) (span complete Hilbert space)
— Irreducible representation of momentum mode algebra Eq. (2.5)
o Energy: £; = w; = ++/|P|? + m?2 (relativistic dispersion, positive energies!)
+ (Kinetic) momentum:
d
@n)”

P = [@acaem = [ ;

Tas
aﬁa (2.7)

This is now an operator!
. Statistics: a-a|0) = ala'|0)
P g qp

— Excitations a;r; commute and carry additive energy & momentum

— Bosonic particles (in momentum space)

8 Normalization:
i <A =R L3R €S0*(1,3) > p' = (Ez.p') = Ap with p = (E, p)

Recall that all Lorentz transformations can be generated from spatial rotations and
a boost L3(B) in z-direction!
ii | Jacobian in space: det (%—’;) = giz = 3£
D
> o Ez > >
=80 -q) = 7 8V ~ )

— 8B)(p — g) is not Lorentz invariant but £ 5§ (p — g) is!

Use colors to shorten this!
3D volumes are not invariant under boosts due to Lorentz contraction!

i Single-particle eigenstates:

P) = 2E;all0) = (plg) =) 2E,6D(F-§) @9
——————
Lorentz invariant
This follows directly from the commutation relations.
The 2 is just convention.

9 | Lorentz transformations A € SO (1, 3):
We need a unitary representation of the Lorentz group SO™ (1, 3) on the Hilbert space!

- — E D
UM P) = |Ap) & U(A)a;U LA) = . bf‘j’ aj\l; (2.9)
p

Itis (Ap)' = AinM (i-e., the spatial projection).

Note that the “boost part” of A is hidden in the normalization of the state!

You can check that UT(A)U(A) = 1 using the single-particle states and our normaliza-
tion of these states Eq. (2.8). The representation U(A) is infinite-dimensional and can
therefore be unitary despite the non-compactness of the Lorentz group.
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10 Interpretation of ¢ (X):

d3p | i 5%
- —ipX|p

$(X)[0) =

For non-relativistic | p| < m = Ej ~ const
— State |X) of particle at position X
— ¢ (X) creates particle at position X

« This interpretation is also consistent with the “position-space representation”

(Ol¢(X)|p) = e'P~.
 The factor ZE% suppresses large momenta and “smears out” the position of the
D

particle on length scales of its Compton wavelength A = 1/m (> space-like
two-point correlation function (0|¢(X)¢(7)[0) ~ e~mIx—y |).

© Note 2.1

=

« Projector on single-particle sector: 1; = ( D

f (27r)3

* < f(p) Lorentz invariant — | él 133 ;%p ) is Lorentz invariant

2.2 The Klein-Gordon Field in Space-Time

So far: Schrédinger picture
Now: Heisenberg picture

1| Heisenberg operators: ¢(x) = ¢(X,t) = e ¢ (¥)e ! (similar for 7(x))
2 Heisenberg equation: 19,9 = [0, H] for O = ¢, 7 yields

1 ~ 1 - 1 -
10:¢(x) = [(P(X),/d}y izﬂz(y»f) + §(V¢(y,l))2 + 2mz¢2(y,l)ﬂ

— [ @ i89G - G0

=1im(x) (2.112)
i3;m(x) = —i(—=V? 4+ m?)p(x) (2.11b)
= (8? — V2 +m*)¢(x) =0 (Klein-Gordon equation) (2.12)

3 Time-evolution of modes:

e’H’aI;e_’H’ = aze ' Ep! (2.13a)

etha'f;e—th +iE 5t

=a.e (2.13b)

N R N

Use colors to skip last row.
This can be shown informally by using Hz = E5 a;a 5 and counting excitations (i.e., on
the number basis).
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LECTURE 3 > PS:19-26 hyslcs

4 | Field operators:

— d3p 1 —ipx T ipx
d(x) = WE (aﬁe +age ) =E, (2.14)
m(x) = 9:¢(x) (2.15)

—>—>. 0 .
Here, px = ptx, = Ejt — pX; note that p” = E 5.

In the following, a 5 and al always denote the time-independent Schrodinger operators!
p

© Note 2.2
1 Hamiltonian generates time translations:
¢(3.1) = e (3, 0) e
~——
¢ (X)
2 Total momentum operator generates space translations:
() = e Fp(0)e!
3 Four-momentum operator generates space-time translations:

() = ePEpOePF
Here, P* = (H, P) where P is defined in Eq. (2.7).

© Note 2.3

O . . . . .

Note that p” = Ej is always positive:
« e7'P¥ & positive-frequency solution of KG equation <> destruction operator a 5

o eTIPX & negative-frequency solution of KG equation <> creation operator a;

As single-particle wavefunctions, solutions with positive/negative frequency correspond to
solutions with positive/negative energy. Note that there are only excitations with positive
energy in the quantized field theory!
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© Topics of Lecture 4

1. Causality
2. Green’s functions of the Klein-Gordon theory

3. The Feynman propagator

Causality

<t Amplitude for a particle to propagate from y to x:

3

D(x —y) = (0]p(x)p()]0) = (@n)3 2E-
p

This expression is Lorentz invariant, i.e., D(A(x — y)) = D(x — y) forall A € SO (1,3)
[more generally, for all orthochronous Lorentz transformations A € O™ (1, 3)].

This is not true for non-orthochronous Lorentz transformations which flip the sign of D(x — y)
since E5 = Pl —p0 = —Ej!

1 < Time-like distance: x® — y* =rand X —y =0

4 [ee) 2 )
D(x - y) = # / dp 2\/% e’ p2+m?t (2.172)
s 0 pe+m
S .
=13 / dE VE2? — m2 ¢ 'E? (2.17b)
T Jm
t—00
# 0 (actually not convergent) (2.17¢)

t—o0
e imt

(this is very hand-wavy) (2.17d)

— Does not vanish — Propagation possible

2| < Space-like distance: x® — y* = 0and X — y =7
d3p 1 .
D(x—y) = Wﬂ?ﬁ e'fr (2.182)
20 00 p2 eipr _ e—ipr
= 2.18b
(2m)3 /0 2E; ipr (2.185)
— o] ipr
227)%r J_oo /2 + m?2

Use Cauchy’s integral theorem with the following path:
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branch cut

lim @...=A+C+E "0
R—
e—>0

» Show that the curved sections vanish for R — oo and ¢ — 0, respectively!
Showing that B, F — 0 for R — oo is actually tricky and requires some kind of
regularization (that P&S are silent about) to exponentially suppress the oscillating
terms close to the real axis. One way to to fix this is to focus on the asymptotics
r — oo (which is our goal here). The oscillating terms can then be exponentially
suppressed in the limit r — oo so that the contributions from the arcs become
negligible. Strictly speaking, the non-convergent integral Eq. (2.18c) should be
defined by such an appropriately chosen limit.

« Itis C = E since the minus from the opposite direction and the branch cut cancel.

Then
Dx—y)=-C—-FE =-2C (2.19)
_ 00 ipr

= —12 dp AN (2.20)

2m)?r Jim v p?+ m?

. 1 (o) —pr
= d,oL (2.21)

47'[2r m \ /p2 — m2

T emmr (2.22)
— Vanishes exponentially (but non-zero!) — Problem?

The integral Eq. (2.21) can be evaluated in terms of modified Bessel functions of the second
kind, the asymptotics of which is known and yields the given exponential decay. Note
that simply upper bounding the integrand by e ™®" < e™"" leaves a diverging integral
behind so that one ends up with the useless upper bound e ™" x oo.

3 << Measurements 4 and B: can affect each other iff [4, B] # 0
Simplest choice: A = ¢(x) and B = ¢(y)
Causality is preserved if all observables commute at space-like separations!
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Since = = d,¢, it is sufficient for [¢(x), ¢ (y)] to vanish for (x — y)? < 0.

d3p 1 d*q 1
waxwwy-/em3ﬁﬁg oS T 2%
X [(a;,e‘ipx + a;eipx) , (aqe_iqy + a;ei‘”ﬂ
_ [ 4P 1 —ip(x—y) _ ,ip(x—y)
= | Gy, (e _e ) (2.23b)
=D(x—-y)—D(y—x) (2.23¢)

Let (x — y)2 < 0 space-like — IA* € SO (1,3) : A*(x —y) = —(x — y):
The proper orthochronous Lorentz group SO (1, 3) is a connected subgroup of the Lorentz
group O(1, 3), the elements of which connect continuously to the identity.

Time

Light cone

Rotations

Continuous transformations (rotations in space and boosts) allow for (x —y) > —(x —y)
only if (x — y)? < 0. For time-like distances, this requires discontinuous transformations
(time-reversal).

Then
[p(x),#(»)] = D(x —y) — D(A*(y — x))
(x=»)?<0
=D(x—y)—D(x—y)=0 (Causality) (2.24)

For time-like separation, (x — y)? > 0, there is no such continuous transformation and
the argument breaks down.

The first line follows from the Lorentz invariant integral measure in Note 2.1 and the
definition of the propagator in Eq. (2.16). Remember that D is only invariant under
orthochronous Lorentz transformations but picks up a minus sign under time inversion!
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LECTURE 4

The Propagator
Since [¢(x), $(y)] o 1 (the commutator is a c-number), we can write (x° > y° for now)

1
“c-number” historically denotes scalar multiples of the identity, i.e. classical/commut-

ing/complex “numbers”.

|

d3p 1 ; :
0 , 0) = _( —ip(x—y) _ tp(x—y)) 2,25
O 90110 = [ G557 (e e @25
Substitute p — —p to obtain the second term:
2n)3 2E; —2E;
Residue theorem with clockwise orientation (therefore the —1):
3 0
x02y0 [ d°p / dp 1 e PO=Y) (3050
(27‘[)3 Y=YR 2mi p2 — m2
~————
(P°—E3)(PO+Ej)
d* ] ;
P L mir—) (2.25d)

- /)/=1/R (27.[)4 p2 —m2

with contour yg
plecC
,K, \k
/ XO < )‘0 N
4 \
’ \
!/ \
! \
/ y L >
—00 <« ! " —> 0
o L) (D, o
|‘ —Ep +Ep "
\ 1
\ 1
\ /I
N 0 0
\\ X" > .) ’,
N K
k\ ,’

The arc vanishes in the lower/upper-half pane for x® > y% and x° < y°, respectively.

Therefore
(2.26)

DRr(x = y) = 0(x° = y)) {0l [p(x), $(1)]10) = [Eq. (2.25d)],,_, .

2 | Interpretation:
(2.27)

(2 + m?)DR(x — y) = —i§@(x — y)

— Retarded Green’s function of Klein-Gordon operator

“R” for “retarded” since it vanishes for x? < y©.
We could have found Eq. (2.25d) directly from Eq. (2.27) by Fourier transformation.

PAGE 27 1 Notes
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3 | Alternative contour yF:

0 < y0 —E, +i¢ 0 < y°
¥ —Ep N .".r .y‘ [ .
X -/ +'Ep ¥ N N . ¥
x0 >0 Ep—is x0 > 0
o x% > y9: close contour below
e x% < y9: close contour above
d*p i ;
Df(x —y) = [Eq. (2.25d)],,_,,,. = e TP 2.28
r(x —y) = [Eq. (2.25d)],_,, E TSI — (2.28)
(Feynman propagator)

The infinitesimal i¢ shifts the poles to p® ~ +(E; —ie/2E5) = £(E; —i€) and
yields an equivalent prescription of the Feynman propagator without the need to specify
a contour. Note that ¢/2E 5 = € are both infinitesimals.

We find (using Eq. (2.25d) and Eq. (2.16))

D(x —y) forx? > y°

Dr(x—y)= Dy —x) forx0 < y0 (2.29)
= 0(x" = y")(0lp(x)¢(1)]0) (2.30)

+60(y° — x°) (0l (»)9 (x)[0)
= (0|7 ¢(x)¢(»)]0) (2.31)

with the time-ordering (meta-)operator T

T orders products of operators by time with the latest to the left.

It is a meta-operator as it operates on descriptions of operators. Note that this is different
from super-operators (such as the Lindbladian) which operate on operators.

The Feynman propagator is a Green’s function of the KG equation (with different
boundary conditions than the retarded/advanced Green’s functions).

Later: Feynman propagator & Interactions — Feynman rules

However, so far we only studied the free KG field (— linear field equation). Without in-
teractions, however, there is no scattering so that there are no characteristic observations
possible.
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© Topics of Lecture 5

1. Construction of the Dirac equation

2. Free-particle solutions of the Dirac equation

© Topics of Problemset 3

1. Fock states and coherent states
2. Free-particle solutions of the Dirac equation

3. Review of the Lorentz group

3 The Dirac Field

3.1 The Dirac Equation

So far: Simplest relativistic field equation — Klein-Gordon equation
Now: Second simplest relativistic field equation — Dirac equation

1 Observation 1: Lorentz symmetry of the KG equation:
We view Lorentz transformations as active transformations, mapping solutions to different
solutions! This is equivalent to the passive viewpoint where the coordinate system is
transformed instead.

i < Coordinate transformation: x’ = Ax & Field transformation: ¢’(x”) = ¢(x)
i <t ¢ with (02 + m?)¢(x) = 0 for all x

i — ¢'(x) = ¢(A~'x) is a new solution:
Use the chain rule in the first step twice:

(" 9,0y + m*)$' (x) = [¢" (A7) 100 (A71)P,0, + m]$p(A™'x)  (3.19)
Use invariance of the metric
= (g°P050, + m*)p(A ™ x) (3.1b)
— (9 + m2)p(A~1x) P oo

Here 95¢ (A ~'x) must be read as do$(¥)|y=A—1x, 1.€., We compute the derivative
of the function ¢ with respect to its argument y and then plug in the value A~ !x.

0 (3.1¢)

2 Observation 2: < Vector fields under rotations: ¢'(¥) = R$(R™!X)
— In general, a field ¢(x) € C” can transform under n-dimensional Lorentz transforma-
tions as

L(x) = Map(Mgp(A™x)  a=1,....n (3.2)
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where
M(A)YM(A)p(A™ A" x) £ M(A'A)G((A'A) ' x) (33)
is a n-dimensional representation of the Lorentz group SO (1, 3).
3 We want a first-order relativistic field equation:
("9, +const)p =0 = (iW"9, + const)p =0 (3.4)

The i anticipates wave-like solutions for real H.
4 Then (combine 1 & 2)

i < Coordinate transformation: x’ = Ax & Field transformation: ¢'(x") =
M(A)p(x)
i = <C¢ with (/l”9, + const)¢(x) = O for all x
i . Whenis ¢/(x) = M(A)¢(A~'x) is a new solution?

(i3, + const)’ (x) = [iM*(A™Y)" 3, + const] M(A)$(A™'x) =0 (35)
Multiply with M ~1(A):

& i M7 (A)WEM(A)ATYY, B, + const] (ATIX) 20 (36)

!

—mv

— B* = y* must be n x n-matrices with

MY N y#M(A) = A*yY (3.7)

The y-matrices “translate” the “spinor”-representation M(A) into the “vector”-
representation A and vice versa.

5 How to find y** and M(A)? SO (1,3) is a Lie group (© Problemset 3):

A = exp [—%waﬂ 5(“'3] °Shi- lza)aﬂ gob (3.82)
M(A) = exp [—%waﬂ S“'B] - %a)aﬁ NG (3.8b)

wqp antisymmetric tensor — 3 rotations (angles) + 3 boosts (rapidities)
Itis (F9°) 00 = i (8255 — 5280).

The 4 x 4 matrices % generate the vector-representation A, (%, %), the n x n-matrices

S*B the spinor-representation M(A), (%, 0) & (0, %). The generators are antisymmetric
in the spacetime indices.

« Infinitesimal form of Eq. (3.7):

[y“,S“’g] = (gOPyyY 2 i(g¥tyP — gPry®) (3.9)
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10

« g% — Lie-algebra of Lorentz group (J = S. ¢, ® Problemset 3)
[JH2, JPO] 2 i(g"0 1O — ghP JVT — gVO JIP 1 ghO V) (3.10)

The Lie algebra defines the structure of the Lie group by integration and is therefore
the same for all representations.

Solution: Dirac’s trick: <t y* such that

y* y"y =2¢" 1yxn ¥ Dirac algebra (3.11)

This is the 16-dimensional Clifford algebra Cly 3(C).
Then

SH = z_l Vel (3.12)

satisfies the Lorentz algebra Eq. (3.10) and Eq. (3.9).

Representations:

« At least 4-dimensional
(think of the y# as Majorana modes and construct ladder operators — 2 modes)

« All 4-dimensional representations are unitarily equivalent
(actually, they constitute the unmigque irrep of the Dirac algebra which is 4-
dimensional)

« We use the Weyl representation (sometimes called chzral representation):

0 1 , 0 i
yoz(]l O) and Vl:(_ai %) (3.13)

« Henceforth: A 1= M(A)

« . I3 . 1 . . .
Two “copies” of a spin-5 projective representation.

Setting const = —m, we find:

(iy*9, —m)V =0 & Dirac equation (3.14)

W(x) is a bispinor-field with values in C* = C? @ C?2.
The components of the Dirac spinor field satisfy the KG equation:

0= (—iy"d, —m(iy*dy —m)¥ = (3% + m?)W (3.15)
The Dirac differential operator is the “square root” of the Klein-Gordon differential
operator. On the right hand side of Eq. (3.15) there is an identity 14x4 that we omit.
Dirac adjoint:

Goal: Lagrangian (which must be a Lorentz scalar).
— How to form Lorentz scalars from spinors?
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i First try: ¢Tw

iy = gt A‘;A% v £ why (3.16)
Wz_/
£1
A 1 is not unitary because SV is not Hermitian for boosts (x = O and v = 1, 2, 3).
This is a consequence of the non-compactness of the Lorentz group due to boosts!

ii = Define

U =Wy & Dirac adjoint (3.17)

SV = EAzlA%\I/ = UV = Lorentz scalar
2
Use Eq. (3.12) and Eq. (3.8b) and the Dirac algebra to show this!

11 Lagrangian:

&£ Dirac = E(iyuau, —m)V¥ (3.18)

5 Euler-Lagrange equations yield Dirac equation.

© Note 3.1

w
o Leto* = (1,6)T ando* = (1,—6)7 and y* = (30/» 00 )

-m i0d\ (VL) _
(2 10) (1) =0 -

» Y and Y g are called left- and right-handed & Weyl spinors

— Dirac equation:

« They do not mix under Lorentz transformations
They form the (%, 0) and (0, %) projective irreps of the Lorentz group. Note that
the reducibility of the (%, 0) & (0, %) bispinor representation is manifest in the Weyl

basis:
0i _ L[ 0 i i (o8 0 : iy
SY = i [y % ] =5l0 —o (Boosts, anti-Hermitian) (3.20a)
iy . 1 .. k .
ISR iz [)/l,)/" ] = 58” K (00 Ok) (Rotations, Hermitian) (3.20b)
o

« For m = 0, the Dirac equation decouples into the & Weyl equations:

icdyr =0 and icdyYr=0 (3.21)
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Solutions ¥ g and V7, are eigenstates of the helicity operator 1 = ﬁ% withh = +3
called right-handed and h = —% left-handed. Here, p = p/E is the normalized
3-momentum for a massless particle.

3.2 Free-Particle Solutions of the Dirac Equation

Here we consider the Dirac equation as a wave equation for a single particle, or, equivalently,
the classical field equation of a complex bispinor field; what follows is therefore “first-
quantized” quantum mechanics. We do this because we need the eigenfunctions of the Dirac
differential operator to construct the field operators when we quantize the Dirac field (“second
quantization”).

Detailed calculations: ® Problemset 3.

1 Eq. (3.14) = (8% + m?)¥ = 0 (Klein-Gordon equation), therefore
UE(x) = yE(p)eTP*  with p? = m? and p° > 0 (3.22)

Here ¥*(p) € C* is a complex-valued four-component bispinor.
We set p° > 0 for both positive (+) and negative (—) frequency solutions and change
the sign of p in the exponent (to simplify the discussion below).

2 Eq. (3.22) in Eq. (3.14) yields

— +
& p=my ) = (o 0T (V) =0 @29

3 Note (® Problemset 3):

« (po)(po) = p?> =m?

« Eigenvalues of po and po: p° 4 |p| — for p® > 0 and m > 0 positive spectrum
In particular, po and po are invertible and the positive square roots ,/pc and

V/ po are Hermitian.
4 < Wib = /po £* with arbitrary, normalized [(E%)TeE = 1] spinor §* € C2:

Eq. (3.23) = —m./po €% + po w}% =0 (3.24)
vpovpo=m mo 4 — 4

& =4+ — =4+ o 3.25

VR \/p_aé vV poé (3.25)

The second equation in Eq. (3.23) yields the same solution.
5 Solutions:

Conventional notation: £+ + £, £~ > npand ¥ > u, ¥~ v
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Basis states: £ with £1 = ((1)) and £2 = ((1)) (same for 1)

s .
Ut(x) = ( \/—"l;?g S) e 'P*  (positive frequency solutions) (3.26)

N—— —
us(p)

S .
U (x) = (_V \7%777 s) et'P*  (negative frequency solutions) (3.27)

——
v (p)

with p2 =m?, p® >0ands = 1,2
— Four linearly independent solutions for each 3-momentum p (+ and s = 1, 2).
6 Some relations (© Problemset 3):

 Orthonormality:

Letw* = (u®)Ty% and v° = (v%)Ty?, then

7w =2ms™ and (")Tuf = 258"
70 = —2mé8™ and (W)T* = 2E568"™
vut =u"v' =0

u (P (—p) = v T (=p)u(p) =0

(3.28)

Note that 7u is Lorentz invariant whereas uu o« E P is not!
Note that (u”)TvS # 0 and (v")Tu’ # 0!

For massless particles, the normalization condition is given by (u”)Tu® = 2E 56"

 Spin sums:

Let p = y* py (% Feynman slash notation), then

> wt(pyut(p) = p +ml
s (3.29)

D v (pvi(p) = p—ml

Useful if one wants to sum over spin-polarizations of fermions (= later).
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© Topics of Lecture 6

1. Dirac field bilinears

2. Fermi statistics and the quantization of the Dirac field

3.3 Dirac Field Bilinears

1 Definition:

oy () | e

y? =iy = = e = g

with
P =y’ =1 Py =0 (3.31)

The y> matrix is labeled with “5” instead of “4” for historical reasons (y° was sometimes
called y*#). Important: y° does not belong to y* = (y°, y1,y2, ) but is just a name.
Sums like y#d,, only run over u = 0, 1,2, 3.

The last relation implies [y°, S#¥] = 0, i.e., the Dirac bispinor representation must be
reducible according to Schur’s lemma: ( % 0) ® (0, %)

2 | The following bilinears T W transform under the Lorentz group as ...

r=1 scalar x1
yH vector x4
ol = %[y“, y'] = iyl#y*l tensor X6 (3.32)
Yy pseudo-vector x4
y> pseudo-scalar  x1

The notation y# . .. y* denotes the completely antisymmetrized product.

Any 4 x4 matrix I' can be decomposed into these 16 matrices with definite transformation
properties under Lorentz transformations.

The prefix pseudo- marks quantities that transform under continuous Lorentz transforma-
tions A € SO (1, 3) as usual but pick up an additional sign under parity transformations.

This is similar to the cross product a x b in three dimensions which produces a pseudo-
vector from the two vectors a and b with respect to the Euclidean group (= isometries of

Euclidean space). E.g., angular momentum L = 7 x p is not a vector but a pseudo-vector.

For example,

(J’M)/ — E/V,qul — EA;I)/MA%\I/ — Auvﬁyvlp — A,uvjv (3.33)
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transforms as a Lorentz 4-vector.

o . . .
— j* is the conserved Noether current corresponding to the continuous symmetry
U — ¢'*W of the Dirac Lagrangian.

Note that y* does not transform under Lorentz transformations [it has no prime in
Eq. (3.33), recall our derivation of the gamma matrices in Section 3.1]. The tuple of
gamma matrices y* is not a Lorentz 4-vector (despite its Greek upper index!) but a fixed
set of basis vectors in the Dirac algebra; y,, = g, y" is defined as usual.

3.4 Quantization of the Dirac Field

1| Lagrangian: £ = @(iy“é)u —m)V

0L *
o, = =iV

3 Hamiltonian: H = [ d3 U7 [-iaV + mpB] ¥ witha = y°y and B = y°
—_——
=Hp
Hp is the Dirac Hamiltonian of single-particle quantum mechanics.
— Expand WV in eigenmodes of Hp to diagonalize H
4 | Eigenmodes: HDuS(ﬁ)e"f’?‘ = Ez0and Hl)vs(ﬁ)e'_“’_’?C = —E;0
This can be seen from [iy%0g + iy V — m|W = 0 (¢ last lecture).

2 | Canonical momentum: IT, =

5 Mode expansion:

Y(X) = Z/ @) JAE; [a%us(ﬁ)eiﬁ;‘ + b}%vs(ﬁ)e_ilﬁ] (3.34)

a% and bsl3 are operator-valued expansion coefficients. We do not yet fix their algebra!

6 Use

E_' —\ ipX s .80\ ,—iPX
Hp¥(X) = Z/(2n)3‘/ [a%us(p)ep —b3vi(p)e p] (3.35)

then (using the orthonormality relations Eq. (3.28))

d3p
_ 3.yt o (ST s pstys
H _/d xV'HpW¥ = ES /(271)3 Ep(aﬁ ay bﬁ bﬁ) (3.36)

You do not need reordering of operators to show this. The algebra is still undefined!

First try: Commutator

7 Canonical quantization with equal-time commutators:

[Wa®). T,(7)] = i8p8P (3 =3) & [Wa(®). ()] = 8006 (¥ - )

[Wa(X), Wp(¥)] = 0
(3.37)
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8 — Mode algebra

[a;,af{'] = [b;? ET] = (2m)%6"8%) (5 — §) (3.38)
[a% ’b;(T)] =0 (3.39)

Show (using the mode expansion Eq. (3.34) and the spin sums Eq. (3.29)) that this is
equivalent to the commutators of the fields.

Beware: Eq. (3.89) of P&S is mathematically ill-defined since WWT is a matrix but W' W
is not (it’s just sloppy math that doesn’t belong in a textbook for students). Do it right,
i.e., componentwise: [W, (X), \DZ(})] = 8,58 (¥ - ¥).

— Irreducible Representation = Bosonic Fock space

n—00

n
9 | Problem: (bi;) |0) has energy —n E 5 —— —00
— No stable vacuum state (the spectrum of H is unbounded below)

10 | Fix (?): b < bT (Use colors to modify the previous derivation.)

W) = (ah g bt

i WE) = a0

i H=.. . (a%a%—bsbsh)
p D P p

i | (b, b;,T] = —(27)38"583) (5 - §)
. _ st s _ strs
v H=... (al3 as bﬁ bﬁ) + const

v [H, b;_;r] =E 5b§r — b;_;r creates a particle with positive energy! — H > 0
It seems that we solved the problem: The spectrum of the Hamiltonian is now
bounded from below.

v But
155110017 = (0l [b5.55'] 0) = ~@27)*5® (©) < 0 (3.40)

— Negative norm states (i.e., the constructed representation is not a Hilbert space)
11 Conclusion: Eq. (3.37) implies
« cither an instability of the vacuum
« or a loss of unitarity

— No consistent quantization possible!

Second try: Anticommutator

7 Canonical quantization with equal-time anticommutators:

{923 W) ()} = 88D (- F) and  {Wa(®), U(5)} = 0 (3.41)

Note that these are equal-time anticommutators!
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8

10

n

> Mode algebra

{a;,aq} {b’ } (271)38”8(3)( q) and {a%,bgﬁ)}:o

(3.42)
The proof is similar to the bosonic case above.

— Irreducible Representation = Fermionic Fock space

Problem: bj;lO) has energy — F 5 & infinite sum over momenta
— Still no stable vacuum state
(The spectrum of H is still unbounded below due to the sum over momenta.)

Fix (?): b < bT (we saw above that it changes the sign of the excitation energies)

i | Hamiltonian:

= Z/ (27T)3 p(aST % bs ST) (3.43)

3
= Z/ d’p E; (asJr 5, +bsTbs) (3.44)
S

We will drop the infinite constant henceforth. (Cross the —o00.)

i | The mode algebra Eq. (3.42) is invariant under b <> b!
— Unitarity is preserved and Hamiltonian is bounded from below
— With anticommutation relations, quantization is consistently possible!

Heisenberg picture:

Now that we have a representation where the Hamiltonian generates a unitary time
evolution, we can switch to the Heisenberg picture:

With
e’Hta;-).e —iHt éasﬁ e—iEﬁt and ethb%e_th éb;; e—iE;,t (3.45)
and W(x) = AW (¥)e ! we find
. st .
U(x) = Z/ (271)3 \/_ [a}us(p)e px + b5 vs(p)e’px] (3.46)
_ st—s ipx 5 =S —ipx
W(x) = Z/ )3 \/_ [aﬁu (pe +bﬁv (p)e ] (3.47)

These are operator-valued spinor fields, i.e., functions (more precisely: distributions) on
Minkowski spacetime that assign to an event x a tuple (“spinor”) of operators that act
on the fermionic Fock space where the states of the quantized theory live.
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Continuous symmetries & Conserved charges

 Time translation — Hamiltonian (see above)

« Spatial translations — Momentum operator

/dxqﬁ( iV)U = Z/ oE )3p( STas +b”‘bS) (3.48)

 Rotations — Angular momentum operator J

- 1- . = g 0
_ 3. wt | & o - _
J = /d pl' |:x x (—iV) + 22} v with X = (O 5) (3.49)

« Global phase rotations e’* W

> Conserved current JH = Uyrw
— Conserved charge:

Q0= fdeTlP Z/(z 3 ”Ls+bs 5525 (3.50)

- Z/ o )3 b”bs) + 00 (3.51)

In QED we will couple the fermions to the EM field; then, Q is the total EM charge of
the fermion field.

Recall that in single-particle quantum mechanics the global phase rotation symmetry gives
rise to a positive density and a current that can be interpreted as probability current;
the conserved charge corresponds then to the total probability to find the single particle
somewhere. Because of the normal ordering (= dropping the infinite constant) this
interpretation does no longer apply as Q can become negative.

The operators of conserved charges generate symmetry transformations of the Hamiltonian.

Excitations = Particles

aj.’.T|0) : Fermion with energy E;,
momentum p,
spin J = 1 (polarization s),
and charge O = +1
(3.52)
bj.;r|0) . Antifermion with energy E 5,
momentum p,
spin J/ = 1 (polarization opposite to s),
and charge Q = —1

In QED, the fermions will be electrons and the antifermions positrons.
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© Note 3.2

« The two states for s = 1, 2 suggest a spin—% representation

« To show this, the action of J (see Eq. (3.49)) on one-particle states must be studied

« One finds for particles at rest:

1 1
7, ag’f|o> — iiagﬂ()) and J, bgHO) = :FibgTIO) (3.53)
o 1 _ 0
s=1 _ §=2 __
with & = (O) and & = (1)

Lorentz transformations

: + : : = — 5t10).
1 < Lorentz transformation A € SO™ (1, 3) on single particle state | p, s)s = /2E; a |0):

(The subscript a (b) denotes the state of a(n) (anti-)fermion; we omit it, | p, s) = |p, §)a,
when the distinction is not important.)

1p.s) = UM)Ip, s) (3.54)
U(A): representation of SO™ (1, 3) on Fock space
For generic rotations/boosts, this mixes the two spin components!
2 < Special case: quantization axis parallel to boost and/or rotation axis

— Spin polarizations do not mix:

Epp
E; ‘AP
V4

U(A) a5 U~lA) = (3.55)

Note that spins mix under generic Lorentz transformations: a;; < “2'

3 | Consider this special case, then:

(p.slG.r) = 2E32m)%8® (5 — ) 8™ = (5. s|lUT(MU)IG.r)  (3.56)

Lorentz invariant
— U(A) is unitary

4 Now we have 3 representations:

A acts on 4-vectors in R1>3 D=4 not unitary
Ay acts on bispinors in C? @ C? D=4  not unitary (3.57)

U(A) acts on states in fermionic Fock space D=oco unitary

. . . o
5 | Action by conjugation on field operators —

UMY (X)) U A) = AT W (AX) (3.58)
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© Topics of Lecture 7

1. The spin-statistics theorem
2. The Dirac propagator
3. Causality

4. Discrete symmetries of the Dirac theory

© Topics of Problemset 4

1. The relativistic hydrogen atom

2. Parity transformation of Dirac spinors

Spin-statistics theorem

e Observation:

Klein-Gordon field ¢: Spin O (scalar) — commutator — bosonic excitations
Dirac field ¥:  Spin % (spinor) — anticommutator — fermionic excitations
(3.59)

This is no coincidence but hints at a more fundamental connection:

« Spin-statistics theorem:

Lorentz invariance
Causality

Positive energies
Positive norms

Integer spin <> Bosons

= Half-integer spin <> Fermions

(3.60)

This means, whenever you quantize a relativistic field that transforms under a (pro-
jective) half-integer spin representation, the Poisson bracket must be replaced by
anticommutators. Otherwise unitarity is lost or the vacuum becomes unstable.
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Rigorous proofs are elaborate and quite technical.

™ http://math.ucr.edu/home/baez/spin_stat.html
Dirac Propagator
All that follows is very similar to our discussion of the Klein-Gordon propagator.

For details, we refer the student to the corresponding notes.
1

Propagation amplitudes (use colors to skip this calculation):

(014 ()T (7)]0) = f

o1 i S s (s ()
—e ug (p)uy,(p
(27)3 2E; M

(3.61)
(]7+m)ab
= (l ax + ln)abD(x - y) (3.62)
xO;yO / d4p l(p + m)gp e~ iP(x—Y) (3.63)
@)t 7 —m? +ie
= dp 1 _ipx) 5 (0)oS
(O[T, (1) Wa (x)[0) = T 22 Y u(p)vy(p) (3.64)
p
‘s—f—’
(p_m)ab
= —(iihy +m)ap D(y — x) (365
xoéyo B d4p l(]/? +m)ap e—ip(x—y) (3.66)
@n)* pr—m? + e
Remember:
<y —E,+ie W< y?
y  —Ep Jn) y — L ° >
N vE, C
D0 Ep—ig0 > )0
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http://math.ucr.edu/home/baez/spin_stat.html

o x% > y9: close contour below
« x% < y9: close contour above
2 Therefore we define the Feynman propagator of the Dirac field:
d*p i(ptma
S (x—y) = —ip(xy) 3.67
Fx=y) 2m)* p2 —m? + ie (3.67)
O1Wa ()T (1[0)  for ° > ° o
0% ()Wa(1)[0) for 20 < O ‘
= (0|7 Wa (x) ¥y (1)[0) (3.69)
Note: For t; > 5 itis TW(1)¥(t1) = —W(¢1)¥(z2) for fermionic fields!
The Feynman propagator Sg (x — y) of the Dirac field is a 4 x 4 matrix.
3| Similarly, one can derive the Retarded Green’s function:
S = y) = 0" = y) {01 {¥a (). Tp(1)}0) £ iy + m)apDR(x ~ y) (370)
Here, Dg(x — y) is the retarded Green’s function of the Klein-Gordon field;
# denotes derivatives with respect to the variables x* for 1 = 0, 1,2, 3 and generates
the p in the integral.
Causality
1. Measurable operators: O(x) = ]_[?Vfl‘N (\IJZ-(T) (x) v B\Dl.m (x) Vv 82\111-(” x) ...)
Example: j#* = Wy*W (check that this is Hermitian!) (but not ¥, + \p;f!)
Restricting observables to field polynomials of even degree ensures that space-like
separated observables commute if space-like separated fields anticommute (which is the
best we can hope for given our quantization conditions).
The answer to the question “Why restrict observables to even degree expressions in the fields?”
is therefore: Because these are the only observables that do not violate causality in a
theory built from fermionic fields. (There are also more rigorous arguments for this:
1 Superselection.)
2 | Causality for fermionic fields < {W,(x), W3 (y)} = 0 for (x — y)2 <0

All other anticommutators vanish trivially. Note that here x = (¢,X) and y = (¢/, y),
i.e., we consider the anticommutator at different times.

We find (using results from above)

{Wa(x), Up(»)} = (idx + m)ap[D(x — y) — D(y — x)] (3.71)
(x — y)2 <0
= (idx + m)ap[D(x —y) —D(x —y)] =0 (3.72)

The argument is the same as for the Klein-Gordon field.

Recall: D(x —y) = [ (gg} 2%{3 e~ iP(x—Y)
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3.5 Discrete Symmetries of the Dirac Theory

Review of the Lorentz group

Details: @ Problemset 3
 Lorentz group O(1, 3) = Lie group with four disconnected components
« Continuous Lorentz transformations = Proper orthochronous Lorentz group SO™ (1, 3)
« Four components connected by discrete transformations:

Parity P : (¢,X) +— (t,—X) (3.73)
Time reversal T : (¢,X) — (—t,X) (3.74)

proper orthochronous Lt
Lorentz Group P orthochronous LG
(restricted LG) ) LT =0%(1,3)
LT =s07(1,3)
Ly
orthochorous LG Lo T\ T
! P proper LG

1 no time inversion (sign A%, = +1)
t+/4 |4 time inversion (sign A%, = —1)
* ]+ detA = +1 (proper)

— det A = —1 (improper)

Parity
Details: © Problemset 4
1 Unitary representation on Fock space:

U(P)aj;U_l(P)z Na a’s and U(P)b%U_l(P)z n b's 379)
N’ N—
+1 -1

Note that we do #or want spin to change under P because angular momentum L = 7 X j
also does not pick up a sign under inversion (it is a pseudo-vector).

Note that often U(P) is simply written P.
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2 | Equivalent to

UP)¥ (e, ) U Y P)= y° W(r,—%) (3.76)
——— T
P X

1
2

The y°-matrix exchanges the left- and right-handed Weyl sectors of the bispinor; this
makes sense as a parity transformation of space should switch chirality.

3 | Dirac field bilinears (examples):

UP)SWU Y (P) = +0W(r, —%) — scalar (3.77)
U(P)Uy> WU (P) 2 Wy W(r,—-X) — pseudo-scalar (3.78)

Time Reversal

1 Time reversal should ...
e UTMY(t, X)) UTT) = T%lIJ(—t,)'c'),

U(T)asU~N(T) = a’

« flip spins (motivated by L = 7 x j > —L),
« be a symmetry of the Dirac theory: [U(T), H] = 0,

obey U™W(T) = UT(T).
This is required for any symmetry to preserve overlaps: * Wigner’s theorem.

Note that often U(T') is simply written 7.

2 Problem:
W(r, %) = T w(x)e ! (3.79)
= UMY HUNT) = TuTm)wE) U (T)e M (3.80)
= Ty W(~1.%)[0) = et H! Ty W(3)[0) (3.81)
= T%e_iH "W(X)|0) = e Ty ¥ (¥)0) (3.82)
= dﬁi Ty ¥(3)[0) = Ty W(%)[0) (3.83)

time-dependent!
Here we used that [U(T), H] = 0 and H|0) = 0.
— Not possible (for invertible T% and arbitrary times 7)!

3 Solution: U(T') must be antiunitary/antilinear:

U(T)c = c*U(T) forceC (3.84)

The relation Eq. (3.84) makes U antilinear; antiumitarity means that in addition
(Uy|Up) = (v|¢)* for all states ¥ and ¢. Antiunitary operators can be written as
U = VK where V is a unitary operator and X denotes complex conjugation.
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Highlight the differences with colors in the derivation above:

U(t, X) = T w(x)e 1! (3.85)
= UT)Y(, ) UNT) = e y(T)w(x)U~(T)e ! (3.86)
= Ty W(~1.%)[0) = eI Ty 9(3)[0) (3.87)
= T%e_iH’\lJ()_éﬂO) = e_iH’T%\IJ(EHO) (3.88)
= \]l’_/ T%\lf()_c')|0) = T%\I/(fc)|0) (3.89)

time-independent!

4 | Transformation of spin:

Spinors: <t Spin basis £° (s = 1, 2) along arbitrary axis 7:

0 —i¢p i 0
cos ¢ —e i sin Y
£ = (eifb sir21 Q) and §* = ( cos & 2) (3.90)
2 2

Thatis, £! = |1) and £2 = |).
“Time-reversed” (=flipped) spinors:

_ £ 2
£ =-ioc’") = {g—z} = %_21} (3.91)
Indeed, if 71 - 0 € = +&, we have

-G (—i02E%) = —io?(—ii - 0)*E* = io?(E%) = —(—io?E*)  (3.92)
where we used 602 = 02(—0*).

Note that 7 = —i02 K (where K denotes complex conjugation) is the conventional
representation of time-reversal symmetry for spinful fermions that you might know
from condensed matter physics (e.g., to classify symmetry-protected topological
phases).

Bispinors:

W (p) = (\/\/IZ__‘;?) and v'(p) = (_% ss)

_ (3.93)
w(p) = (VPC E_S) = | vP°

Use colors to skip the second row.

Note that here u* is not the Dirac adjoint u*!
Recall that the basis #* in the definition of v¥(p) was arbitrary.

a2
= Pl and
—d -
P

Note that this is analog to Eq. (3.91)!

Define the modes:

(3.94)

Q| Q
’ULN|’GL'—‘|
S| S
":1¢N|’§U—‘|
1]

|
w?:“?':’
N——

Skip the second part.
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iv| Let p = (p° —p) and show

uS(p) = —y'y[uf (p)]*

. (3.95)
v (p) = —yly* [’ (p)]*
Note: ézs = —£% used in v¥
Use Eq. (3.93) and /po 02 = 02 \/pc* to show this!
5 Definition:
Antilinearity Eq. (3.84) U(T)¥(t, ¥)U~N(T)
UM asU™ (T) = a5 t = =('y’) U(-1.5) (396)
N———
_1 _ v
U(T) bj.),U (T) = bs_ﬁ Ty
Use Eq. (3.95) and Eq. (3.94) and %u_z(p) = a}).ul (p) etc. to show this!
Note that in Weyl representation
icY 0
T% = ( 0 iO’y) (3.97)

i.e., time-reversal acts on spins but does not mix chiralities (as parity did). This makes
sense, because (for massless particles) chirality = helicity and helicity is the projection of
spin on momentum: S p. Since both spin (angular momentum) S and linear momentum
p change sign under time-reversal, helicity does not.

6 | Dirac field bilinears (example: j#* = Wy*¥):

- H(—t,X) forp=0
Uy jta,Hu Ty = 4 (=t.x) forp (3.98)
—jH(=t,x) foru=1,2,3
— As expected for density (u = 0) and 3-current (u = 1,2, 3)
Charge Conjugation
1 Discrete, non-spacetime symmetry that exchanges particle and antiparticle:
srr—1 .S srr—1 5
U(C)al-)»U ()= bﬁ and U(C)bﬁU ()= aj (3.99)

Note that there is no representation on Minkowski space as this is an “internal”
symmetry.

Often U(C) is simply written C.
2| Use Eq. (3.93) to show:

u'(p) = —iy*(*(p)* and v°(p) = —iy*(u’(p))* (3.100)
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ecTure 1 5 PS:62-71
3 Then

Vv U_l (C) (3.101)

N Z/ 2n)? \2E; [ iyz(vs(p))*bsﬁe_ipx iy (p))as ”’x] (3.102)

2 _jy (\PT)T — (\I,yOJ/Z)T (5108

4 | Therefore:

UC)YUI(C) = —i (Ty°yH)T (— —iy? U (3.104)

o w

and UC)PUYC) = —i(y°y?m)T (3.105)

« Note that C essentially exchanges W <> W but is not antiunitary!
« To show this, recall that y° and y? are symmetric matrices.
o Ttis c; = Cy,C} =Land CyytCy = —y*.

» Note that the expression in parantheses is only true for the transformation of
classical (i.e. “first quantized”) Dirac fields and can be used to show the symmetry
of the classical Dirac equation. However, if you take the * to conjugate complex
numbers and Hilbert space operators, U* = (UT)7 | it is valid for the quantized
field as well.

5| Dirac field bilinears (examples):

UC)wwu~—1(C) = ow (Scalar) (3.106)
UC)UyP WU~ (C) = —WyHW  (Vector) (3.107)

© Note 3.3

« Any relativistic QF T must be invariant under SO (1, 3) (= Ll)

The (classical) Dirac equation (i y*9,, —m)W = 0is {C, P, T }-invariant

The (quantized) Dirac theory is {C, P, T }-invariant:
[H.UX)]=0for X = P,T,C

Weak interactions (of the standard model) violate C and P but preserve CP and T
(™ Wu experiment)

Rare processes (decay of neutral kaons) violate CP and T but preserve CPT

CPT seems to be a perfect symmetry of nature
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e CPT theorem:

SO™ (1, 3) invariance

Causalit
waty U - cpr symmetry (3.108)
Locality
Stable vacuum
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© Topics of Lecture 8

1. Interacting fields
2. Perturbation expansion of correlation functions

3. Wick’s theorem

4 Interacting Fields and Feynman Diagrams

4.1 Preliminaries

» Up to now: No interactions, no scattering, Fourier modes are eigenmodes

o Now: Include non-linear terms in the Hamiltonian/Lagrangian that couple Fourier
modes

« Causality — Interactions = Products of fields at same spacetime point

« In the following:

Hi = [ @ S0 = = [ d% L) )
&Lint 1s only a function of ¢ — Hiny = —Lint-
« Examples:
1. ¢*-theory:
1 1 A
Lys = 5(3915)2 - §m2¢2 - 4—!¢4 (4.2)

A: dimensionless coupling constant

Why do we choose ¢* and not ¢3? Energy unbounded from below for ¢3!

The ¢*-interaction arises in the standard model (Higgs field) and also in statistical
mechanics.

— Equation of motion is no longer linear:

A
(0> + m*)¢ = —§¢3 (43)
— Cannot be solved by Fourier modes!
2. Yukawa theory:
T 1 2 Loy &
Lyukawa = V(I d —m)¥ + 5 (3¢)* — Sm>¢* — g¥V¢ (4.4)
Dirac B Interaction
Klein-Gordon
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g: dimensionless coupling constant
Yuakawa theory = QED for a scalar field ¢ instead of a vector field A.

In the standard model, Yukawa couplings describe the coupling of the Higgs field
to quarks and leptons (- later).

3. QED (Quantum Electrodynamics):

_ 1 _
LqEp = V(i d —m)¥ — Z(F,w)2 —eWyltwy, (4.5)
~—_——— ~—————
Dirac T Interaction
axwell
— 1
=V(ip-—mVy— Z(pr)z (4.6)
e = —|e| < 0: Electron charge

D, =0, + ieAy,(x): Gauge covariant derivative
QED has a U(1) gauge symmetry: A} = A, — %%a(x) and ¥'(x) = ") W(x).
— Equations of motion:

(D —mPY(x)=0 and 9,F" =e¢j’ (j"=Uy'V) (4.7)

Quantizing the EM field is subtle due to gauge invariance. We will demonstrate one
possibility at the end of this course using path integrals.

© Note 4.1: Minimal coupling

The coupling via d — D in Eq. (4.6) is called minimal coupling. 1t is minimal
in the sense that only the zeroth moment of the charge distribution described
by W is coupled to the electromagnetic field (remember that eWy“ W is the
charge density current). It can also be derived as necessary addition to the
Dirac Lagrangian to feature a local U(1) gauge symmetry (- Section 9.1); this
is another sense in which it is minimal.

A term beyond minimal coupling that one could add is Pauli coupling
ek —
Lpauli = _% Vol w FMV (4.8)

which couples the electromagnetic field directly to the first moment (essentially
the spin current) and has therefore direct influence on the g-factor of the
electron. Here, « is a free coupling constant and o*¥ = i/2[y*, y”] has
been defined in Eq. (3.32). Deriving the Dirac equation from the minimally
coupled Dirac Lagrangian extended by Eq. (4.8) yields for the electron g-factor
g = 2+ «, i.e., the g-factor can be freely tuned by the coupling constant « [6].

The fascinating thing about nature is that only minimal coupling is needed
to describe our observations (this is true for all forces described by the
Standard Model); couplings to higher moments emerge automatically and
can be computed ab initio; > Eq. (6.29). (We will do this in Sections 6.3.2
and 6.3.3 where we start from minimal coupling and compute corrections to
the g-factor that arise perturbatively.) By the way, the term Eq. (4.8) would
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render our theory non-renormalizable and therefore “useless” (- Chapter 7
and 1 p. 517 of Ref. [1]).

 The list of possible interaction terms is finite due to constraints like gauge invariance and

renormalizability (which we will discuss in the second half of the semester).

The standard model includes a// of the allowed interactions. The three examples above
cover nearly half of them!

No known exactly solvable interacting QFTs in D > 1 + 1!

Examples of exactly solvable interacting QFTs in D = 1 4 1 are 1 conformal field theories
which have an extensive set of symmetry generators.

— Perturbation theory
(we hope/assume that the coupling constants are small enough!)

4.2 Perturbation Expansion of Correlation Functions

Details: © Problemset 5

1

Goal: Two-point Green’s function (|7 ¢ (x)$(y)|2) of ¢*-theory

|2): Ground state of interacting theory
|0): Ground state of free theory (free=non-interacting)

Remember: Without interactions, this is the Feynman propagator:

d% ie7iP(x—Y)
TGOS0 = Dr(x =)= [ S @9
Now:
3. A 4
Hgys = Hy + d>x —¢"(X) (4.10)
KG Hamiltonian
Hip¢: Interaction = Perturbation
— Expand (Q|T ¢ (x)p(y)|2) in powers of A
Todo:
o(x)]| . free field ¢y (x)
Express { Q) in terms of free vacuum |0) (4.11)
Note that both ¢ (x) = e!f*¢(¥)e~H* and |Q) depend on the interaction.
< Reference time #¢, then
¥ dp _1 ip% | T ,—ip%
¢(to, x) = Wﬁ (al-;e + age ) (4.12)

This follows, because the equal-time commutation relations are still valid.
The modes a ; now implicitly and non-trivially depend on the reference time 79! This
dependence only drops out for the free theory where the Fourier modes are stationary

eigenmodes.
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6 | Definitions:

P (t, %) = 0 ¢ (15, ¥)e HH (1) Heisenberg picture (4.13)
$1(t, %) = o= g (15, 7)™ Ho=0)  Interaction picture (4.14)
Then
- d? 1 . :
or(t,x) = L (aﬁe_’px + a;e’px) (4.15)

(27‘[ )3 A 2E P
This is analogous to the free field!
and

$(t.3) = UT(.00)pr (1. DUt 10)  with Ut 19) = ™ol mHHITIN 415
Our goal is to express ¢ in terms of ¢; since we know its time evolution!

7 The time-evolution operator is determined by U(ty,#9) = 1 and the differential equation
i0:U(t,tg) = Hy(t)U(t, o) (4.17)
with

. . A .
Hi(t) = et Ho(t—10) Hinte—tHo(t—to) — /d3x mﬁ(tvx) 4.18)

8 = The solution of Eq. (4.17) is given by the Dyson series:

t
Ult.to) = 1+ (~) / dty Hy(1y) 419)
to
(—i)? [ -
+, /t dty diy T{H[(t1) Hr(t2)} + ...
N 0
t
= T exp |:—i ds Hy (s)} (4.20)
to

The Dyson series yields an expansion for ¢ (z, X) in terms of ¢; (¢, X) in powers of A.
This is the definition of the time-ordered exponential.

9 | Properties: (Proofs: @ Problemset 5)
U(l,t/) — eiHo(t—tO)e—iH(t—t/)e—iHo(t/—to)
U=,y =U"@,1) (4.21)
U(ty,12)U(t2, t3) = Ul(t1, 13)
Here, t > t" and 11 > 1, > t3; the definition for " # 1 is given by Eq. (4.20).
10 Ground state |Q2)?

A K 1 — (©2|0) # 0 (this is not a rigorous but a reasonable assumption)

e 110y =" e En T n) (n0) (4.22)

= ¢ BT 1) (Q10) + D e ErT [n)(n|0) (4.23)
n#0
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Then (since E, > Eq forn # 0)

. -1
Q)= i —iEoT Q10 —iHT 4.24
@)= lim (eT(@0)) e o (4249)
o . U(IO’ _T)|O>
= 1 _ 4.25
T—>og(r}—i£) e~1Eo(t0+T)(Q|0) 429
Details: © Problemset 5
This relation is known as ™ Gell-Mann and Low theorem.
Similar:
) (O[U(T, t0)
Q| = | . 4.26
| T—>og(ri—ie) e tEo(T—10) (0| Q) (4.26)
11 Two-point correlator: (let x° > 0 > #,)
(Qlp(x)P(¥)|R) = (4.26) X (4.16) X (4.16) X (4.25) (4.27)

D dim Np O 01 (UG, Y1 ()UK, ~T)0)

T—oo(1—ie)

(4.28)
with (use (2|Q2) = 1)
4.26)x(4.25 4.21
Ny P2 010 1)U, — 110y Y2 0uer, —Ty0)  aa9)
For y° > x© we can do the same calculation for (Q|¢ ()¢ (x)|2) by replacing x <> y.

(Details: © Problemset 5)

This leads to the final result:
x0 = y? arbitrary —

(4.20)

(@TH@)P(MIR) =
T e e[~ T ar B0} 10
m

T—>o0(1~ic) (0|7 {exp [—i ST d H[(t)]} 10)

(4.30)

The right-hand side of this expression only includes known entities!
This derivation goes through for arbitrary n-point correlators.

4.3 Wick’s Theorem

Eq. (4.18) and Eq. (4.30) — (expand the time-ordered exponential in orders of 1)
(QIT@PMIR) = 3 ... (01T ¢r (x1)br (x2) .. b1 (xn)[0) ... (@1

How to evaluate this efficiently?

Solution: Wick’s theorem!
We could just use the mode expansion of the fields and calculate the n-point correlators the
brute force way. But Wick’s theorem provides a more systematic approach.
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1 Define
d*p 1 ; d3p 1 .
x)= | —— aze” px—i—/ aletipx 4.32
¢1(x) /(271)3 J2E; P (2n)® J2E; P (4.32)

E¢j_ (x) =¢; (x)

Useful because ¢>I+|0) = 0and (0]¢; = 0.

2 Observation for x® > y® and n = 2:

Tor(x)pr(y) = ¢ ()] () + ¢, ()d; (1) + ¢p ()] (V) + ¢ ()7 (v) (4.33)
= ¢ ()G () + 0, ()b, () + 7 (Do (1) + b7 (X)df ()
+[o) (). ()]
(4.34)

For y° > x° we find:

Tor(x)pr(v) = ¢ (o] (x) + ¢, (e (x) + dp ()] (x) + ¢ ()7 (x) (4.35)
= of ) (xX) +¢p ()P (1) + dF ;T (X) + o ()df (%)
+o] (), 7 (0)]
(4.36)
Use colors to skip this step!

3 This motivates the Definitions:
(We drop the 7 henceforth as contractions always operate on interaction picture fields).

Contraction: (4.37)

S = [ BTN forax®>y0 )L

- 4.38

(6t (y).¢~(x)] for y° > x° (4.38)

Normal order: 4.39)
:agT) .. .a,(;r): = (creation operators) X (annihilation operators) (4.40)

Example for normal order: :¢ " (x)¢~(y): = ¢~ (¥)p T (x)

Recall that [¢(x), ¢ (»)] = [¢7 (x). ¢~ (M] + [¢7(x). ¢ ()] = D(x —y) = D(y —x).

Like time ordering 7, normal ordering :e: is a meta operator that acts on symbolic

strings (= descriptions of operators = the free algebra of a; and a;r). In particular,
normal ordering is ot well-defined on the CCR algebra: ata = :aa™: # :afa +1: =
ata:+:1:=ata+ I, ® https://physics.stackexchange.com/a/368084/45257.

The vacuum expectation value of normal-ordered products vanishes! —

T()P(0) = $)$() + $()P(): (4.1
= (0T$()P()I0) = D (x —y) (442)
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4 | The generalization of this statement is called Wick’s theorem:

T{p(x1)...¢(xn)} = :¢(x1)...¢(xn) + all possible contractions: (4.43)
—
where :A¢; B¢, C:= Df(x; —xj)-:ABC: (4.44)

Proof: © Problemset 5

Wick’s theorem is not specific to QFT but a quite generic, combinatorical state-
ment, ™ https://physics.stackexchange.com/a/24180/45257. For instance, in
probability theory, it is well known that the expectation values of arbitrary products
of Gaussian random variables are completely determined by two-point correlators,
™ https://en.wikipedia.org/wiki/Isserlis%27_theorem.

5 Corollary:

(0|7 {¢(x1)...¢(xp)}|0) = all full contractions (4.45)

Wick’s theorem in this form is only valid for expectation values w.r.t. the non-interacting
vacuum |0) of non-interacting fields (recall that we omit here the subscript 7, i.e.,

¢ = é1).
6 Example (¢; = ¢(x;)):
— — —
T{p1020304} =: P10203Pa+P102$3¢4 + P1P20304 + P1203¢4 (4.46)
— — —
+P102P3Pa + Q1920304 + P1P20304

— ——
+P10203¢4 + P1020304 + P1P203P4

Therefore
— — 1 [ —
(0]T {p1029304}]0) = (0]|p1P203P4 + P1P2P304 + P1P20304(0) (4.47)
= Dp(x1—x2)Dp(x3—x4) (4.48)

+DF(x1 —x3)DF(x2 — xa)
+DF(x1 —x4)DF(x2 — x3)
1— 2 1 2 1 2

— + |+ X (4.49)

|
3—4 3 4 3 4

We associate each spacetime point x; with a vertex and each propagator connecting
two points with an edge. These are Feynman diagrams, here for the trivial example of
free fields. We interpret edges as particles propagating from one point to another; the
propagation amplitude is then the superposition of all possible ways for two particles to
propagate between four points.
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© Topics of Lecture 9

1. Feynman rules and diagrams of ¢*-theory in position space

2. Feynman rules in momentum space

© Topics of Problemset 5

1. Perturbation expansion of correlation functions

2. Wick’s theorem

4.4 Feynman Diagrams

Details: @ Problemset 6
1| < Numerator of Eq. (4.30) (on the right-hand side ¢y + ¢ for simplicity)

(QUT ¢ (x)p()[$2) oc (0T 1o (x)p(y) + P (x)p(¥) [—i/dt Hz(t)] +} 10)

(4.50)
We focus now on ¢*-theory and develop the formalism for this specific theory.
© Problemset 6 for an analogous treatment of the complex Klein-Gordon field.
2 A%term: (0|7 ¢(x)$(»)[0) = DF(x —y) = x — ¥
3 Al-term:
(O[T o (x )¢>(y) ) / d%z $(2)$(2)p(2)$(2) ¢ 10) (4.51)
fdt [d3x
Wick’s theorem
= 3. (; )DF(x—y)/d4zDF(z—z)DF(z—z) (4.52)
+12- = / d*% Dp(x —2)DF(y —2)DF(z - 2)

— Interpretation:

Feynman edges = # propagators < Drp Analytic
diagram = { internal nodes = # vertices < (=i)) [d* } expres-
Graph external nodes = spacetime points <> X, ),... sion

Feynman diagram = Process of particle creation & propagation & annihilation
(4.54)
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Internal points are vertices with four emanating edges that are associated to an integration.

) > PS:90-95

External points are vertices that are endpoints of a single edge and associated to boundary
conditions (i.e. given spacetime points x, y, ... of the correlation function).

4 | Prefactors:

Feynman diagram = sum of all identical terms (= prefactor)
< O(A")

— factor ; and n integrals/vertices

— n! possibilities to interchange vertices cancels %

— ignore the %

4 contractions at each vertex

— 4! possibilities to interchange contractions

— 4% of interaction cancels 4! (this is the reason for the % in the first place)
— associate (—iA) [ d*z with each vertex

Symmetries of diagrams reduce the number of different contractions
— divide expression by the symmetry factor S

Examples:

S( Q )=2 and S =2.2.2=28 (4.55)
X y

Imagine the diagram is made from strings pinned at external points and placed

flat on the table. Strings emanating from a vertex are marked with a colored flag.

Count the configurations that look the same when one forgets about the flags but
are different when the flags are taken into account.

Therefore:

X —Y = -DF(x—y)(—i)L)/d4z Dr(z—2)Dr(z—2) (456)

x Q y ; H(=i4) / d% Dp(x —2)DF(y —2)DFr(z—2) (457)

Note that symmetry factors are theory dependent. For example, the symmetry
factors of QED will be trivial: S = 1.

5 | Therefore

— _j Feynman diagrams with two
(0[7 {qﬁ(x)qb(y)e i (t)} 10) = Z {ext{arnal pointgs x and y (4.58)

Here valid Feynman diagrams are undirected graphs with 4-valent vertices (= internal
nodes) because the interaction of the ¢*-theory contains four fields.
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with the position/real-space Feynman rules for the ¢*-theory

1. For each propagator, x—Y =Dpkx-—-y)
2. For each vertex, >-< = (—i)) [d*%
(4.59)
3. For each external point, x— =1
4. Divide by the symmetry factor, 3 x.

The integration over spacetime coordinates z at each internal vertex accounts for the
superposition principle: We sum over all spacetime positions where the absorption/emis-
sion of particles - represented by vertices - can occur.

Often calculations are simpler in momentum space:

d*p i
2n)* p2—m? +ie

Dp(x—y) = eTiPx—Y) (4.60)

Assign arbitrary orientation to edges (since Dg(x — y) = Dp(y — x)) and perform
vertex integrals:

D2
P _ . 4 (. 4
D= i) [a% = CED s+ - pa-pe) e
P4
Details: @ Problemset 6

— Momentum conservation at vertices

Note that it is actually

T
/d4z ...= lim / dz° /a’3z (4.62)
T—oo(1—ie) J—T

— Momentum-space Feynman rules:

1. For each propagator, P = m

P2
2. For each vertex, z; = (—id)(2n)*x

§ —pa—

I’y (P1+Pp2—p3—pa) (4.63)
3. For each external point, X p' = e7ipx
4. Integrate momenta, L/ é;%’g
5. Divide by sym. factor, % X ...

Equivalence between momentum- and position space Feynman rules: @ Problemset 6
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LECTURE 10 - PS:96-99

© Topics of Lecture 10

1. Resummation of disconnected diagrams
2. Vacuum energy

3. Cross sections

7 Problem: Disconnected pieces of diagrams diverge!

Example:
= l-(—i)L) / d* Dp(0)Dr(0) (4.64)
8 [ ——
const
o (2T) - (volume of space) = (277)*5(0) (4.65)

Interpretation: This “detached” process can happen anytime and anywhere in an
infinitely large (for 7 — oo(1 — i¢)) spacetime volume—and we have to sum up all
these amplitudes!

8 Exponentiation of disconnected diagrams:

This is a preliminary step to cancel the divergencies with the denominator (- below).

i = Typical diagram:
[ | [ |
connected piece disconnected pieces

x and y are always connected because the sum of all degrees of all vertices of a
connected graph is always even (=twice the number of edges). Note that the only
(graph) vertices with odd degree in a ¢*-Feynman diagram are the external points.

i | Let

Set of all disconnected
V = {11, Va,...} = | Feynman diagrams (4.66)
without external points
Set of all connected
Feynman diagrams
with external points x
and y

(4.67)

. _ Xy
—  Feynman diagram F = F N 2V Z T 72 W 7N S

Connected part Multiplicity 71 na

(4.68)

Abuse of notation: V; denotes also the value of the corresponding diagram.
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cecture 10 > PS:96-99
i | Amplitude of F:
1
F=F.T] — (Vi)™ (4.69)
[N
S;

Si: Symmetry factor for exchanging the n; copies of V;

iv. Then

(OIT {p()p (e /4 11O} o) (4703

- . 2; > |:ny : l_[ nii!(lfi)”i} (4.70b)
XyeF Xy ni,no,... i

=| 2 FYx { 2 H%(Vi)nl} (4.700)
| FxyeFxy ning,.. i L

= Z F¥ | x {]_[ Z %(Vi)"i } (4.70d)
L Fxvegxy i iong b

_ Z F* | x exp |:Z Vz} (4.70€)
| Fryegxy A i

In words:

(sum of all diagrams) =

(sum of all connected pieces) x exp[sum of all disconnected pieces]

OIT {p()p (e~ 4 HIOY j0) = 3(F57) x =) (471)
with 2(X) =) cx X
9 | Denominator of Eq. (4.30):
(I {e=/ 4 11O o) = o=V (4.72)

The argument runs along the same lines as for the numerator.

10 = Two-point correlator:

(QUTP(x)(»)IQ) = Z(F™) (4.73)

Sum of all connected diagrams
=\ w: . (4.74)

with two external points
11 | Generalization to n-point correlators:

(QUT¢(x1) ... ¢(xn)|Q) = Z(F¥17) (4.75)

Sum of all connected diagrams
= (> ; (4.76)

with n external points
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In ¢*-theory, correlators with n odd vanish identically as the set F*!--*n of allowed
connected diagrams is empty. This follows also from Wick’s theorem where full
contractions are only possible with an even number of fields.

© Note 4.2

» Connected diagrams are connected to external points and not necessarily connected
graphs:

(QUT P10203¢4|R2) = ...
QO Q .,

1 4
o+ E ; +...+>Q< ...
2 3 9 3

connected diagram connected diagram
(but disconnected graph) (and connected graph)

« Disconnected diagrams = “Vacuum bubbles”

« Interpretation of vacuum bubbles:
With Eq. (4.26) and Eq. (4.25)

lim (0T
T—o0o(1—ieg)

T
b1 (x)¢1(y) exp [—i /_T dt Hz(l)}} 0) @)

—(Q|T Q li 0|Q)[2 ¢~ E0(T) .
(QUT¢(x)p(»)] )xT_)Og(r}_ig) [(0]R2)]~ e (4.78)
=%(F*Y) ocexp[Z (V)]

With V; = V; - (2T - V) where V = Volume of space:

Eo . ~ .
— =0 ; Vi  (independent of T) (4.79)

— Total vacuum energy Eg o V' (good!)
— Vacuum bubbles determine vacuum energy density

The vacuum energy density may explain the observed cosmological constant that
drives the accelerating expansion of our universe. Unfortunately, the value predicted
by QED is by (many) orders of magnitude too large (* Cosmological constant problem).
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4.5 Cross Sections and the S-Matrix

 So far: Time-ordered correlators (Q2|T @ ... Pn|R2) — Cannot be directly measured
o Now: Cross sections (can be measured with scattering experiments in particle accelerators)
 Recipe: Feynman diagrams — S-matrix — Cross section

The Cross Section

1 < Scattering experiment:

Collide two beams of particles with well-defined momenta and observe the outcome:

P8

2 | Cross section:

# of scattering events (with outcome X)
ox) = (4.80)
X tupslaA
PALALPBLB

Dimension: [0] = L? = Area

— Encodes the likelihood of scattering event X

— Intrinsic property of the colliding particles

In particular, the cross section is independent of the parameters of the experiment (like
beam size, particle density etc.).

3 Real experiments: Densities not homogeneous across beam: py — pax(x, y)

y

pA(X.Y)
X

La

If interaction range and wavepacket size are much smaller than the beam diameter, the
densities can be taken as (locally) constant and the following derivations apply. The only
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difference is:

# of scattering events (with outcome X) (4.81)
=ox)lals / dx dy pa(x,y)pg(x,y) (4.82)
Beam cross section
homogeneous beam: pyx = const (4.83)
oxyNsN
_ JX) AA B (4.84)

N: # of particles of type X in the interaction volume £y; - 4

4 Typically there are many outcomes X possible, e.g.

ete™
b ptu~  (u: muon)

eteT —»> X = 4o (4.85)
p "y (y: photon)

The possible outcomes depend on the field content of the theory and the interactions
that couple them.

5 Differential cross section:

< Scattering outcome X of n final particles with momenta (pi,..., pn) €V,
'V, € R3": final-state 3-momentum subspace

do
d3p1 ...d3 n

Differential cross section

oxX|V, :/v d3py ...d°pn (4.86)
§2

— Constrained by 4-momentum conservation: ) _; p; = const
(This follows from spacetime translation symmetry; there are 4 independent constraints.)

Special case: n = 2

— 6 dof (degrees of freedom) (p1, p2) and 4 constraints
— 2 dof — Scattering direction (¢, €) in center-of-mass frame:

do do

4.87
31 dpy | dQ (487)
Differential of the solid angle: d2 = sin(0) d6 d¢
Here we skip another measurable quantity: the decay rate
# of decays per unit time (into state X
'y = yS b ( ) (4.88)

# of particles 4 present

In scattering experiments, the decay of unstable intermediate particles modifies the scattering
cross section according to the Brest-Wigner formula (a Lorentzian distribution)
1

0 X (E2—m2)2+m2FZ (4.89)

with m the rest mass of the unstable intermediate particle and E the center-of-mass energy of
the collision (this is called a resonance).
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© Topics of Lecture 11

1. The S- and the T-matrix

2. Compute cross sections from S-matrix

© Topics of Problemset 6

1. Feynman diagrams for ¢*-theory

2. Feynman rules for the interacting complex Klein-Gordon field

The S-Matrix

Goal: Compute cross sections
Recipe: Start with initial states — evolve in time — compute overlap with final states
Note: Henceforth we consider the scattering of #wo particles 4 and B

1| < One-particle wavepacket

d%
(27)3

[ d%k 1
] en? el
(2m) /2Ek

|l€): one-particle state of interacting theory (|l€)0 = J2E ;a}llO) for free theory)

¢(k)|k) with pK)> =1=(pl¢)  (4.90)

)

Just as the vacuum |0) +— |2) is “dressed” by the vacuum fluctuations due to the
interactions, the single particle states are as well: |k)o — |k).

2 | We want the probability

P= louwld1...dnloadg)n> = ‘/’ZLM#<\._/AL (4.91)
/N
¢ %

|pAPB)in : % in-state at T — —oo of two separated wavepackets

formal expression (definition: > below)

|1 .. Pn)out : % out-state at T — +oo of n separated wavepackets (4.92)
3 | Fourier transform in-states (w/og):
R A%, [ d%ks ¢palkn)pskg)e iths - -
bads B = [ St [ L8 falda®a)e 72 o) o

@2n)* ) (2n)? JQE; )QEL )
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b: & Impact parameter

Here we assume that the wave packets in the in-states are far apart such that interactions
between the particles can be neglected. Therefore the state of two particles is simply
given by the tensor product of two single-particle states.

By convention, the wave functions constructed from ¢ 4 (k) and ¢ g (k) are collinear; shifts

by b perpendicular to the axis of incidence are then realized by e 72%:

AN

b
2N
_/i)k A
AN
2N
AN

4 Simplification:
|¢1 ‘e ¢n)out - |ﬁ1 cee ﬁn)out (4.94)

This simplification can be justified by the characteristics of particle detectors which
predominantly measure the energy (and therefore the momentum) of scattered (on-shell)
particles and cannot resolve positions on the scale of de Broglie wavelengths.

With Eq. (4.93), we are interested in

-
>

out(P1-- Pulkakgln 2 Banann o e st (4.95)
i
u- 4 . -P?
5| S-matrix (% Scattering matrix):
out(P1 - Pnlkakg)in := lim L7(p1... pnlkakg)-1 (4.96)
T —o00
= lim ;o (p1... pale " #CDk 4k 8) 1, (4.97)
T—o00
= 1o(D1--- DnlS|kaks)s (4.98)

Example: S = 1 for free theory (momentum modes are eigenstates of H = Hy!)

« Note that the interacting two-particle state |k 4k g), is #ot an eigenstate of H.
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LECTURE 11 - PS:99-108

« The states above are all Heisenberg states. However, if we label Heisenberg states by
eigenvalues of operators, we have to specify a time because the operators themselves
evolve in time. E.g., the state |k), denotes the eigenstate of the momentum
operator P(¢) at time ¢ with eigenvalue k,

P(0)lk)r = klk); . (4.99)

Heisenberg states that are labeled by a fixed quantum number (= eigenvalue of an
operator) therefore depend on time! The translation of states in time for a fixed
eigenvalue is given by

k) = e HU10) |y, (4.100)
Note the different sign in the exponential compared to time-evolution operators of

Schrodinger states!

In Eq. (4.96), the Heisenberg states are labeled by the single-particle momenta of
incoming and outgoing particles at different times. To translate them to a common
reference time ¢, we use

6 | T-matrix:

kakg)—r = e ACT0 |k 4k g),, (4.101)
51 Pr)ar = T 50 B, (4.102)

which yields Eq. (4.97).
S = 1 + iT (4.103)

~—— ~——
particles miss each other ~ non-trivial scattering

7 Translation-invariant Hamiltonian H — 4-momentum conservation —

(1. BaliTlkaks) = @)@ (ka+ks — ¥, py) (4104

kinematics

dynamics
xi M(kakp — {ps})

= & Invariant matrix element

5= VP> +m?
0

E
Invariant matrix element = Scattering amplitude of one-particle quantum mechanics

Two questions:

o« M =7 (> later)

co2 o (M) (= now)
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8 < Probability to scatter in infinitesimal momentum volume dV, = [[, d 3pr

d N N -
ap A5 > 1) = (T 55 ) Ll - Fulpada Gl 109

for normalization

I

A (4.106)

The normalization defines a Lorentz invariant measure, as discussed before. The 1/2E 5
is necessary for normalization because of our convention to normalize single-particle

states with a prefactor of | /2. Note that the integral over P should be unity if there
is only one decay channel.
Here we assume that amplitudes for different momenta do #ot interfere as the particle

detector measures momentum distributions: Uv dp (p|¢) ‘ ~ [y, dp |[(pl$) 2.
< Single target particle + and many incident particles B;:

d (# scattering events) = f d*ngdP (:Ai)’g —1...n) (4.107)

n g: Area density of B-particles
By assumption, n g & const on the interaction length scale /¢ (i.e., dP ~ 0 for |b| > ly)
e d

Jo — d (# scattering events) _

= / d?% dP (AB; +— 1...n) (4.108)
ng Ny ng b
psls palad

insert everything

_ dps. 2 d¥%; ¢i(ki) [ dq 9@

= (Hf (27r)3 2E )/d b l—[ =A4,8B (f (27.,:)3 \/ZEIZZ- f (27-,;)3 \/2E(7i) (4.109)
x s (D) (B )

W—’

2m)282) (kL — .
(@) (ki5—a:5) Mk} = {prh) —iM*({g;} = {pr})
x@u)*@ (k; — ¥ py) X0 D (Laj = X py)
For the matrix elements, we ignored the identity 1 in the S-matrix as we are only
interested in non-trivial scattering events given by the 7-matrix.

— Evaluate the six g;-integrals:

Only the two ¢; -integrals are non-trivial; note that we assume wlog that bl ez
i qg = (¢%. q%)-integrals =¢% = k3 (This follows from §@ (k5 — ¢35).)

i gk = (g7 q))-integrals =¢% = k%
(This follows from (i) in combination with the remaining two §-functions.)
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it | < g5 .q%-integrals (here we focus only on the §-functions and omit the fields):

/dqi dq%8(qi+q%—2p})8 Es+LEg _ZEf

Depend on qiz!
=/d‘154, $ \/(}ierzAJk\/c}%—%m%—ZEf (4.110)
= < i
=8(@4) aB=2P;—d,
1
= 12 @) (4.111)
§394 g(g5)=0
1 1
= z z ] = (4.112)
QA _ ‘l_ﬁ‘ v —vgl
Esn Es
where i), ii), and g% = ) pjz, — g%, are implied;
g5 isasolutionof g(¢5) =0 & Eq+Eg =) Ef.
« vy is the velocity of particle X in the lab frame; recall: Vgroup = agg}) = E‘(}é)

for relativistic particles.

« Note that from the two four-dimensional delta distributions it follows that
k% k% =q5 +q5 and E(ka)+ E(kg) = E(Ga)+ E(Gg). Together with
qi- = k;- these constraints are solved by k? = ¢7 and therefore ki = G this
will be used in the next step to simplify the expression further. In particular,
gi is a function of k; and therefore still integrated over; this extends to the
expression in Eq. (4.112) which implicitly depends on k;!

These calculations are sloppy and lack mathematical rigour. Can this be improved?

10 < ¢; (l;,') peaked around p; fori = A, B —
(pull all continuous functions of k; out of the integrals)

do = (Hf ;1 )lM(pﬁpBH{pf})P

Cm32Es; ) 2E; 2B, 104 — vl

d*k d*k - =
< [ G | s loaka P 6sEa)PEn) SO (ka+ ks~ Y )

(4.113)

Note that we cannot simply demand plane waves for the incoming wave packets, because
we assumed that the incoming particles were well-separated and non-interacting! The
best we can do is to demand ¢; (12}) to be peaked around p; while still describing an
elongated but localized wave packet.

11 Particle detectors project onto momentum eigenstates with finite resolution.
— Variance in measurement of ) pr too large to resolve momentum spread of initial
wavepackets.
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—ka+kg~ps+pas

1

d3pr 1
do = (]‘[ —ff) (4.114)
2E5 2Ej, |va —vg| \" / @03 2E;,

x| M(paps = prHIP @@ (pa+ ps =) py)

Here we used the normalization of the initial wavepackets.
 Note that this result is /ndependent on the shape of the initial wavepackets!
« For |¢; (l€,<)|2 ~ 83 (12, — ﬁ,) this approximation becomes exact.
« Note that [ do is not Lorentz invariant because the prefactor

1
ZEﬁA2E5£|UA—U$|

(4.115)

is not (it transforms non-trivially under boosts perpendicular to the axis of incidence
(ez) because of Lorentz contraction).

However, the remaining terms are Lorentz invariant (Li): (1) the measure is Li as
shown before, (2) the invariant matrix element is Li because 7" commutes with the
unitary representation of Lorentz transformations on the asymptotic Hilbert space
[for a proof, ® pp. 116-121 of Weinberg’s The Quantum Theory of Fields (Vol 1) [1]]
(note that this requires additional assumptions since the Hamiltonian does not
commute with the generators of boosts), and (3) the §-distribution is Li since the
equation p4 + pg = ) py is Lorentz covariant (i.e., valid in all inertial systems).

Special Cases

Details: © Problemset 7

12 < Two final particles (p; and p;) in center-of-mass frame:
(PaA+ P8 =0 & p1=—p2)

da) I |71 X
= M(paps = p1p2) (4.116)
(dQ om 2E13>A2E5$|UA—U£| (27‘[)24Ecm| |

Een = v/ (pa + p8)> =[Ej5, + Ej4lem: center-of-mass energy (Lorentz invariant!)

To end up with Eq. (4.116) one has to perform 4 momentum integrals to reduce the 6 dof
that are restricted by 4-momentum conservation to the remaining 2 dof encoded in the
angular dependency d 2.

13 | If, in addition, m 4 = mg = my = my:

2
(dU) o [M(paps = p1p2)| @117)

dQ 6472 E2,
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© Topics of Lecture 12

1. Computing S-matrix elements perturbatively from Feynman diagarams

2. Fully connected and amputated Feynman diagrams

4.6 Computing S-Matrix Elements from Feynman Diagrams

The main result of this section will be motivated but not rigorously derived. For the proof, the
% LSZ reduction formula is needed. For details, ® Chapter 7.2 in Peskin & Schroeder.

Motivation

Henceforth: <t n = 2 (= two outgoing particles)

1 We want
(D1721S|Pabg) = lim io(5152le” 05 apg), (4.15)

We omit the common reference time 7o of the Heisenberg states in the following.
2 | Problem:
|Pap8lo = 2E;,\/2E;, a;Aagﬁm) Eigenstates of H
=? |p): Eigenstate of H = Ho + Hiy
(4.119)
Interactions “deform” not only the vacuum |0) > |€2) but also the single-particle states
|P)o > | p) in a highly non-trivial way.

3 Remember: For the vacuum we found

Q)= lim (e *EoT(Qlo)) e T |0) (4.120)

T—oo(1—ieg)
4 | Assume it holds similarly

: —iHT |2 =
|paps) = lim N e |pADB)0 (4121)
T—oo(1—ig) ~—
Prefactors & Overlaps

This construction is not easy and we deliberately omit prefactors and overlaps!

Remember that in the case of vacuum expectation values, these prefactors canceled; here
the same happens in the end.

5 | If this holds, we could write

(P172|S|pabs) o< lim_o(p1pale” D papg)o @122)

—>o0(1—ie)

T
x  lim  o(p1p2|T exp [—i/Tdt Hz(t)} |PaP8)o (4.123)

T—o0(1—ig)
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o In the first line, we used that
[e—iHT(l—ie):re—iHZTe—iHT(l—is) _ p—iH2T(1-is)] (4124)

o In the last line, we used

T
Uu(r,-T) d:ef‘f exp |:—i / dt Hy (z)j| 2 piHo(T—t0) ,~iHQT) ,~iHo(=T—to) ,
T

(4.125)

that |p4 pg)o and o(p1 p2| are eigenstates of Ho, and that we can drop prefactors
due to the “o<”.

6 | Correct result:

(P1P2liT|papa) =

T
lim  do(p1palT exp | —i / di Hr(t) | 15.up8)o @126)
T—oo(1—is) -T foia

fc&a = “fully connected and amputated”
= restriction on Feynman diagrams that contribute to this amplitude (- below)

Interpretation & Application

Here: << ¢*-theory
Details: ® Problemset 7

1 A%order: (assume py4 # pg)

o{P1P2|PAPB)0 = \/2E512E522EﬁA2E133 (0|aﬁlaﬁza}Aa;$|0) (4.127)
@ (5, —73)V83 (50— 7
2 2FE; 2E; (2m)° ’ X (lz'A IZI)S X (lz‘ﬂ IZz) (4.128)
+8® (pa — P2) 8 (5 — p1)
1 2 1 2
= | |+ X (4.129)
A B A B

— State does not change (Bosons!)
— Contributes to 1 in § = 1 + iT (— not part of fc&a diagrams)

Note that there is only one particle type in ¢* theory, so all particles have the same mass.

2 Al-order:
i
g A’ 4. ¢4 > =
o{P1p2| —iy d°xT{¢; ()} | lpapr8)o (4.130)
Wick’s theorem

o o A ) oo
=o(P1p2] (—l 1 / d* 97 (x) + contractlons:) |pADB)O (4.131)
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Careful: Not only full contractions survive because the states contain particles:

d*% 1 .
¢; ()[p)o ceThx DE; aT|0 2 ¢7PX|0) (4.132)

2 )3 / k
- d% 1 .
o{pler (x)= (0|/ on)? \/»,/2E~a ~aTe+’kx (0|etipx (4.133)

Recall that not fully contracted, normal-ordered products contain ¢I+ fields on the
right and ¢, fields on the left.

Definition:

1>

1 _
¢1(x)|p) =e7'P¥|0)

.
» (4.134)
[ «_é

(plg) =2E;02m)%® (p-q) =g —<—7p

1

'_| .
(Plgr(x) = (0]e*P*

We omit the subscript ¢ for states whenever it is implied by the context to lighten
the notation.

Feynman diagrams for S-matrix elements contain external lines (labeled by mo-
menta) instead of external points (labeled by positions) as compared to the diagrams
for correlation functions.

Then

- -~ " Sum of all full contractions of
L |d - R
o(P1--[THba - 3PA o { fields and external-state momenta }

(4.135)

This is a generalization of Wick’s theorem for states with external momenta.

Example:

—F— 1 —
o{pP1P21pAP8B)0 = (P1P2|PADB) + (P1D2|PAPB) (4.136)
= (4.129) (4.137)

Application to Eq. (4.130):

A

i | 4 o(p152|T {67 (D} PaPs)o = - (4139)
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3] ]+ 8X

A B A B

— R = |

1 2 4 4 s W7
+ q *O-F >(< i \X
i 4 R 4 7 S 4
<E7§.lﬂ WA”[} evLc_ f/('. (m#l?ﬁﬁ!>
1
+ \
A B
CRTil 664 I T D

i I
— Terms with ¢pp¢p and ppp¢ (red) do not contribute to T
— Only fully connected (fc) diagrams contribute to 7" (This is only true for n = 2!)
Fully connected = all external lines are connected to each other

The integral in Eq. (4.130) yields a momentum-conserving §-distribution at the
vertices.

vi = Therefore

P1 P2
(P1P20iT|paP8) ~ (4.139)
PA P8
= (4))- (—i%) / d* e71(PATPE=PI=P2)X (4.140)
= —iA21)*8W (pa + P8 — 1 — P2) (4141)
ZiMn)*D (pa+ ps— p1— p2) (4142)

— M(papg = p1p2) = =4+ O(?)
The factor 4! comes from the 4! possibilities to contract the four external momenta
with the four fields (above we show only one of these contractions exemplarily).

— (®© Problemset 7)
)&2

Ototal = 3513~ (4.143)
cm
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By measuring oy, in a particle collider, one can determine the coupling constant A.
Note the factor 1/2 as the two final particles are indistinguishable (that is, the final
states (p1 p2| and (p, p1| are physically equivalent and must not be counted twice)!

3 Higher-order contributions:

(P1P2liT|PAP8B) = (4.144)
<°<)
(&) (c) (4.145)

X8+ WERD +

| \ (/) N

P O
)

Which of these diagrams qualify as “fc&a”?

fc&a

(a) Not fully connected (« above) X

(b) Al-order contribution (¢ above) v/

(c) Higher-order contributions v/

(d) Diagrams with bubbles — Exponentiate & drop out (as before) X

(e) Fully connected diagrams with “appendices to external legs” X/v/?

P1 P2
ko1 paty i d% i w146)
’ 2 Qn)* p?2—m2 ] Qn)*k2—m? )
oa T , 45(4) '
A x (=iV)(2n)* 8™ (pa + p' — p1 — p2)
P8 .
x (—i2)(@2m)*8@ (pg — p)
! : ! (4 147)
~ = = = - = .
pg —m? E;ﬁ—pf@—mz 0

« The two momentum integrals come from the two propagators after integrating

out the vertex positions. The prefactor 1/2 is the symmetry factor of the loop.

o Note that the external momenta are on-skell, p> = m?, whereas the momentum
integrals of internal momenta go over off-shell momenta, p? # m?, as well.
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— Eq. (4.126) makes only sense without these diagrams!

Interpretation:
T T = T - T ST === |
[ ! ' :
I

1938430
| ) | 1
o

\/a CoUM I(D> + HiM+ lukmc‘\'\aa vutyvia L]“()
——————— | i AR S e e
E | | '
= | | |
1 [ \ I
| PN, 1 e e e e ] :

— 2 -
Siuge-particle 1T & M Stugle - |-l’>>
Clate Pachicle Slaje

— Not related to scattering! — X

— “Amputate” legs for calculation of M

4 Amputation of diagrams:

Starting from the tip of each external leg, cut at the last point at which the diagram can be cut
by removing a single propagator, such that this operation separates the leg from the rest of the

diagram.
Example:
wt
ot
_—
wt
(7
5 —
(4126) = i M - 21)*6W (pp + p3 — X Pr) (4.148)
Sum of all fully connected, amputated Feyn-
= { man diagrams with p 4, pg incoming and p;, (4.149)

D2 outgoing
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6 | — Position-space Feynman rules for scattering amplitudes in ¢*-theory:

1. For each edge, x—Y =Dp(x—y)
2. For each vertex, >-< = (—i}) [d*
(4.150)
3. For each external line, >-—<7 p =eiPz
4. Divide by the symmetry factor, +x...
Only (3) is modified as compared to Feynman rules for correlation functions.
< Momentum-space representation of D & vertex integration
— §-distributions at vertices & momentum integrals over internal momenta
7 — Momentum-space Feynman rules for scattering amplitudes in ¢*-theory:
_ i
1. For each edge, p e N
P2
2. For each vertex, Z; = (—iLM)(2n)*x
y 8(p1+p2—p3—pa)
(4.151)
3. For each external line, >-—<7 p =1
4. Integrate int. momenta, LS é‘]‘gg e
5. Divide by sym. factor, % X ...

Only (3) is modified as compared to Feynman rules for correlation functions.

8 | Because of the many §-distributions, the expressions obtained from the momentum-space
Feynman rules can be simplified considerably. On pp. 114-115 of P&S this is mentioned
and, after canceling the global momentum conservation, a set of Feynman rules where
only integrals over “undetermined loop momenta” are left is given. This prescription is
rather obscure as they do not define what and how many of these “loop momenta” there
are.

So let us think about this more carefully:

i | Consider a fully connected, amputated Feynman diagram with N, external mo-
menta, V; internal momenta, and N, vertices.

i | We can interpret the Feynman diagram as a connected graph (in the sense of graph
theory) with E = N; + N, edges and V = N, + N, vertices (these are now
“graph theory vertices”, i.e., external legs terminate at vertices).

iii | By variable substitutions, the N, §-distributions can be rewritten as follows:

8.0 8(.)=8(pa+pa—Ypr)-8(..)8(..) (4152
Ny Ny—1
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(The argument of the global §-distribution is just the sum of all N, arguments
of the original §-distributions at vertices.) Note that the global momentum
conservation cannot be used to remove a momentum integral; but it can be
cancelled with the same expression in Eq. (4.104) so that the remaining expression
equals i M(papp = {ps})-

This remaining expression has N; momentum integrals but only N, — 1 §-
distributions, so that

#(Loop integrals) = N; — Ny + 1 (4.153)

integrals remain after integrating over all §-distributions.

To see why these are integrals over “loop momenta”, we have to put on our graph
theory goggles again: For a given (connected) graph, the set of all closed circuits
(= loops = Eulerian subgraphs) forms a binary vector space (adding two loops is
done modulo-2 on the edges), the so called ¢ycle space €. It is well-known that the
dimension of this space (= the number of basis-loops) is given by

dm€=E—-V +1=N;—Ny+1. (4.154)

This suggests, that for each basis-loop of a given Feynman diagram, there is one
undetermined “loop momentum” to integrate over.

Add more details?

© Note 4.3

The restriction to fully connected Feynman diagrams to compute 7 -matrix elements
is a special case for 2-by-2 scattering (n = 2) in ¢*-theory.

For example, the following connected (but not fu/ly connected) diagram contributes
to the 7-matrix of 4-by-4 scattering:

P1 P2 P3 Pa
(4.155)

PA P8 Pe Po
Note that the in- and out-states in this process do 7ot have to be the same, so that it
does not contribute tothe 1 ini7 = S — 1.

However, we will not encounter this situation in this course so that for us the
mnemonic “7-matrix = fully connected & amputated diagrams” is correct.
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© Topics of Lecture 13

1. The fermion sector of quantum electrodynamics (QED)
2. Wick’s theorem for fermions

3. The photon sector of QED and the photon propagator
4. Feynman rules for QED

© Topics of Problemset 7

1. Cross section of two scattering particles

2. Important relations for gamma matrices

4.7 Feynman Rules for Quantum Electrodynamics

Setting the Stage

Here we leave ¢*-theory and switch to fermionic fields.

We will use and generalize the results on interactions derived for ¢*-theory for this new theory

without detailed derivations (as these are very technical).

1| Fields:

Fermions: W(x) (bispinor field)
Photons: A, (x) (vector field)

2 Lagrangian:

LQED = LDirac + LMaxwell + Lint
_ 1 _
= Wil —m)W — L Fu ' — Wyt 4,
~——
jM

— 1

m: Mass of fermions
e: Charge of fermions (= coupling constant)
D: covariant derivative: D, = d, +ieAdy

(4.156)

(4.157)

(4.158)

(4.159)

The replacement 0 +— D is called mzinimal coupling and constitutes a general recipe
for coupling gauge fields to matter fields in a gauge-invariant way (¢« Note 4.1 and

> Section 9.1).
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3 | Hamiltonian:

HqQep = Hpirac + HMaxwell + Hint (4.160)
with Hp =e / d>x @y“llf Ay (4.161)
4 | Equations of motion:
(i) —m)¥ =0  (gauge-covariant Dirac equation) (4.162)
dy F'* = j#*  (inhomogeneous Maxwell equations) (4.163)

© Note 4.4

LqED is invariant under U(1) gauge transformations,

U (x) = '@y (x) (4.164)
A;L (x) = Ap(x) — 9ya(x) (4.165)

for arbitrary o : R!3 — R.

This is the simplest example of an (abelian) gauge theory of the Yang-Mills form.

© Note 4.5

The QED-sector of the standard model includes several copies of the fermion field that
all couple to the same photon field,

— - 1
(f(slh]f:[D = Z ‘Iff(la—mf)‘lff —C]f\I’f)/M‘I-‘f Ay | — ZFMVF’U“V , (4.166)
S M
Jr

with mass m ¢ and charge ¢ of fermion type
f € {Leptons, Quarks } = {e, u, 7, ve, vy, ve,u,d,c,s,t,b}. (4.167)

Here we restrict our discussion to a single fermion type f (think of electrons/positrons).

The situation in the standard model is actually a lot more complicated than suggested
by SC(SQI]\E/[D due to gauge symmetry constraints that forbid mass terms (a situation that is
compensated by the Higgs mechanism and electroweak symmetry breaking; - later).

Notes on the Fermion/Dirac Sector

We have already quantized the free Dirac field £pjr,c and diagonalized the non-interacting
Hamiltonian Hpjgc!
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Remember: Feynman propagator:

d4p i(p—l—m)ab e—ip(x—y)

gab( _ ) — 4.168
F (x y) (27_[)4 pz_mz +l€ ( )
(O1%a ()T (1)[0)  for ° > ° .
01T () Wa(2)]0)  for 20 < y° |
= (01T Wa (x)W5()[0) (4.170)
To deal with Hj,, perturbatively, we need Wick’s theorem for fermions:
The proofs for all that follows are very similar to the bosonic case (except for the signs).
1 Time ordering: Eq. (4.170) suggests for ¥ € {¥, ¥}
T{o1.. - Yont = (1" y1...yny for x¥>..>x% (4.171)
o: Permutation of {1,2,... N}
(—1)*: Signum of o with # number of operator interchanges
Note that here we suppress spinor indices!
2 Normal order: Define for x € {a%., b, a% , b5}
PP Bh
:X1...xy:= (—1)" - (creation operators) x (annihilation operators) (4.172)
#: Number of operator interchanges
3 Contraction: Define
-~
Va () Yy (y) = T{Ya (Vs ()} — Va(X)¥s(y): (4.173)

Here, a and b are spinor indices!
This definition of the contraction is analogous to the bosonic case.

and show
= o {(UF(x), ¥, (y)} forx®>y% |
Ve (X)Wp(y) = % li 0 o (=SF (x—Y) (4.174)
—{¥p (1), ¥, ()} forx” <y
o
Wa(x)Wp(y) =0 (4.175)
1
Ve (X)Wp(y) =0 (4.176)
The last two contractions vanish since {asﬁ, bg} =0.
4 Contraction & Normal order:
— PN
AYa(x) BYyp(y)C:= (—1)" - Ya(x)¥p(y) - :ABC: (4.177)

#: Number of operator interchanges (i.e., ¥, (x) with 4 and ¥, (y) with AB)
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5 | Wick’s theorem: For ¢ € {\, Wlanda,b,... spinor indices

T{Wa(x)¥p(x2) ...} = ¥a(x1)¥p(x2) - -+ + all possible contractions:

(4.178)
Due to the adjusted definitions of time- and normal order, Wick’s theorem takes the same
form as for bosonic fields!

Notes on the Photon/Maxwell Sector

1 Observation: A* has four degrees of freedom but there are only two photon polarizations!

2 | Problem: Gauge invariance
— Unphysical degrees of freedom
— Fix gauge to quantize only physical degrees of freedom

3 Different solutions:

« Coulomb gauge VA = 0 (not Lorentz invariant) (+ Advanced quantum mechanics)

» Lorenz gauge d,, A* = 0 (Lorentz invariant)
(Gupta-Bleuler formalism, - Itzykson & Zuber, Quantum Field Theory, pp. 127-134)

 Faddeev-Popov procedure (- later)
4 | Motivation:

i <t Lorenz gauge: d,A* = 0 — EOMs for & Maxwell: 924Y =0
Each component of A" (x) satisfies the Klein-Gordon equation for m = 0.
Recall: 9, F*Y = 924Y — V9, A* =0
Note that the Lorenz gauge does not fix the gauge freedom completely.

i ' Expand field in classical solutions:

dp 1< . :
Au) = | SEs = 3 () e a e () o7 ]

3 -
(2n)° \J2E5 =

(4.179)

with p2 =0 & p° =E 5 = |p| (dispersion of the massless KG equation)
€]+ polarization 4-vectors (Lorenz gauge — p''e/, = p'e] ™ = 0).
5 | Results:

i = Impose constraints on external (physical) photons:

e*(p) = (E 80)) and p-€(p) =0 (transverse polarization) (4.180)

This reduces the number of degrees of freedom from 4 to 2!
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— Two r, s = 1,2 independent bosonic modes for each momentum p:

[a%,a[s;] _ (27_[)35”5(3) (ﬁ _ [1’) and [a%,a%] =0= [ag,a(fi’f]

(4.181)

i~ Feynman Propagator (in Feynman gauge):

T * d —igu —iq(x—y)
(017{A4u(x) Ay (»)}10) = T (4.182)

We will derive the photon propagator using path integrals at the end of this course.

As each component of A satisfies the KG equation, the propagator should be
similar to the massless KG propagator D (x — y). The two-point correlator is
a second-rank tensor that should be invariant under Lorentz transformations (as
the theory is relativistically invariant with a unitary representation of the Lorentz
group on the Hilbert space), which is realized only by —g,,», (@ Eq. (6.60) later).
The sign makes the space-like components = v = 1,2, 3 positive and ensures
positive norm for states of the form A4;(x)|0). In turn, states with Ao (x)|0) have
negative norm - but it can be shown that these states are never produced in physical
processes.

Feynman Rules

1. Expectations:

a) Two fields (¥, and A,,) — Two propagators — Two line-types:

Fermions (with spinor indices ¢ and b): a ——»—— ) (4.183)

Photons (with 4-vector indices p and v): © v (4.184)

The arrow for fermions denotes the (negative) charge flow, not the momentum.
Since for fermion fields, particles are distinct from antiparticles, the arrow cannot
be neglected: It originates at a field W that creates a particle (annihilates an
anti-particle) and terminates at a field W that annihilates a particle (creates an
antiparticle).

b) Two particle types: (anti-)fermions & photons — Two types of external states:

(Anti-)Fermion: |p,s)g/p (s: Spin; a: Fermion; b: Antifermion)  (4.185)
Photon: |p, r) (r: Polarization) (4.186)

For each in state (ket), there is a corresponding out state (bra).

¢) One interaction with three fields (Hine ~ Wp, 1, Wa Ay)
a

— 1 vertex of degree 3: Iz
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2. Momentum-space Feynman rules (for scattering amplitudes):

Note: In many textbooks, the colored indices are omitted.
The proofs are very technical but conceptually they parallel ¢*-theory.
Note that there are Aree types of (graph) vertices:

« ——e: internal vertex, corresponds to an interaction

. | external vertex, corresponds to an in- or outgoing state

. : virtual cut of the diagram where Lorentz- or spinor-indices are summed

Examples & Applications: -» next lectures
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Propagators
. . p _ i(ptm)pa -~ U
Fermions: . — = promitic =W, ()W, ()
a pl ,  (simplified)
1% v —iguy ~
Photons: g = Ptie = Ap(x)Av(y)
Vertices
a
M =—iey;fa é(—ie)fd“zygba
b
External legs
) ~ _
Fermions: a < IS =us(p) = W,|p,s)a
P
.
Sl = (p) 2 (. 5laVa
p
L
Antifermions: ¢ — s = v (p) =W, |p.s)p
p
(—
Sl=>— =v(p 2 (. slp W
p
~ -
Photons: ® Ir = €.(q) = Aulg.r)
q
. ]
rl =€) =(q.r|Au
q
Evaluation
1. Impose momentum conservation at each vertex.
2. Integrate over all undetermined momenta.
3. Compute the overall sign of the diagram.
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© Topics of Lecture 14

1. First application of QED: The Coulomb potential
2. Cross section of electron-positron scattering

3. Recipe for computing scattering cross sections in QED

First application: The Coulomb Potential

Before we start with the computation of relativistic QED predictions in the next chapter, let us
draw our first Feynman diagram and evaluate it in the nonrelativistic limit to make contact with
known results.

1| < Moller scattering:

Electron (™) + Electron (¢7) — Electron (e™) + Electron (e™) (4.188)

i = Contribution to the tree-level amplitude (sufficient for distinguishable fermions):

“Tree-level” refers to Feynman diagrams without loops; these correspond to
lowest/leading-order contributions to the scattering amplitude and do not contain
integrations over undetermined momenta.

For simplicity, we omit the spin labels s:

iM(e (ple” (k) — e (pHe (k) (4.189)

C ([ Clectron)

(4.190)

(= & Erc oy )
— o Cieroep) () mEien b )
— o -u(p")(=iey")u(p) (_’q gz’“) a(k') (—iey”)u(k) (4.192)

Momentum conservation & integration over undetermined momenta —
withp—p' =q=k'—k
o: sign of the diagram (- below)
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« Note that the order of matrix-vector chains always follows the arrows of a
directed fermion path through the diagram; the different fermion paths are
connected by photon lines. The terms that correspond to different fermion
paths are commuting numbers indexed by as many spacetime indices as there
are vertices along the path.

» Note that for us the geometry (= how they are drawn) of Feynman diagrams
is srrelevant (though we typically put incoming particles to the bottom and
outgoing particles to the top). What specifies a Feynman diagram is its
“boundary conditions” and its topology: which particles go in and out in which
order and how these are connected by propagators & vertices. Hence refrain
from interpreting Feynman diagrams as space-time pictures of real processes!

« So far we did not encounter internal fermion lines that correspond to Feynman
propagators.

« Typically we omit the spinor indices and imply matrix-vector products.

* As electrons are indistinguishable, there is another tree-level diagram where
the outgoing states are exchanged. This diagram has to be added with the
correct sign to obtain the true tree-level scattering amplitude. To compute the
nonrelativistic scattering potential below, this additional diagram is 7ot needed
because in this limit the two electrons are distinguishable (one is the probe
particle and the other the source of the scattering potential).

Nonrelativistic limit: | p|?> <« m? — Keep only lowest-order terms in p
(We will discuss a full-relativistic calculation in the next chapter in detail.)

= () ()
") (Jp_ﬁé ile) ™ G Y opE ¢

R

Therefore
+
_ 2még, & W=
u(p)y*u(p) ~ p'oP 4.194
(P)y*u(p) {0 = 1.2.3 (4.194)
and
: —ie? t i
iM~o- _,—_,,2(2mép/§-p)(2m§k/§k) (4.195)
P =Pl
Compare with nonrelativistic scattering theory (¥ Born approximation):
(PliTIp) = —iV@QmS(Ey —Ez) @=F—5) 419
——

=iM
V (§): Fourier transform of the scattering potential

(This is the first-order Born approximation which can be derived from the
Lippmann-Schwinger equation. Note that because of the static potential V', only
energy—but not momentum—is conserved.)

—

e? e?

~ o o o
Vig)=0-— = V@) =0-—==0-— (4.197)
|41 4r|r| r
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2

o = e? /4w ~ 1/137: fine-structure constant (in natural units ¢ = 7

- PS:125,131-138

:80:1)

The terms (ZmS;r,ép) etc. are due to the QFT normalization conditions (and spin)

and must be ignored for a sensible comparison with nonrelativistic scattering theory.

For the Fourier transform of the Coulomb potential in three dimensions, a
regularization is necessary To this end, one Fourier transforms the Yukawa

potential V(r) =
for this integration, the residue theorem is needed.

iv | Sign of the diagram: (here we suppress both spinor and spacetime indices)

_)I_I
aa{D' K| OV AV Y A|p.k)aq

~/TPL\IJA¢ a a: |0)

— 1+1+2=4 interchanges — 0—+1

O|a a

v | — Repulsive Coulomb potential:

e2

Ve=e=(r) = +47r_r

— Equal charges repel each other (As it should be!)

< Bhabha scattering:

(4.198)

(4.199)

(4.200)

(4.201)

Electron (e~) + Positron (e™) — Electron (e™) + Positron (e™)

(4.202)

i Contribution to the tree-level amplitude:

iMe (plet (k) — e~ (p)et (k)

+ 7 \
< /7%9 /7@-«//

E (Etechmn)

(4.203)

(4.204)

— o Ty (p) iy yuc(p) ("q g;”) oK) —iey! oy (k) @209

— oy (- zey“)u(m( qg“")v(k)(—iey”)v(k’)
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with p — p’ = ¢ = k' — k (Skip the spinor indices and reuse the diagram above.)

There is another tree-level contribution where an electron and a positron annihilate
to a virtual photon which then decays into an electron-positron pair. The sum of
both diagrams yields the tree-level scattering amplitude. However, to derive the

nonrelativistic scattering potential, this contribution is not needed.

i | Nonrelativistic limit — Same result as Eq. (4.195) (with k <> k’), but what is o2

i~ Sign of the diagram:
ab (P KWW AV Y A|p K)ap
ey |
=(0|b];, ap N\ \I’Aaﬁbl? |0)
— 2+1+2=5interchanges — o = -1

iv . — Attractive Coulomb potential:

e2

Vete—(r) = _47r_r

— Opposite charges attract each other (As it should be!)

These examples demonstrated four things:
« How to translate Feynman diagrams into analytical expressions.
« How to determine the sign of Feynman diagrams with fermions.
« The predictions of QED seem to be reasonable!

« Signs of diagrams are important!

(4.207)

(4.208)

(4.209)

(4.210)

The sign of amplitudes can also be determined from the diagrams directly by identification of
certain features of the diagram (like fermion loops). However, as we will rarely need this, we
skip the derivation/discussion of these rules and resort to counting fermion field interchanges.
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5 Elementary Processes of Quantum
Electrodynamics

In this short chapter, we use the machinery developed in the last few chapters to study
predictions of QED. Here we focus on s tree-level amplitudes. Diagrams with loops will be the
focus of the next chapter (# radiative corrections).

5.1 Cross sectionof eTe™ — pt ™ scattering

1 < Reaction

Electron (e™) + Positron (¢™) — Muon () + Antimuon (u™) (5.1)

This process is the simplest non-trivial QED process and used to calibrate e e~ colliders.
2 Note:

Both electrons and muons are spin—% fermions with equal charge g, = g = ¢ = —|e|
but different mass m, < my,:
(We use m to label muons since  is already taken for spacetime indices.)

_ _ 1
Eoip = Y | Yrd—mp)Vy —qp Wyt Ay | - JFw FY62)
f=e.m M
Ty
So there is one Fermion field for electrons/positrons ¥, and one Fermion field for
muons/antimuons W,,. Mathematically, they only differ in the mass parameter m s that
enters the propagator. Note that the two Fermion fields can never couple directly but
only indirectly via the photon (gauge) field 4,,!
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3 | Tree-level amplitude:

iM(e™(pet (p') — u= (k)u™ (k") (5.3)
A (Autivvon )

= (5.4)
e (F/!cﬁm) @4_ (’/)WJ/%W,)
= @) (P ider ) e (p) (_l;;‘“) W) () —igmyl ) e () 63)
Electron sector (e) Muon sector (m)
=05 (p)(—igey™)us(p) (_l;;” . ) w0, (k) (—igmy" vy, (k') (5.6)
ie? —( I\, M — /
= — (W(p"y"*u(p)) @k)y k") 7

withp+p' =qg=k + k'
« Typically we omit the spinor indices and imply matrix-vector products.

« In the following, we also suppress the spin superscripts and the fermion flavour

subscripts.
4 Wewantdo o |M|?> — need M*. Use (vy*u)* = (uy*v):
4
e _ — —
|M|* = pr @ (P ulpya(p)y v(p) @)y vk Yok youk) (8

O

5 Typical collider setup:

o e'-and e”-beam unpolarized — Average over spin polarizations of in-states
« Muon detector cannot resolve spin — Sum over spin polarizations of out-states
—

1 2
do ocZZZ|<M(s,s’—>r,r’)| (5.9)

s,8" r,r’
6 Use spin sums Eq. (3.29) and spinor indices to evaluate [1:

ST (Pl (P (vl vs () = Tr [(f — me)y" (p +me)y”]  (5.10)

5,8/

Details: © Problemset 8
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7 —
1 2 e4 / 2 v ’
7 2 M =mTr[(1f —m)Y"(p 4+ me)y" ) Tr[(k + mum)yu (K — mm)yy]
s,s’,r,r’
(5.11)

Any squared and spin-summed QED amplitude with external fermions can be converted
into a trace of products of y-matrices.

8 Trace technology: (due to Feynman, for derivations @ Problemset 7)

Trace identities: (5.12)
Trlodd #of y’s] =0 (5.13)
Tr [y”y"] = 4g"v (5.14)
Tr[y"y"y?y?] = 4(g’“‘”g"" ghrg'? + gh7g") (5.15)
[ 5] = (5.16)

Tr [y y y5] = (5.17)
Tr[y*y yPy7y>] = —4ie""? (5.18)
Tr [y*y"yPye. ]=T[ Y0yPyivH] (519)
Contraction identities: (5.20)
Yy =4 (5.21)

yEyYy, = =2y (5.22)

vy yPy, = 4g™ (5.23)
vEY Py Ty = =2yyPy” (5.24)

These identities are useful for many QED calculations!

9 —

Tr[(F — me)y"(p +me)y®] = 4[p"p* + pp* — g’ (pp’ + m?)]  (5.25)
Tr[(K + mm)yu(H — mm)yv] = 4[kuk}, + kyk;, — guv(kk" + mz)] (5.26)

10 = Since me/my,, &~ 1/200, we set m, = 0 henceforth:
(© Problemset 8 for the general result with m, # 0)

1 8e?
7 Z |M|> = ;44 [(pK)(P'K') + (PK')(p'k) + m7, (pp))] (5.27)

s,87,r,r’
11 < Center-of-mass frame: p + p' =0 = k+ k'
» wlog p = (E,EZ), p' = (E,—EZ) (since m, = 0)
o |kl = VE? —m}, (since E = Ec(p) = Ee(p') = Em(k) = En(k))
« k2= |l€|cos€
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This leads to the following expressions for the 4-momentum inner products:

q> = (p+p)? =4E? (5.282)
pp’ =2E? (5.28b)

pk = p'k’ = E? — E|k|cos (5.280)

pk' = p'k = E® + E|k| cos 6 (5.284)

| M2

1 2 2
2 Z |M|? = e* |:(1 + n;—'g) + (1 - %) cos? 9] (5.29)

8,8 ,r,r’

12 Differential scattering cross section from Eq. (4.116):

_|2

do 1 k|
do}  _ | (5.30)
dQ2 /)., 2E32E5|vp — vy | (27)%4Ecm

2 m2 m2 m2
_ o m m m 2
= VEN ~ 2 [(1 + _E2) + (1 ~ 2 ) cos 9] (5.31)

Itis Ecn = 2E and |vp, — vy | = |p3/El; —p’3/El—,v| =2.

13 Total cross section:

A o? m2 m2
Utotal é 1 —_m (1 + _m) (532)

14 = Discussion:
« For E., < 2m,, no pair-production is possible.

o Prediction of QED: non-trivial energy dependence of M
Experimental results verify this additional dependence!
(™ P&S Fig. 5.2 on p. 138 or Ref. [7])
Recall that the energy-dependence of the prefactor (1 was derived on very general
grounds and is not QED-specific!

» Measuring oy, as a function of Ey yields the muon mass m,,.
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5.2 Summary of QED calculations

1| Draw relevant Feynman diagrams.
Use Feynman rules to calculate M.
Calculate [M]? = 3

Evaluate traces (use trace technology).

spins |M|? (use spin-sum relations).

i & W N

Fix a frame of reference and express all 4-momenta in terms of kinematic variables
(energies, angles ...).

6  Plug in |M|? in Eq. (4.114) and integrate over phase-space variables that are not
measured.

Following this procedure, one can evaluate cross sections for many other QED processes (like
Compton scattering) and compare them with measurements from particle colliders (- P&S
pp- 139-169). We will not dwell on these often very technical calculations but proceed with a
more interesting question: What happens if we go beyond tree-level diagrams?
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© Topics of Lecture 15

1. Overview of radiative corrections in QED
2. Soft bremsstrahlung

3. Formal structure of the electron vertex function

© Topics of Problemset 8

1. Rutherford scattering

2. Scattering cross-section for electron-positron scattering in QED

6 Radiative Corrections of QED

6.1 Overview

1 Process: For simplicity (= below), < e™ scattering of a very heavy particle, e.g.,

mlimoo{ Electron (¢™) + Muon (u~) — Electron (¢™) + Muon (1™) } (6.1)
M—)

2 | Tree-level:

The computation runs along the same lines as for e "¢~ — e~ e~ scattering.
In the following, however, we do not need the tree-level result.

e /("

N T’zl

/ lAPavy

2

N /2

/4(

Alternatively, crossing symmetry relates the process to ete™ — u* ™ and allows us to
reuse the results we obtained for finite electron mass (@ Problemset 8) with suitable
substitutions.

3 Radiative corrections =
Higher-order contributions to tree-level amplitudes from diagrams with ...
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« loops:

(a) (b) (<)

The 6 additional one-loop diagrams involving the heavy particle can be neglected as
these include propagators of the heavy particle that vanish for m,, — oo.
Physically, the heavy particle does not accelerate much upon absorption/emission
of a photon but behaves like a “static wall”.

(a) Vertex correction: UV-divergence & IR-divergence
(most interesting, - below)

UV-divergence: divergence for k — oo in integral of loop momentum
IR-divergence: divergence for k — 0 in integral of loop momentum
(The vertex correction yields the anomalous magnetic moment of the electron.)

(b) External leg corrections: UV-divergence & IR-divergence
(not amputated, - later)

¢) Vacuum polarization: UV-divergence
P g
(complicated evaluation, - later)

« extra final-state photons (# Bremsstrahlung):

k +

— IR-divergence for k — 0

In this limit, photons cannot be measured by detectors, so we should add these
diagrams to the scattering amplitude.

4 | Spoilers:
« UV-divergences: cancel in observable quantitites

« IR-divergences: cancel with the divergences of the bremsstrahlung diagrams
That is, radiative corrections are only consistent if bot/ types of corrections (loops
and bremsstrahlung) are included.
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6.2 Soft Bremsstrahlung

1| # Bremsstrahlung = Electromagnetic radiation emitted by accelerated, charged particles
#% Soft = Low-energy photons (k ~ 0)

Here “accelerated” simply means that the electron gets a kick and its momentum
4-vector changes: p > p’. Whether its kinetic energy p° > p’ O decreases or increases
is irrelevant (and not a Lorentz invariant notion anyway!).

2 | Can be classically derived from Maxwell’s equations (* P&S pp. 177-182)
3 < Corresponding QFT process:

Mo: (unkown) interaction amplitude
This is a 4 x 4-matrix with spinor indices and (potentially) multiple 4-vector indices.

—
i(p—k+m)
MO(]?/, pP— k)( _]Z)z —m? + igyﬂ
iM = e’ ()T(p) ot u(p)  (62)
.Y ) Mo(p’ + k. p)
(p' +k)2—m?2 +ie '
4 | Simplifications:
e Use p? =m?and k2 = 0:
(p—k)? —m? = —2pk (6.3)
(p'+k)?—m?>=2p'k (6.4)

« Soft photons: |k| < |’ — p|
— Mo(p', p—k) =~ Mo(p' + k, p) =~ Mo(p’, p) (cross ks in amplitudes)
— p — K ~ p etc. (cross [s in numerators of propagators)

« Dirac algebra —

(p +m)yy" e u(p) = 2pe;u(p) (6.5)
u(pyyte, (0 +m) =u(pH2p™e;, (6.6)

Here we use the Dirac algebra and the spin-completeness relations that imply

(p —mu(p) =0.
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5| Then

=)Moty ) [ (2 - 20 | 7

bremsstrahlung

elastic scattering

6 | Scattering cross section (cf. Eq. (4.114) for two incoming particles):

r2

_ pe’
! k pk

d%
do(p - p' +y) =do(p — p') / ( Z (68)

21)3

=d Px(p—>Dp)

Pi(p — p'): differential probability to emit a photon into d >k under the condition
that the electron scatters from p to p’.

We integrate over the photon momentum and sum over its polarizations because we are
only interested in the probability #4at an additional photon is emitted.

dQ
/ d Py = / 2k
=J(p,p’)

o
= —J(p. p') [log(co) — log(0) ] (6.10)
T —— ——
Problem1  Problem 2

7 Evaluation:

(6.9)

withk = k/|k| = (1,k)

8 | Approximations:

i | Problem 1: Soft-photon approximation breaks down at k ~ |¢| = |p — p/|
— Introduce upper cutoff at ||

i | Problem 2: Probability of radiating a very soft photon is infinite!
— IR-divergences of perturbative QED
(Note that in the limit k — 0 our soft-photon approximation is exact!)

Solution: Regularization with finite photon mass & > 0:

1 1 1
= — > — (6.11)

k EIZ //’LZ + k2
This is a purely mathematical ad-hoc solution to control the IR-divergence. Later
we will see that in physical observables the unphysical parameter  drops out.

and therefore

] g(m +|q|2+|q|)

(6.12)

1 ~12
log( |61|) ~ log (M) — Zlog (%) (6.13)
n w2 ke

(asymptotically for © — 0)
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i | Relativistic limit (E,, ,7 > m):
N —q> . 2 / 2
d(p,p’) ~ 2log (F) with —g¢g°=—-(p'—p)° >0 (6.14)
Proof: ™ P&S pp. 180-182, starting at Eq. (6.12)

Recall that for two time-like momentum vectors p and p’, p? = p’?> = m?, their
difference ¢ = p’ — p is space-like, g? < 0 (use the Cauchy-Schwarz inequality
to show this). Therefore there always exists a coordinate system with ¢° = 0, or,
equivalently, p® = E = p’%. In this system, it is —¢? = |¢|?.

9 | Result:

/ n —6]2 _q2
do(p—>p +y)~do(p—p) —log (—2 )1og (—2 ) (6.15)
b/ 7 m

% Sudakov double logarithm

for 1 — 0 (regularization) and E, ,» > m or —q? = |¢|?> — oo (relativistic limit)
10 Two problems:

« Dependence of unphysical photon mass p
Should drop out from physical predictions!

« Logarithmic divergence for —g? — oo (— cannot be interpreted as probability)
We will see that the correct interpretation is that of the emitted number of photons.
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6.3 The Electron Vertex Function

6.3.1 Formal Structure

1| Scattering amplitude:

iM(e™ (p)u™ (k) — e (pHu™ (k) (6.16)

= + + + (6.17)

(6.18)

= ie? [ (p"\TH(p', p)ue(p)] q% [t (k") ytm ()] (6.19)

Note that we consider only amputated diagrams (1) without loops connecting to the heavy
particle and (2) ignore the vacuum polarization diagrams as these describe corrections to
the photon propagator and are not related to the interaction between fermions and gauge

field.
Below we will explicitly evaluate the first loop correction (yellow).

2 | General form:

TA(p'. p) = f(p". p™.y* . m e, C) (6.20)
y? is forbidden since QED does not violate parity symmetry (recall that (y°)? = 1 and
y>y* produces a pseudo vector and y> a pseudo scalar)!
3 Restrictions:
All equations that follow are required to hold 7f sandwiched between bispinors u and u!

i = Lorentz covariance: I'* transforms like y* —

T“=A-y*+B-pt+C-p* (6.21)
=A-y*+B-(p"*+pH)+C-(p"-p") (6.22)

I'* must be a linear function of the available Lorentz vectors.
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Recall pu(p) = m-u(p) and u(p’)p’ =u(p’)-m —
X =X(p* p* me C)-1 for X=A,B,C (6.23)
Use the spin-sum identities Eq. (3.29) to show this.
g% = (p' — p)? = 2(m?* — pp’) only non-trivial scalar —
X = X(g*> m,e,C) for X=A,B,C (6.24)
Recall that p? = p’> = m? are constants.
Ward identity for U(1) gauge-symmetry of QED Lagrangian:
9 T*(p',p) =0 (6.25)

1 P&S pp. 238-244 for a proof and pp. 159-161 for a motivation

This is the quantum version of the classically conserved current 9,, j *(x) =

Fourier space.
Ward identities = QFT analog of Noether’s theorem

—
0=quT*=A4-quy" +B-q.(p" + p") +C - ¢*
N—— N e’
—-C=0

The first term vanishes only if sandwiched between bispinors,

u(p) (P — pu(p) = (m —m)u(p"u(p) =0,

and the second vanishes identically since p? = p'? = m?2.

4 | Gordon identity:

V-~ IV
() [u] u(p) 2 70y u(p) —(p) [u] u(p)

2m 2m

Absorb the first term in A.
Recall that o#¥ = S[y*, y"] produces a second-rank Lorentz tensor.

5 | Therefore

ic*vgq,

T (p', p) = y* Fi(¢*) + F(¢®) =" + O()
140(a) 01+0()

Fi(q?): # Form factors

01in

(6.26)

(6.27)

(6.28)

(6.29)

Note that we can use the Gordon identity wlog because the vertex amplitude I'* is always
sandwiched between bispinors % and u.

Expanding in orders of @ = ¢2 /4, the lowest order term must give back the tree-level
vertex ['* = y#. Therefore F; =1+ O(x) but F, =0+ O(x).

Note that the form of the vertex function was derived on very general grounds and holds
for any fermion coupling to the electromagnetic field. Measuring scattering cross sections
can be used to experimentally determine the two form factors—even in situations where
ab initio computations are hard (@ Problemset 9).
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© Topics of Lecture 16

1. The Landé g-factor of the electron

2. Evaluation of the vertex correction

6.3.2 The Landé g-factor

Observation: F; and F, encode the electric and magnetic response of the electron completely.
Goal: Express electric charge and magnetic moment as function of form factors.

1| Setting: < Classical, external field Aﬂ (x): (© Problemset 8)

Hyy = e / d W(x)y"W(x) A5 (x) (6.30)

iMQ2m)s(p° - p°) = (6.31)

= —ieu(p\T*(p'. pu(p)- AS(g =p' —p) (632

Note that Aﬂ(x) is a parameter and not an operator; in particular, it has no dynamics!

In general, a static potential breaks translational invariance and therefore 3-momentum is
no longer conserved. However, as it is static, it does zot break time translation invariance,
so that energy is still conserved, i.e. p’® = p°. This is like a hard wall in mechanics that
can absorb momentum but not energy.

2 | Electric charge:

i <A = @(F).0) = A%g) = (2m)8(g°)¢(G).0)
i | iM=—ieu(p)T°(p’, p)u(p)-¢(q)
i << ¢(X) slowly varying — ¢(g) concentrated at § = 0 — take limit g — 0:

iM ~ —ieFy )T u(p)-¢@ T " —ieFi @) - 2mETE  (639)

Recall Eq. (4.194) for the non-relativistic limit of bispinors.

iv | — Born approximation with potential

V(X) = eF1(0)¢(x) (6.34)

Recall Eq. (4.196) for the Born approximation.
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v

Charge e L eF1(0) and FI(O) =1-

Fl(")(O) =0 for n>1 (6.35)

Itis Fi =) poo F 1(") o with o the fine-structure constant.

3 Magnetic moment:

<A(x) = (0, AF) = A%(g) = (0.2m)8(¢*)A@G))
Then

oY

iM= —ieu(p/)[ E (%) + -
2m

Fz(Clz)] u(p) - A%(G) (6.36)

= tieu(p) |:ViF1(q2)+%Fz(q2):| u(p)- AL@)  (637)

Vanishes for ¢ = 0 and | p|?> < m?, see Eq. (4.194)

Note thatg =0 < ¢ = 0.

< Fi-term and expand bispinors in linear order of p, p

I 55 ;6
u(p')y'u(p) ~ 2mg't (g—mo’ + 0’5—)5 (6.38)

i /i
2 —p tp ZmE'TE + 2m§’Jr ( ’qujak) £ (6.39)
2m

@) (B)
In the second step, we used 0?0/ = 67 + jgkgk,
Only (B) is spin-dependent and affects the magnetic moment!

Term (A) describes the kinetic energy 5A + A p of a charged particle in a magnetic
field in nonrelativistic quantum mechanics.

< F>-term and expand bispinors in lowest order of p, p

o u(p) & ome" ( o ”"qfo")s (6:40)

Use u(p) ~ /m @ [« Eq. (4194)], [0, 07] = 2ie7¥0* and ¢; = —¢".

In summary:

iM=icui(p)) [Vi Filg?) + 50" Fz(qz)} u(p) - AL(G) (6.41)
— —1
720 —ieg”f{z—ok [F1(0)+F2(0)]}§ [ ik fAll(q)] 2m)  (6.42)
m
=BkX(g)

with Ecl =V x I‘Tcl (Bé‘1 = 8]lk8 A’ = Bk(q) —iglikgqi Aél((?))
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vi ~— Born approximation with potential

V(F) = —(i) - Ba(®) (6.43)

yields the magnetic moment

N4 ,Tak _ 5
() = —1F10) + F2(0)]-§7—-¢ =g~ pp - (S) (6-44)

£

o and Landé factor

with Bohr magneton g =

g = 2[F1(0) + F2(0)] = 2+ 2F>(0) (6.45)
= 2  +2FP0) +0@? (6.46)

Dirac equation

Anomalous magnetic moment

Here we use F1(0) = 1in all orders of « and that F, = « Fz(l) + O(a?).

This result motivates our subsequent evaluation of the first loop correction Fz(l)!

6.3.3 Evaluation

The techniques that we use below can be applied to the evaluation of all loop diagrams in QED.

1 Scattering amplitude:

u(p")[aT D (', p)1 u(p) (6.47)

(6.48)

:/ i u(p')(—iey") iW+m ikt m)

i o,
QP +ie 2o is) e ey up)
(6.49)
Contraction identities: y"y*y, = —2y" etc.
d% u(p’ B m2yt — 2mk + k) u
22j¢? () [Fy v (k + K ]u(p) 650

Q2m)* (G2 +ie)(k'? —m? +ie)(k?2 —m? +ieg)

In the following, the regularizations ie will be crucial to make the expressions well-

defined!
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2 Feynman Parameters:

Goal: Introduce new integration variables to combine the three factors in the denominator
so that we can solve the integral by completing the square.

1 =t (n—1)!
e ([ ) (B ot g | e

x;: Feynman parameters

(Proof: © Problemset 9)

3 Application to denominator of Eq. (6.50):

1 ! 2
= | dxdydz$ -1)—=
(% +ie)(k'? —m2 +ie)(k? —m? +ie) fo ¥ dy dz8(x+y+2z )D3
(6.52)
with (usingx +y+z=1and§g = p—kand k' = k + q)
D 2 k? +2k(yq —zp) + yq*> + zp* — (x + y)m? + is (6.53)
Complete the square: | =k + yqg —zp
=12—-A+ie (6.54)
where A = —xyg? + (1 — z)?m? > 0 (“effective mass squared”) since g2 < 0 (always
spacelike)
4 Express the numerator of Eq. (6.50) in terms of [ (k** = ["* — yq!* + zpH):
u(p') [ky" ¥ + m>y" —2m(k + k)] u(p) (6.55)
This step is only valid under the integral [ d% (> notes below)!
1
o _ o )=V P+ I=yg + 2plyM (L= y)g + z2p]
Zu(p)) 2 grer I ) (650
+m?yt —2m[(1 - 2y)q" + 2z p"]
For this step, you have to use the Dirac algebra (> notes below).
1
vt [—512 + (1 =x)(1=y)g* + (1 -2z - Zz)mz]
A
=u(p) {+'+ p)* - [mz(z = 1)] u(p)
B
+q" - m(z = 2)(x = y)]
(o
(6.57)
This structure was expected, recall Eq. (6.22).
« The first step follows with [ (Z;l) 1 Dl(‘;z) = 0 due to symmetry and
d4l A d4l j73Y 12
W= ——s = S : (6.58)
(2m)* D(1?) 2n)* 4 D(?)
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This identity can be shown as follows: First, notice that under a Lorentz transfor-
mation A € SO™(1,3)

d4l l/,ul/v d4l/ l/ul/v
L' = = =L* 6.5
2n)* D2 2n)* D) (6.59)

(in the second step we used that det(A) = 1 and /? is a scalar) and therefore
LW = gtV C(1?) (6.60)

which follows from Schur’s lemma [8] and the observation that the only scalar
available is /2. Finally, C(/?) can be determined by contracting with g,

X&uv d¥y 12
= LW = | — — —4C(? _

« For the second step, use
- pyr =2pt —yHp
- pu(p) = mu(p) and u(p’) ' = mu(p’) and therefore u(p’)qu(p) = 0
-x+y+z=1
5 C is antisymmetric and D is symmetric under x <> y — drop C

Formally: fol dx fol dy C(x,y)/D(x,y) =0
This result was expected from the Ward identity!

6 Gordon identity Eq. (6.28) —

u(p el D (p', p)Hu(p) (6.62)
d4y
= 2ié? (271)4/ f dy / dz s(x+y+z— )D(122)3 (6.63)
pe| 5 =00 =+ -z 2|
x u(p) iy u(p)

P [2m22(1 —2)]

Note that the Gordon identity contributes also to the y#-term, thus the modifications in

the last term proportional to m?.

7 Momentum integral:
i | Problem:

= (19)2 — I? cannot be integrated in four-dimensional spherical coordinates.
Solution:

Wick rotation = Evaluation of a contour integral (blue) along a rotated contour
(green) that encircles the same poles (red):

NICOLAI LANG « ITP IIl « UNIVERSITY OF STUTTGART PAGE 106

Institute wor

Ul Zoretjcal
T b

1 Notes



LECTURE 16 - PS:186-196

/0 (umxp/eﬁ 'P/NM(
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\
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Note that this requires the integrand to vanish faster than 1/|/°| so that the
contribution of the half-circle vanishes for R — oo.

Parametrization of the new contour:

1°=il% and [=Ig with g eR* (6.64)

= P=—(1%*-1%2=-I2 (6.65)

Here, [? is the squared “norm” of a four-dimensional vector in the Minkowski
metric and /% in the norm squared in the Euclidean metric.

i = Then (m > 2) (we are interested in m = 3)

lim/ A ! - ! ! / Vg —— 6.66)
e—0) Qu)*(2—A+ie)yr  (—1)m Q2n)* E (1125 + A)m (
i(—n" / [00 I3
=——— | dQ dlp ——=2——  (6.67
@2n)* Yo CEE A ¢
——
=272 _ 1
T 2(m—1)(m—2)Am—2
_ i—nm 1 668
T (4m)2 (m—1)(m —2)Am—2 (6.68)
f d 24 = 272 is the surface area of the unit sphere in four dimensions.
and similarly (m > 3)
i d4 12 , i(=nm-t 2
m =
e—>0) Qm)* (12— A+ig)m (4m)2 (m—1)(m —2)(m — 3)Am—3
(6.69)

Problem: For m = 3 the integral diverges!
This is a UV-divergence since it occurs for /% ~ [* ~ k* — oc.
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Note that in this case also the contribution of the half-circle does not vanish and
the Wick rotation is not justified.

iii | Fix: Pauli-Villars regularization:

_ig;w —iguy _iguv
= — 6.70
g>+ie G2 +ie G2—A%+ie (670)

for large A (= additional, heavy photon with mass A)

For A — oo we obtain the original expression. The regularization essentially
introduces a UV-cutoff at momenta k > A where the difference is suppressed.

Hope: A does not appear in physical predictions
5 Only change:

An =—xyg? + (A —2)%m?+2 07 (6.71)

iv Therefore (m = 3):
« Eq. (6.68) > Eq. (6.68) — O(A ') = Eq. (6.68) — O(A™2) s Eq. (6.68)
Drop contribution to the convergent integral since A~2 — 0 for A — o00.
« Eq. (6.69) —
lim d [ 2 — e ] (6.72)
e~0) Qm)* [(12—A+ie)® (I2—Ap+ie)3
Wick rotation

i /00 Jl 213, B 203 673
T @n2e TP RN} U2+ Ay '
o ApA\ Asoo i ZA?

= —(4n)2 log (T) — an)? log (A) (6.74)

Details: ® Problemset 10
8 | Result: (with Ay ~ zA? for A — o)

u(pH el D (p', p)*u(p) 6.75)
o 1 1 1
= — dx/dy/sz(x—l—y-i—z—l)
21 Jo 0 0
zA2 1-x)1- y)q2 (1—4z + z2)m2
wol]
Y [Og( A ) + A + A
o =F{"(¢?
XU u
(%) +ia’“’qv 2m?z(1 — z) ()
2m A
—————
=7, @)
(6.76)

The “=” signifies that the integrals over Feynman parameters and the prefactor belong
to the form factors.

NICOLAI LANG « ITP IIl « UNIVERSITY OF STUTTGART PAGE 108

Institute or
i:!oret'cal
] Physics

2 Notes



LECTURE 1 6

9  Discussion of Fy:

Problem 1: It should be F{*(0) = 0, but here F)(0) # 0!

— Fix 1:

1 1 1
F@) ~ FP@*) - FP0)

- PS:186-196

(6.77)

We cannot justify this substitution at this point; a rigorous derivation requires the
LSZ reduction formula and is rooted in field strength renormalization (- later).
The origin of this term can be traced back to our omission of the external leg loop

corrections.

Problem 2: In addition, there is a IR-divergence for G2 — 0
< ¢% = 0 for simplicity:

/dx/ dy/ dz8(x +y +2z— )];14_“;22

/dz /1 2 24+4(1-2)3-2)
(1-2)?
/ dz +finite terms
11—z

~—_———
—0oQ

— Fix 2: Add a small photon mass ;& > 0 —

A= A= —xyq* + (1 —2)®m? 4+ °

In this regularization we recover the original result for ;1 — 0.

We will discuss this IR-divergence later.

Fix1+Fix2 —

Fi(¢®) =14+ aF (@) + 0(?)

with

B 1 m?2(1 — z)?
o8 (m2(1 —2)? —qzxy)

1 1 1 1
Fl(l)(qz):EfO dx/o dy/o dz8(x+y+z—1)

m2(1—4z+z22) +q¢>(1—x)(1—y)

m2(1 —z)2 — q?xy + zpu?
m2(1 — 4z + z2)
| T2 =22 1 22

(6.78)

(6.79)

(6.80)

(6.81)

(6.82)

(6.83)

» Here we already set © = 0 in the logarithm where it is not needed to control

the IR-divergence.
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LECTURE 16 - PS:186-196

 Note how the unphysical Pauli-Villars regulator A dropped out because of the

subtraction.

10 | Discussion of F:

No divergences in F,! Yay!
Fa(¢%) = aF3"(¢?) + 0 ()

with

1 1 1 1
FOG =5 [ax [Cay [Cdzseeyez-n
|: 2m?z(1 —z) :|
X

m?(1 —z)> — q*xy

11 | Landé g-factor:

) o [l 1 1 2z .
F>(q =0)=—/ dX/ dy/ dz§(x +y+z—1)—— + O(a?)
27 Jo 0 0 1-z

1 1-z 2
. dz/ dy > + 0(?)
21 0 0 11—z
=2 + 0(?)
2

Therefore the anomalous magnetic dipole moment of the electron is

—2
ae=5"2—-2 ~ 00011614
2 2w

exp

aS® ~ 0.0011597

(6.84)

(6.85)

(6.86)

(6.87)

(6.88)

(6.89)

(6.90)

Note that ? ~ 0.5-107* so that the deviation can be explained by higher-order

corrections.

© Note 6.1

« Our first-order result was obtained by Schwinger in 1948 [9].

The first-order correction 5 is engraved on Schwinger’s tombstone:
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e Modern values:

aM = 0.001 159652 182031(15)(15)(720) (6.91)
ad® = 0.001 159652 180 73(28) (6.92)

— Agree to 11 significant digits
This is the most accurate prediction of physics to date!

The experimental value is from Ref. [10] and the theoretical value is from Ref. [11]
(erratum). The theoretical result is based on numerical evaluations of contributions
up to order o®. Analytical results are known up to order a3 [12]. Note that the
theoretical value also includes small contributions beyond QED, namely from the
electroweak and hadronic sector of the standard model. The main contribution
comes from higher-order QED diagrams, though.

e Our first-order result applies also to the muon since the mass cancels:
o
al(}) = E = agl) (6.93)
However, in higher-order there seem to be discripancies between the standard
model predictions (as for the electron, this goes beyond QED) and measurements:
ap’ —ap™ = 261(63)(48) x 107! (6.94)
For details, ™ http://pdg.1lbl.gov/2019/reviews/rpp2018-rev-g-2-muon-
anom-mag-moment . pdf and references therein.

This deviation may hint at new physics beyond the standard model, for example
contributions from supersymmetric partners.
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© Topics of Lecture 17

1. Infrared divergences

2. Resummation and interpretation of infrared divergences

© Topics of Problemset 9

1. Rosenbluth formula

2. Feynman parameters

6.3.4 The Infrared Divergence

1 Goal: Understand asymptotics of | F;(g?)| — oo for u — 0
2 | Show in © Problemset 10:

— A
Fi@®) = 652 "<° 1 = 2= fir(q?) log (—2) +0(?) (695)
™ m

where A € {—¢?,m?} (both are asymptotically equivalent but, depending on the
additional limit —¢? — 0/00, one or the other must be chosen) and

m? —q?%/2
-1 >0 6.96
—gEi-p - (6:29)

Note that —g2 > 0and £(1 —§) < 1/4for0 <& < 1.

3 < Cross section for electron scattering off a static potential:

1
fna?) = | de —

do(5 > 5)  (do

Tree-level result Problem: — —oo for u — 0

A
X l—gﬁR(qz) log (—2) +0(c?) (6.97)
7 1

Recall that do o< | M|? ~ [T#]? ~ [F1(g?)]?. Just like e, Fj is a prefactor to y* so that
e > e - F1(¢?) is enough to obtain the contribution of F; to the scattering cross section.

The factor 1/2 vanishes because the expression must be squared for the cross section.
The contribution of F, does not affect the asymptotic behaviour as it is finite for © — 0.

Problem: The negative, diverging O («) contribution to the scattering cross section is
clearly unphysical!

4| < Limit —g? — oo (to connect to our previous results for bremsstrahlung):

1 _ 2/2 o 2
fir(g?) ~ /0 d§ —q2$(1q— om log (m—qz) (6.98)
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We drop the constant —1 and the mass m? in the numerator for the asymptotic behaviour.
9

—g? 2
Fi(—q%? —» 00) '~ 20— - log( ) log( —4 ) +0(a?) (6.99)
w2
Sudakov double logarithm
Here we have to use A = —g? and not A = m? since —g? — oo.

Comparison with bremsstrahlung Eq. (6.15) for —¢? — oc:

do(p — p") u—0 do K 42 ; .
d—g (dQ) [1 ;1 g( " )log( >+(9(oz )] (6.100)

do(p — p' +y) u—o (do a —q? —q )
15 (dQ) |: —i—; log( " )log( ) + O(x ):| (6.101)

— Both are divergent but their sum is finite and independent of 1!

Suggested solution:

Photon detectors cannot detect photons below a lower threshold E i, —

(d_ff) _do(p > p) | do(p > p'+ ylk < Enin)
measured

i i a0 (6.102)

To show: The cancellation does not only occur for —g2 — oo but for arbitrary ¢.

For general ¢:

B A
1— %fIR(qz) log (E)

( do ) =0 ( do ) Elastic scattering
dQ ~ \ae £2. (6.103)
4% e Wl 4 S=I(p.p) log< lf‘z‘“) +0(a?)

Bremsstrahlung

with J(p, p’) defined in Eq. (6.9) as

4(p. p)—/ko

Recall that after introducing the small photon mass x, we found for the Bremsstrahlung
cross section with Eq. (6.9) and Eq. (6.13)

e r|2

pe

pk

(6.104)

41
do(p— p' +y)=do(p—p)- J(p p')log ( 2 (6.105)
where we introduced the upper cutoff |G| because there the soft-photon approximation

breaks down and invalidates the result.
Here we replace this upper bound by the physically motivated cutoff Ey;, < |¢| and find

E2
do(p—p' +y)=do(p—p)- J(p p )10g( M‘“‘“) (6.106)

(Use colors to skip the second equation.)
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LECTURE 1 7

8 Show (using a Feynman parameter)

d(p, p') = 2fir(¢?) forall p, p’

Proof: ™ P&S p. 201, starting at Eq. (6.69); see also P&S pp. 180-181 Egs. (6.12)-(6.15)

(6.107)

Institute or
i:!oret'cal
] Physics

9 Then

( do ) (6.108)

ds2 meisured .

u—o0 ((do o 2 A 2

~ == 1—— 1 — (¢ 6.

(dQ)o —fr(¢7) Og(Eiin) + O(« )} (6:109)
—¢?>>m? (do o —q2 —q2 )

~ — 11— —log|(— )1 — O 6.

(dQ)o - og(mz) 0g E2 +0(a”) (6.110)
L Correction by Sudakov double logarithm

— Independent of 1 but dependent on experimental conditions ( Epi,) (Which is fine)

We did not evaluate the exact dependence on ¢ (since 4 € {—q?, m?}) but for —¢? > m?
(or —g? — o0) the result is correct.

This is an example how an unphysical regularization parameter does not affect measurable
results.

6.3.5 Summation and Interpretation of Infrared Divergences

1 Problems:
« Did not show the cancellation of the IR divergences for higher orders
« Cross section Eq. (6.110) becomes negative (and therefore unphysical) for Ep;, — 0
The solution of the second problem will follow from the solution of the first one.

The following discussion is only a sketch and not mathematically rigorous as it skips
several technical details that are beyond the scope of this course (and P&S).

2 | Notation:

4

real ? lotoere
Caft
haedd

Sof/

Vittal ) phstons

race 114
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+ Real photons (with arrow) are on-shell, transversely polarized and are connected
with only one end to the Feynman diagram

« Virtual photons (without arrow) can be off-shell, longitudinally polarized and are
connected with both ends to the Feynman diagram

« The momentum of soft photons (red) is upper bounded:
k% < E2. (virtual) and k| < Emin (real)
o The momentum of hard photons (blue) is lower bounded:

k% > E2. (virtual) and k| > Emin (real)
The subscript E denotes norms in the Euclidean norm after Wick rotation.

Virtual photons are not physical and can never be measured. Real photons can only be
measured if they are hard. Soft, real photons cannot be measured due to finite detector

sensitivity.

3 Origin of IR divergences:

o

1

o = = < @
(Pl'fl{ }'2_ Wit ZPI#
v PN
~£
s L = p. &2
(P2 &+ 1) - v 2p () + 247
— No IR divergence
P 1 4
_— = —> O
- (P k) Zio
K
/{
4«- = ~ ~ <20
(Prbs K)oz  2p/(hel )+ 24
—_——0 5 e
“5p —O

— IR divergence (yellow)

Soft (real or virtual) photons on the legs of scattering vertices with hard photons lead to
IR divergences via singular (i.e. on-shell) fermion propagators.

4 | < Generic process:
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n
howd JProcess “

9
Se(¥ correctipis"

Todo: Sum all such diagrams!

5 < Outgoing leg:

Here we do not care whether the soft photons are real or virtual, and, if they are virtual,
whether they connect to each other (and form a leg correction) or to the incoming leg
(forming a vertex correction).

i Feynman rules —

i(f + K +m) (ieyh2) i +ki+k+m
2p" ki + O(k?) 2p" - (k1 + k2) + O(k?)
i +k+-+ Ky +m)
2p" - (ki + -+ + kn) + O(k?)

u(p)(—iey"") (6.111)

x (—ieyhm) (i Mnard) - - - (6.112)

Note that k? = 0 is only true for real (on-shell) photons. Since we do not specify at
this point, whether we interpret the soft photons &; as real or virtual, we cannot,
strictly speaking, set k? = 0 in the denominators (the terms k; - k; may even be
non-zero for real photons). However, in the soft-photon approximation, we drop
the O (k?) terms anyway and their presence is irrelevant in the end.

i | Soft-photon approximation (k; — 0)
« Drop non-singular terms #; in the numerators
« Drop O(k?) terms in the denominators
o Use repeatedly y*(p' + m) = (—p' + m)y* + 2p'* (Dirac algebra)
« Use repeatedly u(p’)(—p’ + m) = 0 (recall the spin sums Eq. (3.29))
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u(p’ ™ p'H? p'Hn
u(p)(ep/'kl) (ep/-(kl +k2)) (ep/-(kl - +kn)) (6.113)

=0

i  Sum over all orderings of k1, ..., kjy:

> Otki o kngy) =? (6.114)
TEeS;,

S denotes the permutation group of n elements and x is a particular permutation.

If we connect two photons k; and k; to form a virtual photon (see below), the
permutation k; <> k; would not be necessary so that we overcount the weight of
the diagram by a factor of 2 (recall that virtual photon lines are unoriented). To
compensate for that, we will multiply by % when we form a photon loop (> below).

iv. Use

1 1 1 s 1
> =115

nes, Prkay P (ke tha@) P (Kpqy o F Ka)

(6.115)

Proof by induction over n.
v Then

rFl

T
~u(p) 1_[ (e pl:—k) (6.116)

K
The “~” hints at the soft-photon approximation.

6 <t Incoming leg:
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— The same arguments yield

(6.117)

‘P
Only difference: One additional minus sign per photon since k; — —k;.

7 < Sum over n soft photons attached either to the incoming or the outgoing leg:
Eq. (6.116) & Eq. (6.117) —

% i
~u(p)iM rp__ 2 6.
i) < [e (= ) o

This is a process that involves only bremsstrahlung and no vertex loops.
8 Virtual photon between vertex i and j:
il Setk; =—ki=k

—iguv

it | Multiply by photon propagator 524>

iii | Integrate over k

iv | Multiply by % to account for the symmetry k; <> k; (¢ note above)

2 4 _ 1L " /
S ! . P _» Pu_ _ Pu_ | _ X (6.119)
2 ) Qu)*k2+ie\p'-k p-k)J\-p' -k —p-k

This prescription allows us to convert two real, soft photons into a virtual soft photon
which is a loop correction of either the vertex or one of the two legs.

To evaluate this integral by contour integration, as before, a regularization by introducing
a small photon mass & > 0 is needed to control the IR divergence.
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9 | Evaluation of X: < Special case with one virtual photon:

= + + (6.120)
[~

~ U(p")i Mparqu(p) x X (6.121)

| - A o 2 _qz
L0 M) %[ =55 it log (% ) | 6122
b u

Known IR limit of Fl(l) (g?), see Eq. (6.95)

Note that the known IR limit of F 1(1)(q2) followed after ad-hoc subtraction of F 1(1)(0).

This is related to the fact that in X we also sum over the leg corrections which we ignored
in our original discussion of the form factors. The details are quite technical and beyond
the scope of this course.

—

2
__ > 2 1
X = 7 fir(g )log( 2 ) (6.123)

This result can also be obtained by direct evaluation of the integral Eq. (6.119).
10 | <t Sum of arbitrary many soft, virtual photons:
Eq. (6.118) & Eq. (6.119) —

‘\T'\
o xm
. ~ ﬁ(p,)id%hardu(p) X Z oy (6.124)
m—0 m:
P

= u(p")i Mharqut(p) x exp(X) (6.125)

The factors n% compensate for overcounting since the order of virtual photons does not

matter and gives rise to equivalent diagrams.

As for the factor of %, this is a consequence of our “symmetrization” above. For instance,
symmetrization over n = 4 photons includes the (distinct) summands

Wy u‘
Ko
Ua
g, © 5
% %
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n

12

13

which become identical after connecting pairs to virtual photons:

[ 7o T

Here, m = 2 and % would cancel the factor of 2.
< Emission of a real photon k; = k:
i | Multiply by polarization vector [€}, (k)]* (external outgoing photon)
ii | Square the amplitude
iii | Phase-space integration of photon momentum k (with upper cutoff k| < Emin)
iv | Sum photon polarizations r = 1,2
-

r2

/Emm d%* iz& e pe
(2m)3 2k ~ Pk p-k

Recall the discussion of bremsstrahlung, i.e. Eq. (6.9) and Eq. (6.13)

=Y (6.126)

~ gJl(p, p’)log (Emi“) (6.127)
™ n
6.107 E2
CLD L fe@? log (—“‘21“) (6.128)
™ n

Note that the complex conjugate vanishes because of the absolute value after squaring.

We ignore here the amplitude of the hard process.

< Cross section for emission of arbitrary number of soft photons:

>, do do 1
Z d_Q(ﬁ = pFny) = d—Q(ﬁ —p) X Z EY” (6.129)
n=0 | —— n=0" "
o [u(p”)i Mpgrau(p)|?

_do .,
= d_Q(p — p') xexp(Y) (6.130)

The prefactor % is needed since the outgoing photons are indistinguishable bosons, i.e.,
whether a photon originates from vertex i or any other outgoing vertex does not change
the physical state. Since we treated the vertices as distinct when symmetrizing, we have
to compensate for that by %

— Measured cross section for process

e (p) — e (p') + (Any number of photons with |I€| < Emnin) (6.131)
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to all orders in « is

>0 and <1 (fOI' —q2 > Emin)

> PS:199-208

do (6.125)&(6.130) ( do
(d_Q)measured ~ (d_Q)O xexp(2X +Y) (6.132)
(6.123)&(6.128) d_cr o 5 —_612
= (dQ)Oexp[ anR(q ) log (Eém)i| (6.133)

—q2z>m2 d_o ex —glo __qZ lo
dQ /, P17 %8z )8

)} 139

Sudakov form factor

The exponent 2X follows because we have to square the amplitude Eq. (6.125).

This cross section describes the combination of an arbitrary number of soft virtual

photons with an arbitrary number of soft real photons.

© Note 6.2

divergences in all orders of «.

to explain the observed cross sections.

NICOLAI LANG « ITP IIl « UNIVERSITY OF STUTTGART

« Sudakov form factor = Probability of a hard process to not emit hard photons

« As the result is independent of ;, it demonstrates the cancellation of IR

« We can recover our previous result Eq. (6.110) by expanding the exponential.

However, for Eni, — 0 the exponent becomes large (and negative) so that
this expansion is no longer valid. This explains our earlier, unphysical result
of purportedly negative scattering cross sections. That is, by lowering our
detector sensitivty, higher-order corrections become more and more important
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© Topics of Lecture 18

1. General structure of two-point correlators in interacting theories
2. Killén-Lehmann spectral representation

3. Field-strength renormalization and the electron self-energy

6.4 Field-Strength Renormalization

So far, we glossed over radiative corrections to external legs twice:

o When evaluating S-matrix elements perturbatively, we considered only amputated
Feynman diagrams. We identified the diverging contributions from loops attached to legs
as modification of the propagation of particles in an interacting theory (which are not
part of the scattering process itself).

« When discussing the scattering of an electron from a heavy target, we ignored the two
diagrams with leg corrections, postponing their treatment to the future.

The future has come:

6.4.1 Structure of Two-Point Correlators in Interacting Theories

« Before we discuss the modification of the electron propagator due to radiative corrections
in QED, we first study the general structure of two-point correlators in interacting field
theories.

 Note that the results of this discussion are exact and not built on perturbation theory.

For now: <t ¢*-theory (later: QED)
1| Goal: Study structure of (2|7 ¢(x)¢(y)|2) in an interacting theory

2 | Interpretation for free theory:
(0|7 ¢(x)¢(»)|0) = Amplitude of particle to propagate from y to x (for x? > »?)
— Effect of interactions?

3 | Mathematical preliminaries:

For details, see Sections 2.3 and 2.4 of Ref. [1].

i <t Hilbert space of interacting, relativistic quantum field theory #iy
— 3 Unitary representation U(A, a) of Poincaré group O(1,3) x R13
A € O(1,3): Lorentz transformations; a € R!-3: translations in spacetime
i | < Generators of translations P* [U(1,a) = exp(ia, P")] with
« P° = H: interacting Hamiltonian (generates translations in time)
« P! = P: total momentum operator (generates translations in space)

Poincaré Lie algebra — [P#*, PY] = 0 — [H, };] =0
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3 Basis |4 5) of Hiye with
PHA5) = (H, P)*|A5) = (Ez(A). p)* |A5) (6.135)

E5(1): eigenenergy of |4 ;); p: total momentum of |4 5)

Note that H is the interacting Hamiltonian and the states [A ;) can contain an
arbitrary number of excitations. We will refer to the ground state (= vacuum state)
still as |€2).

<< Boost A5 € SO™ (1, 3) such that

E-(A . S
A[;( p[_)g )) = (n%)“) with EI;(A) = ./|p? +mi (6.136)

Here we assume that a rest frame exists, i.e., that the state has a mass gap:
p2>0opht = (E5(4), p)* is timelike.

— YV [A5) 3A 5 such that for [Ao) = U(A 5)|A ) it holds
P#|Ao) = (H. P)*|X0) = (m3,0)*|A0) . (6137)

Here U(A) = U(A,0) denotes the unitary (and therefore infinite dimensional)
representation of the homogeneous Lorentz group on the Hilbert space Hiy;.

The bottom line is that every eigenstate |4 ;) can be obtained from a state [Ao) with
vanishing 3-momentum by a boost A 5: [A5) = UJV(AI;) [Ao).

Proof. Note that P* = (H, P) transforms like a 4-vector (* p. 60 of Ref. [1]),
UT(A)PHU(A) = A*, PV, (6.138)

so that from P#[A ) = (E5(4), p)*|A ;) follows

P*|ho) = PHU(A)|A5) (6.19)
= UA)UT(A5) PRU(A )2 5) (6.140)

= U(Ap)(Ap)", P A5) (6.141)

= (Ap)" (E5(), )" UA )2 5) (6142)

= (my, 6)M|)\0) . (6.143)

L]
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v Typical spectrum of P* = (H, P)of an interacting theory with mass gap:

Nk
mulkparicle o peerfictes
cOUtinwim ! 3 ‘o moﬁp,,,\,s K &
lowed siate w
lu sty 430

ot resf
<

P

Every state |1o) with vanishing momentum and “mass” (=rest energy) mj
is associated to a hyperboloid (the “mass shell”) of states A; with energies

E3(A) = ,/|p|> + m3 that are generated by boosts.

Note that the two-particle states occupy a continuum of hyperboloids because
the energy of two particles can take any value 2m < E < oo for vanishing zotal
momentum p = 0.

Depending on the interactions, bound states of two particles can exist where the
energy 2m of the free particles is reduced by the binding energy. In this course, we
do not discuss bound states of interacting QFTs.

vi = Identity on Hiy:

d3p 1
(27)3 2E;

(]l)l—particle = | p) ( | (6.144)

d3 1
Generalization — 1 = |Q)(Q] + Z/ P A5)(A5] (6.145)
A

(27)3 2E (1)

Here, we choose the same normalization as for one-particle states.
The sum runs over all zero-momentum excited states |A¢).

4 | Insert identity between fields —

(Qlp()P()|Q) = Z / Gr 7 3E (k)<sz|¢< x)|25) (4516 (1)|2) + const (6.146)

Here, we drop the constant term coming from (€2|¢ (x)|€2) (which vanishes often anyway
due to the symmetries of the vacuum).
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5 With
(Qlp()A5) = (QleT*p(0)e ™ F*|A5) (6.147)
= (QUPO)A5) e ¥ | po—g ;) (6.148)
= (QUU(A ) UT(A3)$(0)U(A 5) o) e_i”x|po:Eﬁ(A) (6.149)
(€l $(A5'0)=0(0)
= (QUp(0)ro) e P¥| po— g, ) (6.150)

Here we use the Poincaré invariance of the (interacting) vacuum, U(A)|Q2) = |2) and
e P¥|Q) = |Q), and the scalar nature of the field, U(A)¢(x)UT(A) = ¢(Ax).

6| ...wefind

d3p 1
(2m)3 2E5(A)

e_ip(x_y) |p0=E;,()1) (6.151)

(Qlpx)p(1)IQ) =D [(2Ip(0) |40}
A

Introduce p°-integration [recall Eq. (2.16) ff]

x0>y0 2/ d4p i —ip(x—y)
= Qg (0)| A P&=y) (.
;H PO | Gyt 2 —p 436 ¢ (6152)
=Dr(x—y:m3)
x0<y0
= (Qp(n)o(0)|L2) (6.153)

7 — Killén-Lehmann spectral representation of the two-point correlator:

T > dM? 2 2
@TPIMIR) = [ oD — yi ) (6154
with spectral density
p(M?) =27y " §(M? —m3)|[(Qp(0)| o) (6.155)

A

Interpretation: The two-point correlator of an interacting QFT is the sum of propagators
of all possible states with mass m, that can be created by a single field operator from the
interacting vacuum: |(2|¢(0)|1o)|? # 0.

Note that this result is exact!

8 Typical spectral density of an interacting theory with mass gap:
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N
PlmY)
A~pordicte bood giates
Stades

z-rdn‘ft/l

Shates

>
wm? (2w1) * 74 2

p(M?) = 278(M? —m?) - Z + { multi-particle states for M2 > 2m)?}  (6.156)

with (We assume here that the theory has only one massive particle A = 1.)

Field-strength renormalization Z = |(Q]¢(0)|Ao = 1o)|? (6.157)
Physical mass m = m; (6.158)

(given by H|1g) = m1]|1o)) (6.159)

Bare mass my (6.160)

(givenby H = ... 1/2m2 ¢*...) (6.161)

Free theory: Z = [{0|¢(0)|p = 0)o|*> = 1 and m = my
Interacting theory: Z # 1 and m # my

« Only m is observable

Field-strength renormalization = Probability |(Q]¢(0)|1¢)|? that the field ¢(0)
creates the interacting single particle state 1) from the interacting vacuum |2).

9 | Fourier transform of the two-point correlator:

. _ ©dM?  ip(M?)
/d4x ePX(QT d(x)p(0)|Q) = /0 S VR (6.162)
(6.156) i-Z N /00 dM?  ip(M?)
p?—m?2+ic  Joom2 2n p?—M?+ic
(6.163)
1
free 100 (6.164)

p2—m)+ie

— Typical analytical structure in the complex p2-plane:

NICOLAI LANG « ITP IIl « UNIVERSITY OF STUTTGART PAGE 126

Institute or
i:!oret'cal
] Physics

2 Notes



LECTURE 18 > PS:211-222
2
A \M(\)
wr® brawdt co#
® 5 D
18 alated (Awr)?
"Pale /'ze P)_

6.4.2 Application to QED: The Electron Self-Energy

Goal: Use perturbation theory to

1. verify the non-perturbative results from above for QED and

2. compute m and Z in first order of «.
Details: @ Problemset 10.

1 ¢*-theory — QED

Zy(p+m)
;?‘f%f;:E*‘

The name “Z,” for the field-strength renormalization is conventional.

/d4x ePX(QT W(x)T(0)|Q) =

2 | On the other side:
/d sz (QUT ¥ (x)¥(0)|RQ)

Feynman rules for correlation functions

Pk

P P I P

() (t)

3 «%-order:
(@) = i(p + mo)
p2— m(z) +ie
4 ol-order:
l(p + my)
(b) =

p2—md+ie

2 l(k+mo) —i
[( ) /(2 2 m0+zsyu(p—k)2+isi|

=—i%>(p)

y i(p + mo)
pz—m%—l—ia

(6.165)

(6.166)

(6.167)

(6.168)

(6.169)
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— IR- and UV-divergences
(Use regularization with p, A and the techniques developed for the vertex corrections.)

Evaluation: © Problemset 10 —

1 .X/\z
by ~ — 2mg — 1 .
2() 2n /o dxGmo = xp) log |:(1 —x)m% +xp? —x(1— X)P2:| o

> This expression has a branch cut (in the complex p2-plane) emanating from
p? = (mo + p)?, i.e., at the threshold of a two-particle state consisting of an electron
of mass m¢ and a photon of (artificial) mass u. There is, however, no simple pole at

% = m2.

5 Summation to all orders in o:

This is needed to recover the isolate one-particle pole at p? = m?2.

i | Definitions:

One-particle irreducible (1PI) diagram = Bridgeless one-particle diagram

(6.171)
A bridgeless graph cannot be separated into two pieces by deleting a single edge.
Examples:
7 ’

bridge

Let furthermore

—i X (p) := {Sum of all 1PI diagrams } = +@+ (6.172)

= —iY(p) + O(c?) (6.173)

¥ (p) does not include the propagators of the two external legs, recall Eq. (6.169).
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i ' Then

[ e @irvole) (6279

= { Sum of all one-particle diagrams } (6.175)

= € + —¢ 1PI + @@' + ., (6.176)

=i(11;+mg)+l(];+mo)[ IS0 )]Z(P+mo)+m (6177)
pe—my )4 _mo mO

Use p> = p?, [Z(p), p] = 0, write E(p) instead of X (p),
and exploit (p — mo)(p + mo) = p?* — m} to simplify the propagator.

- ! Z ( ) ) (6.178)
p—mo o p—mo
Geometric series for matrices (convergence assumed)
_ ! ! (6.179)
T B —mg Z(p) '
p=mo g - =8
i
- (6.180)
p—mo—Z(p)

Here we omit the infinitesimals ¢ for the sake of simplicity.

It is [Z(p). p] = O since, similar to our discussion of the general structure of
the vertex function I'* previously, the matrix X (p) must be a Lorentz scalar,
A 1 3( p)A ! = %(Ap), and therefore can only be constructed from contracted

pairs of y- matrlces and the four-vector p, i.e.,

2(p) = f*pu) + g(p* pu) + c(¥*yvw) = f(p) + g(p?) + ¢ = Z(p)
(6.181)

where f and g are arbitrary (analytic) functions and ¢ is a constant (recall
Y*yu = 4); note that A%p/\zl = /. This also demonstrates that X can

equivalently be interpreted as a function of p.

6 | Laurent series:

i L 12 + (6.182)
p—mo—3X(p) p—m '
— Expect simple pole for p = 1 -m = m:
m—mo = X(p =m) (6.183)

This is an smplicit equation for the physical mass m.

— Expand denominator around this root:

p—mo—X(p)=(p—m)- (]l—d—)’ —|—(9((p—m)2) (6.184)
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—1
= 7, = (1 — 3—2 ) (6.185)
P lp=m

7 Results in leading order O («):

i = Physical mass:

dm=m-—mo=X(p=m) (6.186)
= S5(p =m) + O(?) (6.187)
= S5(p = mo) + O(?) (6.188)
Use Eq. (6.170), © Problemset 10
A—oo 3 A? A—>oc0
~7 —mplog| - | —— o (6.189)
4 m%

In the last line we expanded X, around mg in « and kept only the lowest order.
— Mass shift is UV-divergent!

i | Field-strength renormalization:

Use -1 =1+ x + O(x?).

8Z,=7,—1 (6.190)

b3

- j + O(a?) (6.191)
Plpmm

_ 4% + 0 (a?) (6.192)
dp | e

x log |: xA? i|
1 - — )21,2 2

2 ;[ dx (1= lm + xl; + 0(?) (6.193)

T _
0 +2(2—x) (1 = xym

(1 —=x)2m? + xpu?

Note that the lowest order of & = %, + O(«?) is linear in « since we excluded
the external propagators from the definition of X.

— Field-strength renormalization is also UV-divergent!

© Note 6.3

 The diverging mass of the electron is classically expected as it includes the energy
of its electrostatic field in the vicinity of the electron. This energy diverges for a
charged sphere with vanishing radius r, as % ~ A — o0.

 Our results on QED processes all involved the bare mass m. To compare them
with experiments, we should express m( in terms of the observed mass m, which,
however, is problematic because their difference diverges! This conceptual impasse
motivates the introduction of a renormalized perturbation theory for QED where the
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physical mass m instead of mo shows up in the Feynman propagator (- later).

o Itis easy to show that in first ¢-order
SZS) = —Fl(l)(O) (6.194)

where F 1(1) (0) was the first-order term that we subtracted from the form factor of
the vertex correction to ensure that F1(0) = 1, recall Eq. (6.77). An application of
the ™ LSZ reduction formula yields a correction to the form factor, namely

Fi(g®) =1+ FP@*+5z8 + 0@?) (6.195)
=1+ F"(@)-F(0) + 0(e?) (6196)

which justifies our subtraction in Eq. (6.77).
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© Topics of Lecture 19

1. Renormalization of the electric charge
2. Running of the fine-structure constant

3. Landau pole

© Topics of Problemset 10

1. Infrared divergence of the electron vertex function

2. The electron self-energy

6.5 Electric Charge Renormalization

Remember the radiative corrections:

MAAAN

(a) Vertex correction
— Form factors and anomalous magnetic moment, IR-div. and UV-div., had to subtract
Fl(l) (0) ad hoc

(b) Soft bremsstrahlung
— IR-div. cancelled with IR-div. of vertex correction

(c) Electron self-energy

— Field-strength and mass renormalization, explained subtraction of F 1(1) (0) and thereby
removed UV-div. of vertex correction

Here < Vacuum polarization diagram (d) — Photon self-energy

This is analogous to the electron self-energy (c) which modified the electron propagation due to
virtual photons. Here, the photon propagator will be modified due to the presence of virtual
electron-positron pairs. This will lead to momentum dependent modifications of the strength
of the electromagnetic field.

1| One-loop correction:
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As before, we exclude the photon propagators of the legs from all expressions.

v (6.197)

d% ik +mpg , (K +q+m)a

= (=1) (—ie)? :
L), (~ie) (2m)4 Yab™ 32 2 Ve (k +q)*> —m? (6.198)
Fermion loop
d% ik+m) ,itk+qg+m)
_ - N2 v
=(—1)(—ie) / )’ Tr[ K e % ktapo mz} (6.199)
=i15"(q) (6.200)
= o
The sign of the fermion loop follows from the contraction VWWW = —WW W where
— —

we used that W = —\IJ\II for fermionic fields (recall that W (x)¥(y) = Sp(x — y) is
the Feynman propagator).

2 <t Sum of all 1-particle irreducible diagrams:

# NW_)V\A@\NV\AD =iT1"(q) =i [T15"(q) + O(a?)] (6.201)

What follows is analogous to our discussion of the generic structure of the vertex
correction I'#:

i Only tensors available: g” and g*q” — TI*"(q) = A(¢?) g"* + B(¢?) q"q"

i | Ward identity (recall Eq. (6.25) and references below for the vertex correction I'*):
quII* (@) =0—> B = =4 — 1" (q) = (4%¢" —4"4") - 5

i | 1Y (q) has no pole for g> = 0

Motivation: Poles at g = 0 arise from massless intermediate states with propagator
_ig[u)
a:4is T .
of this statement is possible but non-trivial.

- but these do not occur in 1-particle irreducible diagrams. A rigorous proof

— (g% = A(q ) regular at g% = 0 —

" (q) = (¢*g"™’ — q"q") - TI(¢?) (6.202)

Note that g2 = 0 does ot imply ¢* = 0 and thus g*¢" can be chosen finite for
g% — 0; consequently, IT(¢g?) must be regular in this limit if TT#"(g?) is.
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3 < Sum of all diagrams with two photon legs:

/“’ENVVV\N\IL+N\NV@NW\++_“ (6.203)

—ig —i&up 1. —ig
= qzuv + qzup [i(¢*¢*” —q"q°)T1(g?)] q;v + ... (6.204)
Define A9 = §° — qPqU/QZ and use g°7 gy = §°

_ TE8uv | T18up s prre2y o TEEMP A p Ao 722
== + " APTI(¢?) + q—zA(,AvH (%) + ... (6.205)
Use ALAY = Af

. . o0
—1§ —1g
= — 4 ALY TP (6.206)
q q ne1
—————
— 1
“Tna? !

Geometric series

_ —i QMCIV) —i (fmqv)
=————\8guw—"5|+— (6.207)
q2[1 — (¢?)] ( e g2 g2 \ q2

4 < Eq. (6.207) contracted with a fermion vertex to form an S-matrix element:
Eq. (6.207),,, M" (q) & Ward identity [q, M (¢) = 0] >

/ —1&uv
“ T R rD)] (6:208)

The “=" signifies that this equation is only true for computations in S-matrix elements.

For a proof ™ P&S pp. 238-244, in particular Eq. (7.66).

>

Note that this propagator has a pole at g2 = 0 (to all orders in ) because I1(¢?) is
regular so that the photon remains exactly massless. Formally, this is a consequence of

the Ward identity.
5 Charge renormalization:
i Define
Z3 = _ (6.209)
1 —I1(0)

This is a finite number since I1(g?) is regular at g = 0 (and we assume |I1| < 1
as otherwise the resumation with the geometric series is not justified).

Then, for g> — 0 (i.e. “almost-on-shell photons”)

ezg;w _ Z3 ezg,uv
q* q*

... (6.210)
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i =~ — Charge renormalization:

Bare charge eo (given by Hin = eo Wy WA ) (6.211)

Physical charge e = \/Z3ep (6.212)
2 2

Fine-structure constant — = «a = Z3ag = Z3e—0 (6.213)
47 4

Note that the bare charge ep was previously called e. The charge measured in
experiments is the physical charge e = \/Z3eo, hence the new notation.

That is, for almost-on-shell photons (g2 — 0) we can incorporate the effects of
the vacuum polarization diagrams by simply replacing the bare charge e by the
renormalized, physical charge e in computations of S-matrix elements.

Note that in lowest order o?, it is Z3 = 1 so that e = ¢g and o = «g. In
general, Z3 = 1 + O(ap) so that = g + (9(0{5). In particular, we can write
O(a?) = (9(a§).

i | In addition, for g2 # 0 and I1(¢?) = I12(¢?) + O(a?), each virtual photon line
comes with (the charges come from the interaction vertices)

. 2 s 2
—18uv 0 _ Tl8uv € [1 —T1(0)]
> 1-TIg?»  ¢? 1 —I(q?) (6214
Use(1—x)"'=14x+0x> (6.215)
. 2
_ 8w € [1 —T12(0)] 2
=z I~ T2 + O(x”) (6.216)
Use (1 —x)=(1+x)"! +0(x? (6.217)
. 2
—i &y e 2
— . +0 6.218
2 I-mL@ [+ mo) 0@ 62
2

_ —iguy . e
¢ 1—[I2(¢g?) — 2(0)]

+ 0(a?) (6.219)

— g*-dependent charge/fine-structure constant:

.. ed/Am B o 5
aeff(q”) = T— @D ~ 1-[M@?) —TL0)] + O(a?) (6.220)

That is, for arbitrary momenta, the effect of replacing the tree-level propagator with
the full propagator is a ¢2-dependent electric charge, or, equivalently, fine-structure
constant.

6 | Computation of IT5:
i From Eq. (6.200):

. : i __ iag 2
We use m and e instead of mq and e( since Fom = F=mg T O(c) and we are

NICOLAI LANG « ITP IIl « UNIVERSITY OF STUTTGART PAGE 135

Institute or
i:!oret'cal
] Physics

2 Notes



LECTURE 19 > PS:244-257

only interested in linear order corrections (note that I is already of order ).

d% Tr[ Mi(k+m)yvi(k+9l+m)]
27)* k2 —m2" (k +q)> —m?

(6.221)

in*g) = (i [
Trace identities

d% kM(k +q)" + k" (k + 9" — g"(k - (k + q) — m?)
2m)* (k? —m?)((k + q)> —m?)

(

= —4¢?

(6.222)
Feynman parameters, Substitution / = k + xgq, Wick rotation /° = i l%
! dl
= — 4ie2/ dx —Ed
0 (27)
—2gM % 4 g2 —2x(1 — x)qtq” + g (m* + x(1 — x)g?)
(% + A)?

(6.223)

where A = m? —x(1 —x)g? and d = 4.

MNote: In the last line, the term —% gl ]25 in the numerator follows for spacetime
dimension d (here d = 4) as a generalization of Eq. (6.59) ff (use g,,g"" = d):

A= élzguv (6.224)

Furthermore, all terms linear in /g dropped out due to the integration. Here we
introduce d to denote the spacetime dimension because we will need it for the
dimensional regularization below.

i - Strong UV-divergence: <t UV-cutoff |/g| < A, then

A
iTlh" (q) ~ e*A>gh 27 0 (6.225)

This follows simply by power counting.

Note that this result also violates the Ward identity ¢, I15” = 0 as there is no
corresponding term o< ¢g*¢"; this violation produces a (infinite) photon mass!

— To make sense of this result (and restore the Ward identity), a regularization is
needed!

iii | Dimensional regularization: (Details: © Problemset 11)

1. Lower the spacetime dimension d € N until the UV-divergence vanishes.
2. Generalize all expressions to d € R (below even d € C is fine).
3. Take the limit d 4 in observable quantities.

We could also use Pauli-Villars regularization (with the same results), which,
however, is in this case much more complicated than dimensional regularization.
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iv

v

vi

For d € C we find (Proof: © Problemset 11)

dp 1 1 F(”—%) (1)”‘5

@2m)d (12 + A T @mdl2 T A (6.226)
g 1y 1 dl (n 5 1) (l)n_g_l 6.227
Qud (3 + A @m@22 T A (6:227)

For d € N these are zdentities that must be proven, for d € C \ N, these are
definitions of the left-hand side. I" denotes the gamma function:

o
I'(z) :=/ 12 le ™ dt (6.228)
0
for z € C with simple poles at z € {0, —1,—-2,-3,...}.
<n=2
Since [recall Eq. (6.223)]

dilg (1-32)12
@2m)d (IZ + A)2

oc(l—%)F(Z—%— ) (6.229)

«(1-4)r(1-4)=r(2-9%) (6.230)

we only have to consider I'(2 — %), i.e., the strong UV-divergence Eq. (6.225)
which naively even survives for d = 2 is canceled. The last equality follows from
the property zI'(z) = I'(1 + z) of the gamma function.

I‘(2—%) has isolated poles at d = 4,6,... - <td = 4 — ¢ and use

r (2 - §) — I'(¢/2) = % — 7+ 0() (6.231)

y: Euler-Mascheroni constant
Evaluate Eq. (6.223) with Eq. (6.226) & Eq. (6.227) —

iny”(q) = (¢*g"" —q"q") - iT2(g?) (6.232)
g2 1 x(1-0r(2-4)
th Do (02) — / J ‘
with  T1>(¢%) @ J, RS (6.233)
=A

Note that IT5" (¢) has the expected form Eq. (6.202) (and therefore satisfies the
Ward identity).

Use Eq. (6.231) to expand in ¢:

(%) = —7201 /01 dx x(1—x) [% —log (A) — y + log (4n):| + 0O(e) (6.234)

To show this, use A=2+t4/2 = 1 — Slog (A)+ O(¢2) and (47)~4/2 = (47)"2(1 +
£ log (47)) + O(&?), and keep only constant and diverging terms.
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7 O(a) charge renormalization:

e _ Zs—1= 10 (6.235)
2 T T 1o ‘
= I1,(0) + O(a?) (6.236)
e—0 200 &\0
N —— 5 0 (6.237)
3me
— If the observed charge is finite (—oo < e < 0) the bare charge diverges: eg = —oc0.

Note that e is #ot observable so that this is not a falsifiable prediction of QED.
8 | O(a) g>-dependence of a.g(g?) depends on

A - 1 2
I12(¢?) = M2(g?) — M1(0) = %/0 dx x(1 —x)log (m2 — xr?l — x)qz)

(6.238)
This 7s an experimentally observable prediction (- below).
Note that the UV-divergence for ¢ — 0 drops out!
9 | Analysis & Interpretation of 5(¢2):

i| Note:

'#/ 3

s-channel: T# = s=(p+p)P=¢* >0 (6.239)
AN
% >,
v N
:\ -+, 2 2

t-channel: = t=(p—-k*=gq <0 (6.240)
v
4\ 2
v A
\/"

u-channel: = u=(p-k)Y=¢*> <0 (6.241)

The eponymous variables s, ¢, and u are known as Mandelstam variables.

(To show the inequalities, use the Cauchy-Schwarz inequality. Because of p? =
p'? = k? = k’> = m? > 0 all momenta are time-like vectors pointing into the
future light-cone, i.e., for each momentum there is a rest frame with p® = m > 0.)

o - and u-channel: T15(g?) is analytic in the left half of the (complex) ¢2-plane.

o s-channel: T15(g?) has a branch cut on the real axis for m2 — x(1 — x)g? < 0,
i.e., starting at m?> = ¢2/4 & ¢ = (2m)? where a real (on-shell) electron-
positron pair can be produced.
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v

< Effective potential in nonrelativistic limit [recall Eq. (4.194) ff.]:

V() = d el4% _Aez (6.242)
@0 |Gl - Fa(-[7P)]

= (j;q)ge’“ (l_qe;) {1+ Tla(-13P) + 0] (6.209

71 gom? (;1;‘3 i (;; ) [+ famsliP] 0 2

L _% ﬁge) (%) (6.245)

TR 15m2

Recall that g2 = (p — p')? ~ —|p — p’|? and |¢?| < m? in the nonrelativistic
limit. Use log (ﬁ) = x + O(x?) to expand the logarithm in g2 /m? and use that
) dx x2(1 = x)* = 1/30.

— Electromagnetic force becomes much stronger at small distances

That is, QED tells us that the Coulomb potential of charged point particles is a
low-energy/large-distance approximation!

Experimental verification:

Energy shift of s-orbitals in the hydrogen atom (contributes to the & Lamb shift):

2 2

AE ~ / d3x |y (R))? (—%5@) (55)) =— 145‘2‘112 [y (0)[2 20 (6.246)
Note that the Darwin term Hparwin = %8 &) (fc) has a similar form but follows
already from the (first quantized) Dirac equation, i.e., at tree-level. By contrast, the
above correction is of loop-order a2 and contributes to the Lamb shift of 1058 MHz
(but only 2% = -27 MHz; the dominant part of 1011 MHz is due to the self-energy
of the electron, an additional part of 68 MHz comes from the anomalous magnetic
moment [13]), a famous prediction of QED that cannot be derived from the Dirac
equation (¢ Dirac theory result © Problemset 4) and explains the observed splitting
of the hydrogen orbitals 25, and 2P, , with total angular momentum j = 1/2
(? Lamb-Retherford experiment). Note that the theoretical prediction of 1058 MHz
contains higher-order contributions, * Ref. [13] p. 270.

More generally, one finds the Uehling potential:

o a e—2mr
V(r) = —7 (1 + EW + .. ) (6.247)

Starting from Eq. (6.243), a contour integration is needed to derive this without
using the approximation in Eq. (6.244), * P&S p. 254.

Note that the range of the correction is given by the electron’s Compton wavelength
Ae = h/mc = 27/ m. Since the length scale of variations of atomic orbitals is given
by the Bohr radius, a9 = A./(2na) ~ 22 A, the nonrelativistic approximation
from above is sufficient for atomic physics.

Interpretation: Vacuum polarization:
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The vacuum behaves as a dielectric medium where electric dipoles of size ~ 1/m,
formed by electron-positron pairs, screen the bare charge eg. The energy scale
q at which we observe the electron determines the size of the sphere r = 1/¢
that contributes to the observed charge e; for r > 1/m the screening due to
electron-positron pairs kicks in, for » < 1/m the screening becomes weaker and
the observed charge approaches the bare charge. Note that in this picture, the
e~ e -pairs that traverse the surface of the sphere are responsible for reducing the
infinite bare charge to the finite physical charge.

vi < Relativistic limit —g? > m?:

1 2 2
Ma(g®) = —2;‘/0 dxx(1-x) [log (i“qz) —log (x(1—x)) + O (’Zz)]
(6.248)
2 2
ER a7\ _>3 m-
= 3 [log(mz ) ;T0 (q2 )] (6.249)

Use log (%) = log (%) + O(x) and fol dx x(1 —x)log (x(1 —x)) = —5/18.
— “Running” of a. with the length scale » — 0:

—g%>m? o
aer(q?) A » 2 (6.250)
—q%=1/r? o
= 6.251
1+ 2 log (A(rm)?) (6231
with A = exp (5/3) € O(1):
N
0(‘“,
4
137
et
7
Laudew pole eg
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Note that Eq. (6.251) is only valid for relativistic |¢?| > m? and not for |g?| —
0 & r — oo; thus the approach of o to @ & % cannot be extracted from
this expression! However, Eq. (6.251) demonstrates the growth of the coupling
strength at small length scales r — 0 < |¢2| — oo where the screening due to the
polarized vacuum becomes weaker (- note below).

This modification is crucial for explaining scattering cross sections at high energies,
™ P&S p. 256 Fig. 7.7.

So when one refers to the fine-structure constant, the “constant” can only refer to
constancy in time and the “the” refers to the infrared energy/length/momentum

. . 1
scales that we typically observe, i.e., where aeff ~ 135 -
— Renormalization (- next lectures)

© Note 6.4

Eq. (6.251) describes the coupling strength at very high energies —g? > m?2. Strangely,
the expression predicts a divergence of o at a large but finite momentum —g? = A%:

o Ai ! 3 286
11— glog T2 =0 = Ap~me2a ~10°°°eV, (6.252)

where we used the renormalized mass m &~ 0.5MeV of the electron, o = and

dropped the insignificant constant A.

1L
137>
This divergence is known as & Landau pole [14].

« Its occurrence is often interpreted as onset of a non-perturbative regime of QED
and/or as the necessity for a UV-completion of QED (embedded in some “grand
unified theory”). Note that the existence - let alone the exact position - of the
Landau pole cannot be inferred from perturbative computations because the very
premise of perturbation theory is the smallness of the coupling constant (which is
justified on our energy scales where o ~ % but clearly breaks down long before
the purported Landau pole is reached).

o Thus, to study whether the Landau pole bears physical meaning or is a mere
artifact of perturbation theory, one must resort to non-perturbative methods like
1 & Lattice QED, e.g. [15]; these studies suggest that the Landau pole is “real”
in the sense that pure QED seems to be ™ & quantum trivial (i.e., o renormalizes
to zero if the momentum cutoff is taken to infinity), but is rendered inaccessible
by spontaneous symmetry breaking. However, the QED we use is not “pure”
but embedded into the standard model which is expected to be embedded into a
UV-complete grand unified theory. Thus “our” QED is more likely an effective,
incomplete theory and the Landau pole may be a mere artifact of perturbation
theory that occurs when we extrapolate this theory into a regime beyond its validity.

« There is another perspective on this: As Freeman Dyson argued [16], the pertur-
bative expansion of any quantity (e.g., the g-factor) in QED in the fine structure
constant a o e? does not converge (more precisely: its convergence radius is zero).
This is so because setting o« < O (equivalently: e + ie) leads to an unstable vacuum
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where electrons and positrons repel each other. Such a vacuum would quickly fill
with spatially separated condensates of electrons and positrons without lower bound
on its energy. If the convergence radius of any perturbative expansion in o were
non-zero, it would necessarily contain a range of negative « (which it cannot because
of the instability). The existence of the Landau pole in the perturbation series can be
seen as sign of this non-convergence. (Which doesn’t mean that the first N orders
in the series do not improve on the predictions of QED - they do! It only means
that after some (very high) order N the predictions will get worse because QED is
an effective QFT that lacks a proper UV completion. A common [16,17] estimate
of the order at which the series starts to become unreliable is N ~ 1/« ~ 137; it
is based on non-perturbative terms of the form e ~¢/% becoming comparable to the
perturbative contributions: e~¢/* ~ ¥ = N ~ 1/a. Clearly Feynman diagrams
with O (137) loops are far beyond anything of practical relevance.)

« The problem of the Landau pole is of no practical importance for actual predictions
of QED because the energy scale at which it occurs are beyond reach:

Eiic ~ 103 eV <« Epanck ~ 1028V« Ap ~10%8%eV.  (6.253)

» Note that the occurrence of a Landau pole is not specific to QED but a rather
generic feature of field theories that are not asymptotically free (¢f QCD).
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© Topics of Lecture 20

1. Systematic approach to renormalization
2. Counting UV-divergencies

3. The mass dimension
4

. A short note on the Einstein-Hilbert action

7 Systematics of Renormalization

Remember:
« IR-divergences:

- Due to massless particles (photons)
(The amplitudes for k — 0 real/virtual photons diverge.)

- Regulate with small photon mass (1)

- Divergences from soft virtual photons (vertex correction) and soft bremsstrahlung
cancel

— Not a fundamental problem (we do not have to reinterpret/change the theory)

« UV-divergences:

- Due to unbounded high momenta of particles (= unbounded small length scales) in
all three radiative corrections:

= (O

- Regulate with Pauli-Villars (A) or dimensional regularization (&)

- Cancelled in several observable quantities
(The UV-divergence of field-strength renormalization cancelled with the UV-
divergence of the vertex correction. The momentum-dependence of the effective
electric charge did not depend on the UV-regulator ¢.)

- Diverging differences between physical and bare quantities
This is clearly a conceptual problem as the physical quantities are obviously finite
(as given by experiments), thus the bare quantities (so far seen as fixed parameters
of the microscopic Lagrangian) must then be cutoff dependent and diverge for
A — oo.

— Fundamental problem (of most interacting QFTs)
— UV-divergences are considered more severe problems than IR-divergences.

— Study UV-divergences systematically
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7.1 Counting UV-Divergences

1 Goal: Classify UV-divergences in QED

- PS:315-323

Which Feynman diagrams diverge and how many diverging quantitites are hidden in the

amplitudes of QED?

2 | Definitions:

N, = # external electron lines

N, = #external photon lines

P,
S |
P, = # electron propagators — 1_[ 7
L
Py
P, = # photon propagators — l_[ 2
i i
V = #vertices
L
d%;
L = #independent loops — 2
L e

7.1)
(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

This is valid for (diagrams of) scattering amplitudes; for (diagrams of) correlation
functions, count the propagators to external points as external lines and not as propagators
(they are multiplicative and therefore irrelevant for the UV-behaviour of the diagram).

3 Superficial degree of divergence:

DqEp = (BL+L)—(P.+ 2Py)
—_— ——
Numerator Denominator

(7.7)

Note that a 4-dimensional integral diverges as A%; e.g., in spherical coordinates, 3L
comes from the Jacobian and L from the integrations. Dqrp quantifies the divergence of

the integral, not the integrand.

Intuition:
>0 : Divergence with APwp
Dqep y =0 : Divergence with log A
<0 : Nodivergence
Example:

~ log A and Dggp=4-1-2+2-1)=0

However: Not always correct!

Reasons:
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« Divergence may be weaker (or absent) if symmetries make divergent terms cancel:

AM»QvawlogA although Dogp =4-1—-(24+2-0) =2

(7.10)

(Recall the restrictions on the general structure of this diagram due to the Ward
identity in Eq. (6.202) [« Eq. (6.229) and - the discussion below].)

« Divergence may be worse if diagram contains divergent subdiagrams (yellow):

~ log A although Doggp=4-1-2+2-2)=-2

(7.11)

 Tree-level diagrams with no propagators have D = 0 but no divergence:

~ 1 although Dqgp = 4-0— 0+2-00=0 (7.12)

4 | Use (standard graph theory identities, ¢ discussion of Fenyman rules)

L =P, + P,—V + 1 = Cycle space dimension (7.13)
——
#Edges
1

To show the two expressions in the second row, use that every internal photon line
corresponds to two vertices and every external photon line to one vertex; the same is true
for fermion lines except that every vertex is shared by two lines so that the final count
must be divided by 2.

to show

o 3
Dqegp = 4— Ny — ENe (7.15)

— Independent of number of vertices!

5 Aside: Furry’s theorem:

Sums of Feynman diagrams (= amplitudes) with an odd number of

photons as their only external lines vanish identically. (7.16)

Proof: Follows from charge conjugation symmetry (C) of QED

(Use C|Q) = |Q) and Cj#CT = —j* with j* = Wyt W, 1 P&S p. 318; also 1 p. 428
of Ref. [1].)

This tells us that a single, real photons can never be produced or absorbed by the
interacting vacuum of QED.
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6 Enumerate diagrams/amplitudes with Dqgp > 0:

We consider only amputated and one-particle irreducible diagrams as all other diagrams
are products of these. Grey blobs denote the sums of all such diagrams with specified
external lines. We consider the amplitudes as functions of their external momenta and
express them as power series with unkown coefficient (which may or may not diverge
with the UV-cutoff A). In the following, “~” denotes asymptotic scaling up to regular
terms. Recall that N, = 0,2,4,... in QED.

i N,=0:
Q ~ badly divergent (7.17)

a Ny, =0(Dqep = 4):
Unobservable vacuum energy shift — Ignore diagram

b Ny =1 (DQED = 3):
va/v g (7.18)

¢! Ny =2 (Dqep = 2): [Recall our first-order result in Eq. (6.234).]

WN@N‘N = (g"q* — ¢"¢")T(¢*) (7.19)

const

~ (g"q* — q"q") - (7.20)
~ (&""¢* — ¢"q") - const - log A (7.21)
N——’
ap(A)

The divergence comes from I1(¢?) and is logarithmic. Recall that we used
dimensional regularization for our first-order calculation Eq. (6.234), so that the
divergence log A with a Pauli-Villars regulator A is not obvious. ag(A) is a
g-independent quantity diverging with A.

This is one of the examples where symmetry (via the Ward identity) makes the
divergence less severe than superficially predicted by Dqgp: the zeroth and
first-order coefficients of the g-expansion must vanish due to symmetry; the
divergence left comes from the quadratic term and is only logarithmic.

d Ny =3 (DQED = 1):

=0 (7.22)
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Ward (7.23)

This follows from symmetry arguments (Ward identity) that make potentially
diverging terms vanish identically, ® P&S p. 320.

Note: This diagram describes /light-by-light scattering (Halpern scattering) in
QED. The lowest-order amplitude is very weak (of order «?/m2%); therefore,
we do not experience this in everyday life and the linearity of classical
electrodynamics is a good approximation. Nevertheless, it has consequences:
In astronomy, observable y-rays are restricted to energies below 80 TeV; above
this threshold, the photons scatter at the ubiquitous microwave background
and the universe becomes opaque. For direct experimental observations at
LHC, see the recent paper [18].

ii Ne == 2:
a| Ny =0 (Dqep = 1): [Recall our first-order result in Eq. (6.170).]

m ~ const - log A +p - const - log A (7.24)

N

ai(A) az(A)

It can be shown that this scaling is true in all orders, ™ P&S p. 319.
b’ Ny =1 (Dqep = 0): [Recall our first-order result in Eq. (6.76).]

~ —iey"log A (7.25)
——— ———

az(N)

It can be shown that this scaling is true in all orders, * P&S p. 319.
7 Weinberg theorem [19-21]:

QED diagrams can only diverge if they contain (diagrams of)
Eq. (7.21), Eq. (7.24) or Eq. (7.25) as subdiagrams. (7.26)
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Example:

’\"/\1‘ ’\,.,\11 w,,,\/\x\
= 4+ } + < + :} *

B3 <

The three diagrams belong to the Compton scattering amplitude. Diagram (A) is
UV-convergent, the diagrams (B) and (C) are UV-divergent because of the highlighted
sub-diagrams with Dqrp > 0 which belong to the divergent amplitudes Eq. (7.24) and
Eq. (7.25), respectively.

— QED contains only four UV-divergent numbers: ag, a1, a2, as.
8 Idea:

Absorb finite number of diverging quantitites in finite number of diverging but unobserv-
able Lagrangian parameters — Renormalization (= below)

“Hiding” the divergences in unobservable parameters makes all other observable quantities
(like scattering amplitudes and physical parameters) cutoff-independent and UV-finite.

9 | Generalization: < QED in d spacetime dimensions —

Dqep = dL — P, —2P, (7.27)
24+ u vV — u N., — ﬂ N, 728
= 5 5 y 5 e (7.28)

To show this, note that the identities Eq. (7.13) and Eq. (7.14) are still valid.

10 = Classification:
o d <4
Diagrams of higher order (V' — oo) are always superficially convergent.

— Only a finite number of Feynman diagrams (not amplitudes = sums of diagrams!)
superficially diverge.

% Super-Renormalizable theory (Example: QED ind =2 + 1)
o d =4

Dqgp is independent of the order V' (the divergence of diagrams can be traced back
to a finite number of diverging amplitudes/subdiagrams).

— Only a finite number of amplitudes superficially diverge.
% Renormalizable theory (Example: QED ind =3 + 1)
cd>4
Diagrams of higher order (V' — o00) are always superficially divergent.
— All amplitudes diverge at sufficiently high order in perturbation theory.
% Non-Renormalizable theory (Example: QED ind =4 + 1)

NICOLAI LANG « ITP IIl « UNIVERSITY OF STUTTGART PAGE 148 2 Notes



LECTURE 20 - PS:315-323

This means that for QED the “reductionistic approach” only works in d < 4 dimensions
where the divergence of all diagrams/amplitudes can be traced back to a finite number of

diverging sub-diagrams/sub-amplitudes.

This threefold classification also applies to other QFTs (but not always with d = 4 as
the critical dimension for renormalizability as Eq. (7.28) is specific to QED, » ¢"-theory

below).

© Note 7.1

due to symmetries that cancel diverging amplitudes.

Alternative approach

1 < ¢"-theory (for simplicity)
Lon = l(a $)? — 1mzq/ﬂ — iqs" withn e N
2k 2 n!

2 | Definitions:

Ny = #external lines
Py = # propagators
V = #vertices
L = #independent loops

3 Superficial degree of divergence:

Dgn =dL —2P,

b (155

Use the graph identities L = Py — V + 1 and nV = Ny + 2Py to show this.

— Forn = 4in d = 4 independent of 1V — Renormalizable
4 | Alternative approach via dimensional analysis:

i Recall:h:c:landkczﬁzzﬁ”
— Dimension of length: [A;] = M~ (M: dimension of mass)

i | Dimension of action: [S] = 1 (since # = 1)

i S=[dxZfand[d%x]=M"9—
Dimension of Lagrangian density: [£] = M¢

o There are examples in which the divergences are not as bad as superficially predicted

« The diverging amplitudes of superficially renormalizable theories can always be
absorbed into a finite number of unobservable Lagrangian parameters (- below).

(7.29)

(7.30a)
(7.30b)
(7.30¢)
(7.30d)

(7.31)

(7.32)

As all dimensions can be expressed in M, we say that “ £ has (mass) dimension d ”.
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iv From Eq. (7.29) follows (use [0] = M):

] = M5 (7.33a)
[m] = M (consistent!) (7.33b)
[A] = Md—nd=2/2 (7.33¢)

v <t Amplitude M of single diagram with Ny external lines
— Could arise (on tree-level) from interaction n¢p¥¢ — [n] = Md—Ne(d=2)/2
— [M] =[] = M3 No(@=2)/2 (recall M = —L + O(A?) from Eq. (4.141))

vi < Diagram with V vertices — M ~ AY AP for the UV-cutoff A — oo
(This is an implicit definition of the superficial degree of divergence D.)

— (use [A] = M)

[A]V[A]D‘b” — [M] — Md—N¢(d—2)/2 (7.34)
d—2
—
d—2
Dgn =d — logy, [A] -V — (T) Ny = Eq. (7.32) (7.36)
d—n(d—2)/2

5 | Therefore we find the equivalent characterization:

« Super-Renormalizable theory:

Coupling constant has positive mass dimension: log,,[A] > 0.

« Renormalizable theory:

Coupling constant is dimensionless: log,,[A] = 0.
Example: QED with [e] = 1 is superficially renormalizable.

« Non-Renormalizable theory:

Coupling constant has negative mass dimension: log,,[A] < 0.

This argument remains valid for other QFTs as well, in particular QED.

Aside: Why quantum gravity is special

1 Fields: Components of the metric tensor g, (x)
Note that in general relativity, the metric is position dependent, that is, a field.

2 | Einstein-Hilbert action of pure gravity:

Ser = — / d* V/Tdetg(0)] [R(g(x)) — 2Ac] (737)

~ 167G

R = g"”R,,»: Ricci scalar with Ricci tensor R,y
A: Cosmological constant
G: Gravitational constant = Coupling constant of gravity
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If matter is present, this action is extended by the covariant action of the matter fields
(e.g., £qorp) which then generates a non-vanishing energy-momentum tensor in the
Einstein equations below.

o . . . . . .
— Equations of motion = Einstein’s field equations (in vacuum):

1
RMU_EgupR-i_Achu :0 (7.38)

3 Recall:
R~ g Ryy ~ g""R? 5, ~ 8" 0T, ~ g"700(g7 0ugok)  (7:39)
= [R] = [g]’[0]? (7.40)

7, are the Christoffel symbols of the second kind, R’y is the Riemann curvature tensor.

and
ds* = gypdxtdx” (7.41)
= L% =[ds?] = [glldx]? = [¢]L? (7.42)
= [g]=1 (7.43)

ds? is the squared length element of the Riemannian spacetime.

such that
[R]=[0]>=L"2%=M? (7.44)

4 From Eq. (7.37) it follows [G] ™' [dx]*[R] = [G] "' M ~*M? = [S] L 1,1ie.,

logy [G] =—-2<0 (7.45)

— Einstein gravity is superficially non-renormalizable!
Recall that G =

Z—g = m% with the Planck mass m p, consistent with our result.
P P
Superficial non-renormalizability does not prove non-renormalizability as there may still

be non-trivial cancellations that make the theory UV-finite.

If you wonder why the negative mass dimension of G is a problem although the action is
proportional to é (which has positive mass dimension): To apply our reasoning (which is
completely based on perturbation theory!) we must bring the action first into a form of
a free (Gaussian) theory that is perturbed by non-quadratic terms proportional to some
(small) coupling constant [22]; after a rescaling of the fields, this constant is essentially
G and only then corresponds to the A of ¢*-theory or the e of QED.

© Note 7.2
« At one-loop level, pure Einstein gravity (no matter fields) is - quite unexpectedly! -
UV-finite [23].

« However, when matter is coupled to gravity, the one-loop diagrams are UV-divergent,
see Ref. [23] for the example of a scalar field and references in Ref. [24].

At two-loop level, pure Einstein gravity is proven to be UV-divergent [24]. That is,
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no unexpected cancellations occur.

 Therefore it is widely believed (though, to my knowledge, not proven) that no
unexpected cancellations occur beyond two-loop order; therefore, Einstein gravity is
perturbatively not renormalizable.
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© Topics of Lecture 21

1. Bare perturbation theory
2. Renormalizted perturbation theory
3. Application to QED

7.2 Renormalized Perturbation Theory

Goal:

Compute finite predictions from given physical parameters m and e for A — oo

Recipe:

Historically, this was the first widely accepted “fix” for the UV-problems of QFTs.

(i)

(i)

(iif)

(iv)

Compute UV-divergent amplitude with UV-regulator A to some order in «g:

M = M(mg,eo; A) + (9(0(8) (7.46)

Compute physical mass, physical charge and field-strength renormalization:
m =m(mg,eoq;A) + 0O, e=-e(mg,eq;AN)+ 0, Z = Z(mg,eo;N)+ 0O (747

The order O of these computations should be consistent with the order of M. The
field-strength renormalization Z is only needed for the computation of S-matrix elements
(where we sum only over amputated and fully connected diagrams), but not for correlation
functions (where we sum over a// connected diagrams). This follows from the LSZ
reduction formula (which we did not discuss, ™ P&S pp. 222-230, in particular Eq. (7.45)
on p. 229).

Renormalization:

Eliminate m¢ and e in favour of m and e (which are fixed and given by experiments):
eo = eo(m,e;A), mo = mo(m,e;A) (7.48)

We did this previously when discussing the charge renormalization where we replaced
mg and eg by m and e in lowest order.

Then

M(m,e) = Ali_r)nooe/\/{(mo(m,e;A),eo(m,e;A);A) (7.49)

is finite and indepenent of A in all orders of «.

This is a remarkable, non-trivial observation! Note that this requires the bare parameters
to be cutoff dependent and divergent for A — oo, i.e., we change the “microscopic”
theory parametrically with A. This interpretation is justified by the numerous extremely
precise predictions of QED like the anomalous magnetic moment (where we - somewhat
naively - used the pAysical value o and not the bare value o to evaluate the numerical
correction for ge.).
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— Bare perturbation theory (since the Feynman rules involve bare parameters)
— Works for all renormalizable QFTs (but can be cumbersome)

— Alternative (but equivalent!) formalism: Renormalized perturbation theory (- today)

1/ < ¢*-theoryin d = 3 + 1 dimensions (= QED below):

Ao

1 1
Lgs = 5(0u9)* = Jmie? — 10"

(7.50)

2| With Dys = 4 — Ny [Eq. (7.32)] and Ny = 0,2,4,... one finds the divergent

amplitudes:

Note that all vertices of ¢*-theory have degree 4 so that only an even number of external

legs is possible.

Dys =4 unobservable vacuum energy shift

/ 2 2
D¢4=2 ¢ ////>\P ~AN+p logA

S T

Dga =0 @ ~ log A

/{ T

— 3 divergent quantities
— Absorb in 3 unobservable parameters: bare mass m, bare coupling A, fields ¢
3 Recall:
/d4x ePPX QT ¢ (x)$(0)|Q) = % + ...

m2

The dots denote terms regular at p? = m?.

Absorb unobservable Z in rescaled fields:

¢r =

-

Then

/d4xei”x (QIT ¢r(x)pr (0)[2) = pzi— +

m2

(7.51)

(7.52)

(7.53)

(7.54)

(7.55)

(7.56)

Note that this expression is no longer affected by Z — oo for A — oo since we rescale

the field strength of ¢, accordingly.

4 Lagrangian in new fields:

Ao

IZ%;‘

1 1
Lps = 5Z(zw,)2 - 5m§z¢3 —

(7.57)
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5 Split terms into observable parameters and unobservable ones:

Physical parameters (fixed)

1 1 A
Lo = 5 Oupr)* = Sme7 — 0]
=8, =0m =6,

1 ,_L lf_'/\‘ 1 e e
5 (Z = 1D@upr)? = 5 BZ = m®) 6 = 37 0022 = 1) ]

Counterterms (cutoff-dependent)

(7.58)

— 87, 6m, and &, absorb unobservable, diverging shifts of bare and physical quantities

So far, we only redefined quantities and shuffled them around! No magic here.

6 | Experimental input — Renormalization conditions:

N

% L

!
/?/ % fe&a

pi=(m,0)

(7.59)

(7.60)

We need to force the theory to match the observed, physical parameters m and A to

extrapolate from these and make non-trivial predictions.

Motivation:

« Eq. (7.59) includes wo conditions: it fixes the pole of the propagator at the physical
mass m and the residue (and thereby the field strength) at 1. This enforces the

scaled fields ¢, from above.

o Recall that in bare perturbation theory for the amplitude i M(p1 p2 + p3pa) =
—ido + O(A2) as shown in Eq. (4.141). This motivates Eq. (7.60) which then is an
operational definstion of the physical parameter A as the measured amplitude for the
depicted scattering process at zero momentum. Note that the choice of momenta
(playing the role of experimental settings) is arbitrary. Changing these would
change the interpretation and the numerical value of A, but not the predictions of

the theory.
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7

10

Perturbation theory of Eq. (7.58) — Feynman rules for renormalized perturbation theory

of ¢*-theory in momentum space for S-matrix elements:

< .
1. Edges: p = m

2. Vertices: >-< =—iA

\®/ = —i§;
/N (z.61)
—®—  =i(p*$z —5m)
External lines: —<—|p =1
Impose momentum conservation at all vertices

Integrate over all undetermined momenta

AN

Divide by the symmetry factor

The propagator and the first vertex are the same as before, only that now the physical
mass and the physical coupling enter the perturbation series. Note that the counterterms
give rise to two additional vertices.

To understand the term for the two-leg vertex, retrace our derivation of Feynman rules
in Section 4.4 and recall that in momentum space the derivatives translate to p? (use
integration by parts).

Procedure for computing amplitudes:
(i) Sum all relevant diagrams built from the Feynman rules above.
(i) If loop integrals diverge, introduce a regulator.

(iii) The results depend on the (yet undetermined) parameters {5}, the fixed physical
parameters m and e, and the regulator (A or ¢).

(iv) Choose (“renormalize”) the parameters {§} such that the renormalization condi-
tions Eq. (7.59) and Eq. (7.60) are satisfied.

(v) With these {5}, the amplitude is finite, independent of the regulator, and depends
only on the physical parameters.

Bare perturbation theory (¢ beginning of this lecture) and renormalized perturbation theory

are equivalent and yield the same results.
Which one to choose depends on personal preference and the application.

Example for renormalized perturbation theory in one-loop order:
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i < Amplitude

T T

M(p1p2 = p3ps) = @ (7.62)

A
4

T
3 3 hl 3 ¢ 3 ~.? 7 4
<K B0 R - X
’ ‘ (7.63)
2 A (A2 [iV(s) +iV(t) +iV(u)] —iby (7.64)

with Mandelstam variables s = (p1 + p2)?,¢ = (p3 — p1)?,and u = (ps — p1)*.

Note that we include all one-loop diagrams with zwo physical vertices o< A but
only the tree-level diagram with one counterterm o< §,. This is consistent because
8, = O(A?) as we will see below.

To construct the three one-loop diagrams, enumerate all possibilities to connect
two external momenta p; with i = 1,2, 3, 4 at a one vertex.

i | Evaluate loop integral with dimensional regularization:

5 7
(=iM)2-iV(s) = & ke P (7.65)
Pe T
PP =(p1+p)’=s
(=id)? [ d% i i
= (7.66)
2 2n)* k2 —m? (k + p)?2 —m?
Feynman parameter, Substitution, Wick rotation,
Dimensional regularization
2
20 —(—i1)?. 3; 2/ dx e y + log(dm) (7.67)
7= Jo —log [m?* — x(1 — x)p?]
iii | Enforce renormalization condition Eq. (7.60) to determine &,
. ! .
[ M|g—gm2 p=y=0 = —1A (7.68)
solved by
83 1= =A% [V(dm?) + 2V (0)] (7.69)
6
—o A% ! — —3y + 3log(4
£20 / ax ] = VT og(4) (7.70)
327’[2 0

—log [m2 —x(1-— x)4m2] —2log [mz]

Here, the amplitude we want to calculate is the same that we need for the
renormalization condition. This is a special case! Note that §; depends only on A,
m and ¢&; it is quadratic in the physical coupling A which explains our perturbative
expansion above.
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iv | Amplitude:

iM(p1p2 = papa) = —iA—iA>- F ({pi};m) (7.71)
F: finite function of the momenta { p; }, parametrized by the physical mass m.
Important: The regulator ¢ drops out!

Note that # = 0 for s = 4m? and ¢ = u = 0, as demanded by the renormalization
condition. The prediction of the theory is therefore not the amplitude for zero
momentum [p; = (m, 6)] but the non-trivial dependency on {p;} for non-zero
momenta!

v | Enforce renormalization condition Eq. (7.59) to determine §z and &,:

a| Define
—iM?*(p?) = —@— (7.72)

b | It follows along the same lines as for the electron self-energy

@ o9

(7.74)
i

= T IO (7.75)

! i1
= 2—m? +... (7.76)

¢| Eq. (7.59) is equivalent to
dMZ 2
M?(p*)| >_ > =0 and # 20 (7.77)
o= dp p2=m?

The first relation fixes the pole at p?> = m?, the second relation fixes the
. . . |-
residue of this simple pole at 1, i.e., # [p? —m? — Mz(pz)]pz:m2 =1L

d | In one-loop order:

—iM?*(p?) ~ ( ) (7.78)
+ —)—

o1 d% i
=N | e
Wick rotation, Dimensional regularization

» A 1 T(1-d/2)

o o
T T2 (4n)d/2 (m2)1-d/2 +i(p“8z —dm) (7.80)

+i(p%87 —6m) (7.79)
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— Eq. (7.77) solved by

A1 T(-4d/2)

87z :=0 and 6, := _5(4ﬁ)d/2 (m2)1-d/2

(7.81)

Note that §z = 0 in one-loop order is a special case of ¢p*-theory since the
first term does not depend on p2. As expected, 8, is a diverging function (for
d — 4) of the physical parameters (m and A) and the UV-regulator (d).

Application to QED

We briefly summarize the analogous results for the renormalized perturbation theory of QED.

1| Original Lagrangian:
1 2 —_ . —_ w
iQED = _Z(FMV) =+ lIf(l a — mo)\lf — eO\IJy \I/AM (7.82)

2 | Interacting propagators:

D\ . _ 2 _—iz3g,w
% < _p—m+“' and = ——qz +... (783)

3 Absorb Z, and Z3 — Renormalized fields:

1
V23

v, = ¥ and AY:= AM (7.84)

1
N2
4 | Insert renormalized fields into Lagrangian:

1 _ _
Lqep =~ Z3(F*) + ZoWr (i — mo) ¥y — 0 Z2ZY 2 Wyt W, (Ay), (185

5 Define Z; := Zzzg/ 2%0 with physical charge e.

The physical charge e is defined by measurements at large distances, i.e., for ¢ — 0
(> below).

6 | Split Lagrangian into terms with physical parameters and counterterms:
1 _ _
xQED = - Z(F#v)z + W, (i 3 —m)¥, —e \IerMlpr(Ar)u (7.86)

1 — _
—183(F,‘“’)2 + W, (i820 — Sm) ¥, — €81 W,y W, (4,),

4 counterterms
with

6;:=2Z;—1 for i=1,2,3 and Om 1= Zomg —m (7.87)
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7 Feynman rules (we omit external lines etc.):
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Edges: ‘p— = m
H v _ —i&uv
q T g%+ie
Vertices: no = —ieyt
(7.88)
>®M w = —ieyHs;
Hon@rv = —i(g"g? —q"q")53
—Q®@—<  =i(pdr—m)

There are three additional counterterm vertices.

The counterterm for the photon two-leg vertex follows, similarly to the two-leg vertex of
¢*-theory, with integration by parts.
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8 4 Counterterm coefficients — 4 Renormalization conditions:

1. Fix electron mass to m:

@ } 5> ’
¢ ¢ =—iX(p=m) =0
[ N !

2. Fix residue of electron propagator to 1 (choose W, ):

& (amr =W Ly
d]) U P p=m dp p=m

3. Fix residue of photon propagator to 1 (choose A4, ):

= =il =0 =0

("% — q"q")

q>=0

4. Fix electron charge to e:

= —iel'"(qg =0) L —ieyt

(7.89)

These are redefinitions of X, IT and I' in terms of the renormalized Feynman rules above.

The definition of I" involves now the physical charge e.
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LECTURE 22

© Topics of Lecture 22

1. The path integral as an alternative quantization method

2. Path integrals for scalar fields

© Topics of Problemset 11

1. Dimensional regularization

2. Thomas-Fermi screening

8 Functional Methods

So far:
Hamiltonian —  Canonical quantization —  Feynman rules
The Hamiltonian is #ot Lorentz invariant (generates translations in time direction)!
Alternative [25] (This is Richard Feynman’s PhD thesis!):
Lagrangian —  Pathintegral —  Feynman rules
The Lagrangian 7s Lorentz invariant (for a relativistic field theory)!
Two descriptions of the same physics

Application: Derivation of the photon propagator (easier with path integrals)

8.1 Path Integrals in Quantum Mechanics

1

2

3

NICOLAI LANG « ITP IIl « UNIVERSITY OF STUTTGART

e o 2
< Nonrelativistic particle in 1D: H = é’—m + V(x)
¢ Time evolution operator: U(xq., xp: T) = (xple”# 17 |x,)
Known from canonical quantization in the Hamiltonian formalism.

Path integral (PI) formalism — Alternative expression for U:

Functional

Flx@)] _ [ iFx(1)]
U(xa.xp;T) = > e T = Dx (1) et
. ~ Xq
All paths x (¢) with Pure phase
x(0) = xa, x(T) = xp Functional integral

Superposition principle
Paths are weighted with pure phases — Interference (all paths are equivalent)

Functional integral = Integration over space of functions

> PS:275-284

(8.1)

(8.2)

(8.3)
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4 Conditions on F:
i = Describes the system
i | Functional of path x(¢)
i~ Classical path x(#) dominates (for 7 — 0):

U(xg,xp;T) =~ Z e Flx®] (8.4)

Paths close to x(¢)

~
~

. \
: :‘.E‘uu]‘- e‘ —'FB(uu]

” “ -
.-’ - - Xc/ xs

; ?[Xc:] { ?[X 'l] :
e’ s 40
Therefore
SF ! S 1
o = F=—=— L .
5 |, 0 = Y= /dr (x()) (8.5)

This is the correspondence principle in action! The function S(xq, xp; T) = S[xq]
with the classical trajectory x(¢) that starts at x, at # = 0 and reaches x,
at t = T is known as #& Hamilton’s principal function; it is the solution of
the ™ & Hamilton-Jacobi equation. The correspondence principle then reads

[ . . .
U(xq, xp; T) ~ e#S@a6iT) for i — 0 and embeds classical mechanics as well-
defined limit into quantum mechanics (in particular, it explains determinism as
emergent phenomenon of an underlying non-deterministic theory).

5 Propagation amplitude (Propagator):

x(T)=xp ; 9 i
Uxa xp: T) = / o DXOATEONL kT ) 56)
x(0)=x,

We show the equivalence to canonical quantization for a free particle below.

So far, the PI is just a sketchy idea and not a well-defined mathematical concept!
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6 | Definition of PI via time slices:

t
N _
{97 XN_J, //'a/T )

ot X/V—Z ]
. :

i 2 o : J’

XA : . E'= 17/1/

T
; Ak :

H \ N

XQ Xs X

N-1
. 1 dx1 dXN—l . 1 /dxk
Dx(t) == lim — _ fm L ‘
/ x(0) NgnooCS/ C. / C, Ninoockl:[ C. ®7)

with ¢ = % and C; a constant (- below)

C; determines the measure of the functional integral.

© Example 8.1: Particle in potential V(x)

1 Lagrangian: L = 252 — V(x)

2 Action:
T N-1 2
m (x —X X + x
S:/ atLn Y (2G5 (G & X )
0 2 & 2
k=0
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3 Recursion:

 dx’ i m(xp —x)% i xp + x’
-T) = R SR A—— Vi .
e [T [ Ly (3] g

x U(xg,x"; T —¢)
Use V ([xp + x]/2) = V(xp) + O(e) under the Gaussian integral.

[ dx i m(xp —x')? i

—/;Oo Cg CXp|:£2—8} X |:1—£EV(Xb)+i|
r_ 2 32

o = x) +}

2 a2

X [1 + (x —xb)i +
Bxb

xU(xa, xp; T — )
(8.9b)
Compute Gaussian integrals with regularization (e.g. m +— m + in).
Note that terms with odd powers of (x” — x;) vanish!
o 1 [2mhe
= — X
C.V —im
—
<1
To see this, consider both sides of the equation for ¢ — 0.

2

. 9
1- l—eV(xb) + l—s— + O | U(xg, xp: T — )
h 2m 8x§

The regularization exponentially suppresses the otherwise oscillatory Gaussian
integrand and thereby enforces continuity constraints on the paths x(z) that we

integrate over (i.e. we suppress erratic paths with large jumps which describe
unphysical particles with unbounded velocities).

[27h
C. = n £ (8.10)
—im

This is not generic but depends on £!

4 — PI measure:

5 Use U(xg,xp; T — &) = U(xg,xp;T) — ed7U + O(¢?) and compare terms of
order &:

ihd-U = [ Ll LA V(xb)] U=HU

e
(8.12)

(Schrodinger equation)

Behold: We derived the Schrodinger equation and the quantized form of the
Hamiltonian from first principles (namely, the concept of weighting paths with
phases proportional to their classical action)!

NICOLAI LANG « ITP IIl « UNIVERSITY OF STUTTGART PAGE 165

Institute or
i:!oret'cal
] Physics

2 Notes



LECTURE 22

6 Initial condition: set N = 1 (No integral!) —

Ce
—im
2mhe

1 im
Ulxa. xp:6) = - exp [ﬁ(xb —xa) + (9(e)]

Lm 5 )2
~ ehZS(xb Xa)

20) 8(xa — xp) = U(xq, xp;0) = (xp|xa)

> PS:275-284

(8.12a)

(8.12b)

(8.12¢)

With Eq. (8.11) we only showed that the path integral propagator obeys the same
differential equation as the time-evolution operator of canonical quantization; to
prove their equality as functions, we need to check their equality at some common

reference time, e.g., T = 0.

7 The last two steps conclude the proof of the second equality in Eq. (8.6) for

2
H = f—m+V(x).

Generalization

Now we reverse the reasoning:
We start with canonical quantization and derive the path integral.

Details: © Problemset 12

1

2

< Coordinates ¢;, conjugate momenta p;, Hamiltonian H (g, p)
¥ Canonical quantization: [g;, pj] = i#8ij — U(Ga,qp; T) = ((}b|e_iﬁT|éa)
We set 7 = 1 to simplify equations.
—iHT _ ,~iHs _ ,~iHe
[ —
xN

Insert N — 1 identities 1y = [ dgy |gx){Gx| (k =1,....N —1) -

Time slicing: e

(Grrle ™ H81G1) = (Gea |1 — i He + O(£%)|Gx)

For H = H,(§) + H2(p) (Proof: © Problemset 12):

- re o [ APk Gk+1 +dr - . -
Gl 4) 2 [P (P Gy Y expli e G — )

Note that H is an operator whereas H is a function!

(8.13)

(8.14)

This is more subtle for generic Hamiltonians H = H(p, q) with terms like g2 p?> where

ordering is important, © Problemset 12.

The expression Eq. (8.14) maps a function H (4, p) on phase-space to an operator H
on the Hilbert space (given in position representation). This map is known as & Wey/
transform or & Weyl quantization; * p. 264 of Ref. [26]. The operator H is given in
#% Weyl order, resolving the ordering ambiguities when transitioning from functions to

operators, © Problemset 12.
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6 — Hamiltonian phase-space path integral: (We restore #)

U(Ga.4p:T) = (8.15)
2L1(3.4)
a _ i T — . —
| 930 950 exp | & [ ar (-5~ 1@.5) .10
ga h 0
o T g =50,71=50d]

« The functional integral measure is called canonical measure and does not depend on
the system.

o In most cases (Wwhen H depends quadratically on p), the functional integration over
p can be evaluated. Then one ends up with the simpler form Eq. (8.6) that sums
only over position trajectories. The integration over momentum trajectories p(t)
yields the PI measure C; (© Problemset 12).

o In Eq. (8.16), ¢ and p do not satisfy the Hamiltonian EOMs (— Heisenberg
uncertainty principle); thus replacing the expression in the exponent by the
Lagrangian L(Z],E}) (resp. action S|[g]) is not justified at this level (this is why
we use “=” and not “="") because we would have to use the classical relations

p= 2—11 to do so. That is, the exponent should be seen as a functional S[g, p] of
q

two independent variables g and p. Classical solutions then indeed relate the two

: ; .88 _ 2 aH L ss 1 5 0H _ i

in the conventional way: 53 =49~ 95 = 0 and 5 = 0 p+ e = 0 (viaa

partial integration).

o Thus the Hamiltonian PI over phase space Eq. (8.16) is more general than the
Lagrangian PI over trajectories Eq. (8.6) [27].

8.2 Path Integrals for scalar fields

Identification: g; <> ¢(x)

© Example 8.2: Real scalar field

_igr, . [ i (T, oL, 1,
(Pple 277 [¢a) = D¢ D exp | - A dx |mp—gm" —5(Vé)" = V(9)
(8.172)
Evaluate r-integration
b i rT
— D¢ exp £/ d* £(¢,9,.0) (8.17b)
. 0
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o Lagrangian: £(¢,d,¢) = %(%qﬁ)z —V(¢)
 Boundaries: ¢(X,0) = ¢ (X) and ¢ (X, T) = ¢p(X)

« All symmetries of £ are manifest in the PI formalism
This is not true for the Hamiltonian formalism which singles out a time direction!

 Abandon the Hamiltonian formalism and use Eq. (8.17b) to define the time evolution:

ip ¢ (T)=¢p
(pple” 7T |gg) E/ fl)qﬁehf" dx £(9.09) (8.18)
$(0)=¢,

» Goal: Derive correlation functions & Feynman rules directly from PIs

Here we only discuss correlation functions, for Feynman rules * P&S pp. 284-289.

Correlation functions
(Here: h = 1)

1| We would like to evaluate the two-point correlator with path integrals:

. R 9 [2ET)=0» 4T
(QUT ¢ (x1)$n (x2) 1R) < / D $(x1)¢(x2) e -7 IH L@ (319)
~————— o(-T)= ~————
Operators Numbers

¢ are interacting Heisenberg field operators.

2 | Split functional integral:

A

fv\/\c-h. o SP“‘ €

¢ (x9,%)=¢2(¥)

i) D D D 202
RECE / 61 (%) / $2(%) /¢ sy PP (5.200)

o1 023
/ D1 (%) [ Do () / Do) [~ Ddol) | m@(x)

(8.20b)

Note that the fields ¢;(¥) live on 3-space R3 whereas ¢q(x) are fields on spacetime
R!:3: The fields ¢; (X) are the boundary values of ¢g(x).
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3 Eq.(8.18) & Eq. (8.20b)—

Eq. (8.19) = [ Doy (7) / Da(3) 1(31)ha ()

% (e AT |6 (hp e HH XD g1y oy |7t HEHHT) g
(8.21)

4 Use [ D1 (%) [¢1)(d1] = 1 and g5 (F1)ld1) = ¢1(51)|¢h1):
Compare: g|q) = qlq); S labels a Schrodinger field operator: bs(X) = pu(X,1 = 0).

0,0 A R A . A
Eq. (8.21) =" (gpleH T =D s (Zp)e T H OB N g (31)e HETHD ) (8.220)

= (] AT T1ou(c)du ()} e AT |ga) (8.220)
—>x|Q)(R2] —> x| Q)]
T—oo(1—ieg) -~ ~
C - (QUT du (x1)dm (x2)|) (8.220)
5 Result:
(QUT dar (x1)dm (x2)|2) (8.23)

L Dt expi [ dte 2.0
= 1m
T—oo(1—ie) [ D¢ exp [i fj‘TT d* £(¢, 3¢)]

(8.24)

The denominator ensures independence of the boundaries at 7 — +00, ¢, and ¢p,.
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© Topics of Lecture 23

1. Quantization of the electromagnetic field

2. Fadeev-Popov gauge fixing

8.3 Application: Quantization of the Electromagnetic Field

Goal: Apply PI formalism to derive the photon propagator k;il;;

1| Action:
1
S[A] = / d*x [—Z(F,W)Z] (8.252)
H|—
Partial integration with A i i 0; use Fyy = 0,4y — 0v Ay
1
2 3 / d*x Ay (x) (9%g" — 940Y) Ay (x) (8.25b)
Fourier transform
1 d% - 2 v W\ §
= — W Aﬂ(k) (—k g + k k )Av(—k) (8.25C)
O

2 Set Ay (k) =kyatk) > O=0— S[A] =0— [DAe® = oo That’s bad!
3 Problem: Gauge invariance 4, — A, + 10,0

Integration over continuity of gauge-equivalent configurations 4, ~ 0 & A, o d 0
leads to divergence!

4 | Solution: Count each physical configuration once (* Faddeev & Popov procedure [28])

i Gauge fixing: G(A) 20 (e.g. Lorenz gauge: G(A) = d,A")
i Let AY = Ay + %Bua, then

(8.26)

| = /i)aS(G(A"‘))d t(SG(S(Aa))

© Note 8.1

To understand this, consider the n-dimensional §-distribution:

= [U/dgi]5(")(§) = |:U/dai i| 8™ (3(a)) det (g—g) (8.27)

Here, §0)(3(d@)) = 8(g1(@)) - -~ 8(gn(@)) and det (%) is the Jacobian of the
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vector-valued map g = g(a).

3G(4%)

iii | Assume that =~5~— is independent of A and « (true for the gauge we use below!).

This cannot be satisfied for non-abelian gauge theories — * & Ghost fields

. o
[ Dt - g (2647
o

; ) / Da / DASHALS(G(AYY) (8.284)

~ 1 ~

Substitute 4 = A = A+ —da — DA = DA
e
Use gauge invariance: S[A] = S[A]
5G (A% - el _

=det( G( ))/i)a /i)Ae’S[A]8(G(A)) (8.28b)

o

——

)
=00  Only physically distinct configurations

The infinite integral over « can be interpreted as the “volume” of the gauge orbit.

v| Choose G(A) = 9", — w(x) — det (2547 ) = det (14?)

Here w(x) is an arbitrary scalar function (- next step). 2 is a linear operator
on a function space; since the latter is infinite dimensional, think of 9% as an
“infinite-dimensional matrix”.

1 .
Eq. (8.28b) = det (232) (/ :Oa) / DA A, —w(x) (829

(We renamed the dummy variable 4 to A.)

vi = True for any @ — True for normalized linear combinations:

=1

E _ —i fd4x 2
q.(8.29) = N(§) Dwe 28 (8.30)
N——

Normalization

Linear combination

x det (%82) (/ :Doz) / DA S §(0* A, — w(x))
So far, ¢ € R is arbitrary.
= N(£) det (282) (/ :Doz) (8.31)

. I 2
X /:DAe’S[A] exp [—i/d“x —(8 ZA;) ]

New term (breaks gauge symmetry)

Note that breaking gauge invariance in the new effective Lagrangian does not alter
expectation values of physical (and therefore gauge-invariant) operators. Different
Lagrangians can describe the same physics!
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vii | < 0(/{) gauge invariant operator: O(A%) = O(A), then

(Q|T 0(4)|2) (8.32)

[DAOA) exp {i HTd% [éﬁ - 2—1§(aﬂAM)2]}
= lim (8.33)
T—oo(1—ie) f DA exp {i f—+TT d% I:oce _ %(WAM)Z]}

This follows from Eq. (8.24) by repeating the previous steps for the numerator,
i.e., with O(A) added under the functional integral. The gauge-invariance of the
operator is required in step Eq. (8.28b) where we substitute A by A.

Important: All unknown and diverging prefactors have canceled!

5 New action (same calculation as in step 1):

1 1
Se[A] == [ d% | == (Fu)* — — (0" 4,)? (8.34a)
4 2§
C . . . [xH|—o00
Partial integration with A ———— 0; use F, = 0,4y, — 0, Ay
1
2 3 / d* A (0)[0%g"Y — (1 — 71040V 4,(x) (8.34b)
Fourier transform
! ﬂfi (k)[—k2g™ + (1 — &1 kP kYA, (k) (8.34¢)
2 (27_[)4 e S v .

New!

Skip first and second step.

— Argument of Step 2 no longer applies! (For & < oo the divergence is gone!)

The action Sg[A] is also used for the & Gupta-Bleuler quantization in @ Problemset 13.
6 Eq.(8.33) —>

S[A] can be replaced by Sg[A] to compute gauge-invariant quantities. (8.35)

— Compute propagator for Sg[A] (this is not a gauge theory!)

Note that the propagator is #ot a gauge invariant quantity O(A). We therefore should
expect the propagator for Sg[A] to depend on the unphysical parameter . Eq. (8.33)
tells us that this £-dependence drops out if we use the propagator (as part of Feynman
diagrams) to compute gauge-invariant quantities.

7 Propagator:
Dy’ (x —y) = (QIT A*(x) 4" ()|2) (8.36)

— (QA*(k)A*(¢)|R2) = 0 for k # —q (due to translation invariance)

Note that Sg[A] is a free (= quadratic) theory, i.e., we can solve it exactly (- below). The
vacuum |€2) in Eq. (8.36) can therefore be read as “|0)”.
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Therefore

DE(q) = (Ql4*(9) A" (—9)|2)
Use A¥(—q) = (A”(q))* since A" is real.
Add +i ¢ for regularization to the action.

DAL @A (—q) explh [ s Auk) KM + (1= ETHMKY] Ay (—k))

> PS:294-298

(8.37a)

=M™V (k) (symmetric)

[ DA explh [ LA, () k2gm + (1 — - Dknkr]dy (k)

2m)4
(8.37b)
PImeasure: DA = [] dRed"(k)) d(Im A*(k)).
w; k,kO>0
Diagonalize M"Y, complete the square, and evaluate Gaussian integrals.
Details © Problemset 12.
=M~ (g™ (8.37¢)
Finally
w v
DY (q) w_ -yl 8.38
A LA (B 539
Check that this is the inverse of M*Y(g)!
8 Gauges:
e Seté& =1:
D LU
=_° 8.39
Fa) = iy, (Reynman gaugo 639
This form is Lorentz invariant since g" is.
o Seté =0:
D¥(q) = —— g’ — q"q” (Landau gauge) (8.40)
F g2 +ie q2 )
© Note 8.2

NICOLAI LANG -

ITP 11l « UNIVERSITY OF STUTTGART

« Correlators of gauge invariant operators are independent of £.

o For £ — oo we have —k2g"” + kMkV = MM (k).
Since (—k2g"¥ + k*kV)k, = 0, the inverse M ~! (k) does not exist!

o —k2limg_, oo MHY = ghV — kI kY /k* = THV is a projector on transversal fields:
Tk, = 0and THT, ¥ = TH )
— The (original) divergence is due to longitudinal gauge fields: A, (k) = k,a (k).
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© Topics of Lecture 24

1. Non-abelian gauge theories

2. The Yang-Mills Lagrangian

© Topics of Problemset 12

1. Propagator in the path integral formalism

2. Path integral and Weyl order

© Topics of Problemset 13

1. Gupta-Bleuler quantization of the radiation field

9 Non-Abelian Gauge Theories

Motivation:
1| Fact I: So far the only interactions considered where ¢* and Wy# WA,

Can we construct theories (of massless vector bosons) with more complicated interactions
like A* or (04)A2? In particular, is it possible to construct theories with force carriers (=
vector bosons) that are themselves charged (photons are not!)?

2 FactII:

i | Massless particles carry kelicity representations [ISO(2)] and not spin [SO(3)]
(#% Wigner’s Little groups * p. 691. of Ref. [1]). This is why photons only have two

transversal polarizations despite being the excitations of a vector (= spin 1) field A*.

ii | Unitarily transforming the single-particle helicity modes yields for a quantized field
in the vector representation A", (1 p. 246fF. of Ref. [1])

UM A () U A) = (A7), 4V (Ax) + 9,Q(x. A) . (9.1)
—_——

Gauge!

Compare this to the transformation of a Dirac field [Eq. (3.58)] in the bispinor
representation A 1

UMY (x)U N (A) = AT U(AX). (9.2)
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iii | Conclusion: To preserve unitarity and Lorentz invariance, theories of massless vector
bosons (e.g., photons, gluons) must be gauge theories! (This is not true for massive
vector bosons, 1 & Proca action.)

3 | Fact III: Historically, the renormalizability of QED was believed to be rooted in the gauge
invariance of the Lagrangian; this was proven later by ’t Hooft [29,30]. As we can
only make sense of renormalizable theories, this relation between gauge invariance and
renormalizability makes a strong case for studying more general gauge theories than QED.

4 | Fact IV: Quantization of the electromagnetic field is complicated by negative-norm states
of the time component A°:

[4,(F). T, (5)] = igus® (X —F) but goo = —gii (9.3)

(#% Gupta-Bleuler quantization © Problemset 13).

Observation: In Maxwell theory, negative-norm states and longitudinal polarization
states decouple from the transversal polarization states. This is guaranteed by the gauge
symmetry (* Ward identity).

5| Idea: Generalize Maxwell theory (or QED, if matter is involved) to gauge theories with
other symmetry groups.

6 | Spoiler: This type of theory turns out to describe a// fundamental forces of nature (except
gravity); it is the foundation of the Standard Model!

We start with a thorough analysis of the gauge symmetry of QED. In a second step, we
generalize our findings to non-abelian gauge groups. This yields the famous % Yang-M:lls
theories.

9.1 The Geometry of Gauge Invariance

1 <t Local U(1) symmetry G of Dirac field:
U(x) = e *@y(x) (9.4)

for arbitrary a(x) : R!3 — R
(In the following, a tilde always denotes symmetry-transformed quantities.)
Note that there is no gauge field A*(x) yet!

2 | Goal: Construct invariant Lagrangian

3 No problem without derivatives:

All terms invariant under global U(1) transformations allowed (e.g. ¥ (x)W(x))

4 | < Directional derivative along n € R!:3:

nto, W = lirrz) Yl tem - W) (9.5)
e—> £

W (x + en) and W(x) transform differently under G

— n*9, W has no simple transformation law under G
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10

(— Not a useful building block for symmetric Lagrangians.)

To see why, calculate n#d,,¥; the result is not just e!*®)n#9, W. This makes the
construction of invariant terms for a symmetric Lagrangian very complicated.

Thus we need a sensible way to compare fields at different points:
Postulate the existence of a “comparator” U : R1:3 x R1»3 — C with transformation
Uy, x) = *OU(y,x)e ™ and U(y,y) =1 (9.6)
[we require U(y, x) = ¢/¢09)]
— W(y) and U(y, x)¥(x) have same transformation law
and therefore can be meaningfully compared.
Note that we do neither prove the existence of U nor provide its construction; we simply
take such a function for granted. For more details, * fiber bundles in differential geometry.
In particular, the “comparator” relates to the concept of * parallel transport between
fibers of principal bundles.
Covariant derivative:
v -U , X)W
n*D, W = lim (x +en) — Ulx + on, )W (x) (9.7)
e—>0 &
Assume U(y, x) continuous —
Ux+eéen,x)= l—iesn”AM(x)—i—(Q(sz) 9.8)
e: arbitrary constant (rescales A4,,)
Ay: new vector field = gauge field/connection
Eq. (9.8) in Eq. (9.7) 5
Dy¥(x) =0,¥(x) +ied,WY(x) (9.9)
Eq. (9.8) in Eq. (9.6) —
~ 1
Au(x) = Au(x) — gaua(x) (9.10)
>
D, (x) = eia(x)DM\IJ(x) (9.11)

— DV transforms like W (this makes it easy to construct invariant terms!)

— All terms invariant under global U(1) transformations allowed if 9 is replaced by D

[e.g. W(x)(i D) ¥ (x)]
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n

12

Conclusion:

Local symmetry — Gauge field 4, needed for covariant derivatives

Note that we did #ot put in the gauge field by hand! It automatically emerges as a
necessary ingredient for terms that are locally symmetric and involve derivatives.

Last but not least:
Kinetic energy term for 4,,?

(= Locally invariant term that depends only on A4,, and its derivatives.)

< Locally invariant loop (= local limit of a Wilson loop):

(1 and 2 are two arbirary orthogonal unit vectors.)

Ux):= Ux,x+ 85) xeel <X
x U(x + &2, x + el —|—8§)
x U(x + el + &2, x +si)
xU(x + el, X)
9.12) X x+ed
— U = U by construction [remember Eq. (9.6)]
Use
U(x +¢en,x) = exp [—ie ent A, <x + gn) + (9(83)] (9.13)

To derive this form, recall U(y, x) = ¢!¢("-*) and U(x, x) = 1. Without changing
our definition of A4, in Eq. (9.8), we can restrict U to the form

U(y,x) = exp[—ieen” A, (x + eC) + O(e?)] (9.14)

where C is arbitrary. The additional constraint U (x, y) = U(y, x) then deter-
mines C = %n. Relaxing this assumption introduces additional vector fields (for
the higher orders) that render the theory more complicated than necessary.

—

Ux) 2 1—ig?e[d1Aa(x) — 3241(x)] +0O(e%) (9.15)
=:F12
9
Fuy = 0,4, —0y,A, (Field-strength tensor) (9.16)

is locally gauge invariant by construction

Note that a similar construction (that is, parallel transport along a small closed
loop) gives rise to the notion of curvature of Riemannian manifolds. Thus the
™ Riemann curvature tensor R, | of general relativity plays a similar role than
the field-strength tensor F,, of Maxwell theory. The two additional indices
a, b generate spacetime rotations of four-vectors; by contrast, F;, encodes the
“curvature” of a U(1) gauge connection and has only one component (because
U(1) has only one generator). When the gauge group has more generators (e.g., is
non-abelian), F,, has additional indices in the Lie algebra of the group (> below).
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13

Most general gauge (and Lorentz-) invariant Lagrangian in D = 3 + 1:

« Gauge invariant —
Constructed from W, D, WV, F},,, 0, F, etc. and globally U(1)-invariant

o Relativistic — Lorentz scalar
e Renormalizable — Terms of mass dimension at most 4

Otherwise the coupling constants of such terms have negative mass dimension
(because the Lagrangian density has mass dimension 4) and render the theory
non-renormalizable.

E=VU(iD)V—mIbW — }‘(F,w)2 (9.17)

— ¢16%B1y Fop Fv (9.18)
N——

breaks P and T’

+ (W) + ... (9.19)
—_—
non-renormalizable

— Most general P /T -symmetric Lagrangian: Minimally coupled Maxwell-Dirac
— QED

Note that e*A*V is a pseudo tensor, in contrast to g**gPV; therefore the ¢;-term is a
pseudo scalar; i.e., it is only invariant under SO™ (1, 3) but not O(1, 3).

9.2 The Yang-Mills Lagrangian

Goal: Replace local symmetry group U(1) by non-abelian Lie group G
Examples: SO(3), SU(2), SU(3), ...
Details: @ Problemset 14 (optional)

1

< Lie group G represented by n x n unitary matrices V'

Typically, we consider the fundamental (or defining) representation of matrix Lie groups,
e.g., V =exp <iw,- "—2/) for G = SU(2) with n = 2 and 0/ Pauli matrices.

Fields W = (Uy, ..., U,)T are & n-plets of Dirac fields ;:

¥ RI3 5 C4®C" ~ C*" and transform as

W(x) = V)W (x) = Vij () V) (x) (9.20)

with V : R1:3 — G arbitrary
Note that 7, j are not spinor- but G-indices; each ¥; is a Dirac bispinor!

G Lie group — Lie algebra g with N Hermitian generators ¢ (n x n-matrices, a =
1,..., N) that obey

[t“, zb] = jfabese Einstein notation! (9.21)

NICOLAI LANG « ITP IIl « UNIVERSITY OF STUTTGART PAGE 178

Institute for
i:!oret'cal
] Physics

2 Notes



Institute wor

U Roretjcal
cecture 24 > PS:481-491 Hii%ﬁ‘is =

with & structure constants b€ e C.

The structure constants define the Lie algebra. One can always choose a basis {¢%} such
that they are completely antisymmetric in the three indices. Note thata = 1,..., N
is finite since G is assumed to be compact and the matrix representations of 74 are
Hermitian because the matrix representations ' are assumed to be unitary. ™ P&S
pp- 495-502 for details.

9
V(x) =exp[ia®(x)?] = 1 +ia(x)1* + O(a?) (9.22)
4 | The “comparator” is now a n X n unitary matrix with transformation

U(y.x)=V(y)U(y.x)VT(x) and U(y.y)=1 (9.23)

Ulx +en,x) =1+igen Ajt? + 0(?) (9.24)
g: arbitrary constant (rescales Af))
Af,: N vector fields (= gauge connections, one for each generator 1)

The “comparator” acts on ¥, i.e., on the representation of G given by V; thus its
infinitesimal action must be generated by the representation of the corresponding Lie
algebra {r?}.

5 Eq. (9.7) — Covariant derivative:

Dy =0, —igAjt* (9.25)

It is often written 4, = A1 so that A, is a Lic-algebra valued field (a n x n- matrix).

6 | Transformation of Aﬁ:

i Eq.(9.24)in Eq. (9.23) —

1+ig sn“/fﬁta =V(x+en)(1+ig 811MAZZQ) VT (x) (9.26)

i = Use
Vix +en)Vi) 2 14 enV(x) [—aMVT(x)] +O(2) (9.27)

[Recall that 0 = 9,1 = 9, (VVT) = @, V)VT + V(,VT)]

to show

/IZZ‘“ = V(x) [Aﬁt“ + éa,,,] Vi(x) (9.28)

This transformation law is exact, i.e., true for any V. Note that ,, acts only on VT
and not on what comes after 474!
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9,V T (x) is not easy to evaluate (non-commuting operators in the exponent!)—
< Infinitesimal transformation VT (x) ~ 1:

V(x) =1 +ia?(x)t? + O(a?) (9.29)
and 9, VT(x) = —ida®(x)t? + O(a?) (9.30)
With fcba — _fabc —
ja 2 g4a 1 a abc 4b ¢
Ay =AY+ -0t + A (9.31)
g ———
New!

This transformation law is only true for infinitesimal transformations V ~ 1 (hence
the “~”). For an abelian Lie group [such as U(1)], it is f9?¢ = 0 and this
expression is exact.

7 Eq. (9.28) in Eq. (9.25) — Transformation of D, \V:

D,V =V D,W (9.32)

Use again (8MVT)V = —VT(SM V') to show this.

— D,V transforms like W

— WD,V is gauge-invariant and WP W is both gauge- and Lorentz invariant.

8 | Last but not least:
. a5
Kinetic energy term for A i

Here, we follow an alternative approach to find such terms (without using the infinitesimal
loop construction from above):

oo
m

Iteration of Eq. (9.32) implies D,,D,¥ = V D, D,W¥

= [Du. Dy]|V =V [D, D,V =V[D, D,]Vi¥ (9.33)
= [Du.Dy] =V[Du Dy]VT (9:34)
On the other hand: Eq. (9.25) —
—ig F,1% :== [Dy. Dy| (9.35)
N——
=:Fuv
with F%, =9, 4% — 0,49 + gf** A5 A (9.36)

F{,: N field-strength tensors
Note that F, = F, l‘jvt“ is a n x n-matrix, not a derivative!
Eq. (9.34) —

Fuy = Fot* = VE, VT (9.37)

— Fy is no longer gauge invariant

Cf. Maxwell theory where  and #¢ are 1 x 1-matrices so that Fuv = Fu.
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iv | Simplest invariant term:

1 1
L= —5 Tr[F2] = = Tr [(Fg,,za)(Fszb)] (9.38)
Use Tr(t%t?) = %8‘”’
1
= _Z( ng)z (Yang-Mills theory) (9.39)

One can always choose a basis {r*} of g where Tr(t%t?) = %Sab, ™ P&S p. 498ft.

© Note 9.1

F2 ~ (0A)? + f (0A)AA + f2 AAAA (9.40)

Interactions

— Interacting QFT for f # 0 (= non-abelian)!

— Gauge bosons scatter off each other

Example:

Quantum Chromodynamics [G = SU(3)] (- last lecture)

Gauge bosons = Gluons — Pure gluon vertices in Feynman diagrams:

3{2)’0(4

— Bound states of (typically 2 or 3) gluons: Glueballs (not yet directly
observed, but progress has been made lately [31])

That the mass of glueballs cannot be arbitrarily small is (part of) one
of the Millennium Prize Problems of the Clay Mathematics Institute: the
“Yang-Mills Existence and Mass Gap” problem, * https://www.claymath.
org/millennium-problems.

9 | Couple Dirac fermions to Yang-Mills gauge field:

_ 1
Lym4p =V (i) —m) ¥ — Z(Fl‘jv)z (9.41)

Two parameters:

m: Fermion mass
g: Coupling constant (hidden in D and F?)

This is the most general Lagrangian that is ...
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 gauge invariant
 Lorentz invariant
« renormalizable
e P-and T-symmetric
— Yang-Mills theories describe all fundamental forces of the Standard Model!

(Without the Dirac mass term in Eq. (9.41) though, and not necessarily respecting the P-
and 7'- symmetries; - last lecture.)

© Note9.2

Let us be precise about the symbols:

D =y"Dy =0,y 1, —igA] y*t? (9.42)

where
Yt =yr @1t = yeptun = 1D @m B (9-43)

so that
v: R - CcteC" ~C* (9.44)

carries a four-dimensional bispinor representation of the Lorentz group, A1 =
2

exp (—%me‘“’) with S#V = %[7/”, y"'], and the representation V' of the gauge
group G, V = exp (ia?t?). Then it follows in particular

U=wu)y =utyi gyl =uwhoyt =gyt (9.45)

so that W is gauge invariant.

© Note9.3

The mass term A? is not allowed as it is not gauge invariant!
Recall that %mqﬁz was responsible for the mass gap of ¢*-theory and mWW for the mass
of Dirac fermions.

— Gauge bosons of Yang-Mills theories are massless.
For QED and QCD, this is fine: The photon and gluons are massless.

Problem:
The weak interaction is short-ranged, i.e., its gauge bosons W and Z have mass!

Solution: Higgs mechanism (- next lecture)
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© Topics of Lecture 25

1. Mass generation with the Higgs mechanism

2. The Goldstone theorem

© Topics of Problemset 14

1. Non-abelian gauge theories and the Yang-Mills Lagrangian

10 Excursions

10.1 The Higgs Mechanism

Motivation:

e Problem 1: Recall that we cannot add a mass term A? to the Yang-Mills Lagrangian as it
would break gauge invariance (¢ note at the end of last lecture).

How do the W and Z bosons that mediate the short-ranged weak interaction obtain their
observed masses?

o Problem 2: Although we have shown that a Dirac mass term WW is allowed in general
Yang-Mills theories, in the particular case of the Standard Model, it is forbidden (- next
lecture).

How do quarks and leptons gain their observed masses?

Solution to both problems: Higgs mechanism

(For simplicity, will consider only classical field theories and skip their quantization as the
crucial mechanisms are already present at this level. Here we will only find a solution to Problem
1, how the Higgs field couples to fermions and solves Problem 2 will become clearn when we
discuss the Standard Model.)

For the quantization of gauge theories with a Higgs field, ® Chapter 21 of P&S (p. 731ff.)
10.1.1 Abelian Example: The Standard Approach
This approach follows loosely the essay 1 http://philsci-archive.pitt.edu/9295/

1/Spontaneous_symmetry_breaking_in_the_Higgs_mechanism.pdf (see also references
therein); this is also roughly the approach of P&S, ™ pp. 690-692.

Goal: < Abelian gauge theory to understand the Higgs mechanism
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1 < Maxwell theory coupled to a complex scalar field:

1
£ = _Z(Fuv)z + |D/L¢|2 —V(9)
with potential  V(¢) = u?|p|* + Al¢|*

2 £ is Invariant under the U(1) gauge transformations:

d(x) = *@gp(x) and A, (x) = A, (x) — éaua(x)

3 < V(¢) for A > 0in the complex plane ¢ € C:

Vg e “ vig)
( ) /“2 b) 0 /qQX/('aw ffav/ /“2<0

$_’(Al.‘\igw Wi iwyu 94]

ok’r!z'ra/(

Letiniwe

[}

e« w? > 0: Unique minimum with (¢) = 0

« u? < 0 — Mexican hat potential:

Degenerate minima with non-zero vacuum expectation value (VEV)

¢o:=(¢) and v:i=|po| =1/ —— #0

— Ground states are not symmetric under global phase rotations

— Spontaneous symmetry breaking (SSB) of the global U(1) symmetry

4 | Aside: The Goldstone theorem:

If a global, continuous symmetry is spontaneously
broken, there is one massless scalar (= Spin-0)
particle for each broken symmetry generator; these
particles are known as (MNambu-)Goldstone bosons.

“Proof by picture:”

%

Goldoloue wode

(10.1)

(10.2)

(10.3)

(10.4)

(10.5)
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Long wavelength deformations of the field with the broken symmetry generator (red

arrows) cost arbitrary low energy — Gapless Goldstone mode
Examples:

« Breaking of translation and rotation invariance in crystals

— Transversal and longitudinal phonons

This is a subtle example. There are in total 6 generators that are broken: 3
translations Py, Py, P, and 3 rotations Ly, L, L, —but there are only 3 (not 6!)
Goldstone modes, namely two transversal and one longitudinal phonon. The reason
is that the Euclidean group of translations and rotations is E(3) = O(3) x T(3)
with rotations O(3) and translations T(3) = R? and not E(3) = O(3) x T(3)
(“x” denotes the ™ & semidirect product of groups); in particular, the generators of
rotations L; (= angular momentum operators) and translations P; (= momentum
operators) do nor commute. Thus for nonrelativistic field theories, the above
statement is only true if the different generators commute; * Ref. [32] for details on

counting the Goldstone modes correctly in such theories.

« Breaking of rotation symmetry in a ferromagnet
— Magnons (= Spin waves)

But there is one notable exception:

In conventional superconductors the U(1) symmetry (generated by particle number
conservation) is broken spontaneously (1 Ginzburg-Landau theory) - but there is no
massless Goldstone boson! (Recall that the photon in superconductors is short-ranged

and therefore massive; it is also not a scalar.)

— How can the Goldstone theorem fail?

— Answer: Gauge symmetry & Higgs mechanism (- below)
5 Assume that (¢) = ¢o = v breaks the global U(1) symmetry

— Expand ¢ in small fluctuations around (¢):

P(x) = [v + h(x)] - '*™ (10.6)

with two real fields:

h(x): Higgs field and @(x) : Goldstone boson

(The terms “field”; “mode” and “boson” are often used interchangeably.)

(10.7)
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£ = —%(F,w)z—l- [(aM +iedy) (v + h)eiw] [(aﬂ —ieAM)(v + h)e_i“’] (10.8)
— 2w+ h)?— A+ h)*

1
2 —Z(FM)Z +e2vP A2+ (0uh)? —my h? (10.9)
N—

Massive gauge field (Yay!) Higgs field with mass mj, = 42>
+ v 0up)? 42007 () A" +

Massless Goldstone mode ~ Quadratic coupling

Interactions

 The interactions include terms cubic and quartic in the dynamical fields ¢, 4 and
AM.

o Use Eq. (10.4) to write —u? = 2Av? which simplifies the expression and explains
the resulting mass term of the Higgs field.

 Note that this Lagrangian is still gauge invariant under the gauge transformation

N 1 3
¢$=¢+a and Au:Au—gau“ and h=h. (10.10)

6 | Fix the gauge in the

unitary gauge ¢ = P & =0 (10.11)
with the gauge transformation o(x) = —¢(x):
~ . ~ 1
p=e"%p and A, =A,+ Ea,up(x). (10.12)

As the gauge is now fixed, the theory has no longer a gauge symmetry! Indeed, ¢ = ¢*
is violated by the transformation ¢ = ¢e!®™®). Note that the local gauge symmetry is
lost 7ot because of SSB but because of explicit gauge fixing!

—

~ 1 - - - -
£ = —Z(F,,,,,)2 + ®v? A2 + (0,h)* — mj, h?
N ——

Massive Higgs field

Massive gauge field

+ Interactions (10.13)

— Goldstone mode ¢ has disappeared!

Reason: ¢ is a pure gauge dof and therefore not physical!

The gauge symmetry of the theory manifests in the relation I(A L5 h,§) = L(Ap,h,e);

here we fixed the gauge by demanding ¢ = 0 and defining 13( h) = E(A4, Jh,§ =0).

£(A 1w h) describes no longer a gauge theory since £ (A4 w h) + £(A w, h) for general
gauge transformations.
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 This is what one means by
“The Goldstone boson is *eaten’ by the Gauge boson to give it a mass.”

Personally, I do not like this metaphoric description as a didactic “auxiliary
structure” for a mathematically subtle mechanism because it explains nothing and
makes only sense if you already understood the math.

« This explains how the Goldstone theorem can fail for gauge theories. Conventional
superconductivity is therefore a non-relativistic example for the Higgs mechanism
where the Goldstone mode vanishes and instead the gauge boson (the photon, now
a quasiparticle excitation) obtains a mass m which leads to the Meissner effect;
the London penetration depth is then given by Az, o m™!. Historically, this
observation in condensed matter physics motivated the application of the Higgs

mechanism to the problem of mass generation in high-energy physics.

7 Consistency check: Counting physical degrees of freedom:

#(dof ) before SSB = 2 (massless vector boson) + 2 (complex scalar field) = 4 (10.14)
#(dof ) after SSB = 3 (massive vector boson) + 1 (real scalar Higgs field) = 4 (10.15)

— We did not loose any dof but merely “mixed” them differently!

Note that a massless vector boson (like the photon) has only #wo transversal polarizations
(it has helicity h = +1). By contrast, a massive vector boson has an additional
longitudinal polarization (it has spin m = £1,0).

© Note 10.1

« We have seen that the Goldstone theorem is not valid for gauge theories (since the
Goldston boson can become “pure gauge”).

 The Higgs mechanism also describes conventional superconductivity as spontaneous
U(1) symmetry breaking in a charged superfluid (* Ginzburg-Landau theory).
In a superconductor, the photon (then a quasiparticle) acquires a mass and can no
longer propagate (* Meissner effect).

« There is also an intuitive picture how the Goldstone theorem fails in the presence of
a gauge field:

The proof of the Godstone theorem relies on the absence of long-range interactions (like
the Coulomb interaction). Only then, a massless Goldstone boson can be predicted.
However, coupling a (yet massless) gauge field to the (yet U(1)-symmetric) complex
scalar field adds exactly such long-range interactions between fluctuations of the
scalar. Due to these long-range interactions, the long-wavelength fluctuations of
the real mode of the scalar field “paralle]” to the symmetry—that under normal
circumstances give rise to the massless Goldstone mode—develops a mass gap and
mixes with the gauge bosons. The result is a massive Spin-1 gauge boson, now a
collective “quasiparticle” excitation of the former gauge field and the Goldstone
mode of the scalar. The other real mode of the complex scalar that is “orthogonal”
to the symmetry gives rise to the Higgs boson.

« The Higgs mechanism is sometimes explained as “spontaneous breaking of a gauge
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symmetry.” This is a misleading statement as gauge symmetries are redundancies of
our mathematical description; breaking a gauge symmetry should consequently not
lead to observable phenomena. As the mass generation due to the Higgs mechanism
is clearly observable, it cannot be rooted in the breaking of a gauge symmetry. In
addition, there is Elitzur’s theorem [33] that rigorously forbids SSB for local (gauge)
symmetries.

Indeed, there are equivalent descriptions of the Higgs mechanism that circumvent
the concept of “gauge symmetry breaking” altogether. Here a few references for
the interested student:

- A gauge-invariant treatment of the Higgs mechanism (for the weak interaction)
is given in Ref. [34].

- A gauge-invariant treatment of the U(1) symmetry breaking in superconduc-
tors is discussed in Ref. [35].

- A few general remarks on the impossibility of spontaneously breaking gauge
symmetries can be found in ® http://web.physics.ucsb.edu/~d_else/
gauge_rant. pdf.

- Gauge-invariant approach below

10.1.2 Bonus: A Gauge-Invariant Approach

This approach is based on Chapter 6.1 (p. 105ff.) of Ref. [36].
1 < Again Eq. (10.2):

1
£ = —Z(Flw)z +Dugl? — 191> — Algl* (10.16)
2| Let u? < 0 (= symmetry-broken phase) — Classical ground state (= vacuum):
$o(x) = ¢'*Dgy (1017)

with a(x) arbitrary (wlog a(x) = 0) and |¢o| = _2—‘12 = v # 0 (wlog po = v).

3 < Small fluctuations around ¢ and introduce the new real fields z(x), ¢(x) and B, (x):

b=+ (1D and By() = Au(x) + () (10.19)

Note that ¢(x) is only well-defined if ¢(x) # O everywhere and we can ignore the
ambiguity ¢ = ¢ + 27 this is true for small fluctuations around the vacuum ¢¢ = v.

— Gauge transformations:

¢ =¢+a — pure gauge = only gauge dof (10.19)
h=h — gauge invariant = only physical dof (10.20)
B, =B, — gauge invariant = only physical dof (10.21)
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— By, is not a gauge field as it is gauge invariant!
Indeed:

~ ~ 1. . 1 -

Compare this to

¢ =e'® — gauge dependent = physical and gauge dof (10.23)

~ 1
Ay = Ay — ;8 no  — gauge dependent = physical and gauge dof (10.24)

4 Express Lagrangian in new fields:

!

1 =
L2 =7 (Bun)® + €% B+ (0ph)” —mp h* + .. Buz 10.13) (10.25)

—
« Gauge dof ¢ drops out and is unconstrained by the Lagrangian
« & is manifestly gauge-invariant (Note that £ = £ only if we fix the unitary gauge
B, < Ay, [this is a constraint on A ].)
B, is a massive vector boson
« his a massive Higgs mode

5 Take-home-message:

The crucial ingredient of the Higgs mechanism is the non-zero vacuum expectation value of
the Higgs field ¢p = v which can be explained by the spontaneous breaking of a global,
continuous symmetry. However:

There is no spontaneous breaking of local gauge symmetries in

the Higgs mechanism. (1027)

As a matter of fact, local gauge symmetries can never break spontaneously (1 Elitzur’s
theorem [33]), they are a consequence of redundancies in our mathematical description.
In particular, they do not give rise to conserved charges (* Noether’s second theorem
[37,38)).

© Note 10.2

The Higgs mechanism can be straightforwardly generalized to non-abelian gauge symme-
tries.

- Next lecture for the electroweak interaction with SU(2) x U(1) gauge symmetry.
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© Topics of Lecture 26

1. Field content and gauge symmetries of the Standard Model
2. The Glashow-Weinberg-Salam theory

3. Quantum chromodynamics
4

. Summary of all fields/particles in the Standard Model

10.2 The Standard Model

This section does 7ot follow P&S but is a collage of various sources.

10.2.1 Preliminaries

1

Define the chiral projectors

._1 5, Weyl 0 0 ._1 5, Weyl 1, 0
Pr = 5(]144—)/ ) = (0 12) and Pp = 5(]14—)/ ) = 0 0 (10.28)

and the chiral fermion fields

Wp:= Pr¥Y and VY := PV (10.29)
such that
U =y; +¥p. (10.30)
Note that P 1 Pr = PRP 1 with P 1= y© the representation of parity on the Dirac
bispinor (¢« Eg. (3.76)).
With U Pgr = ¥; and U P; = U show that
Wid—mV = V(YR + V(i)Y —mYp Vg —mW ¥y (10.31)

Use Pr + Pr = 14, PI%/L = Pr/L, PIT\,/L = Pgyr and {y°, y*} = 0 to show this.

Only the mass term mixes right- and left-handed fermions. We did not use this notation
so far, because there was no reason to (and the left-hand side is shorter).

The Dirac representation is reducible, a fact that is manifest in the Weyl basis, recall
Eq. (3.20). Alternatively, it is easy to check that

[PR/L,A%] =0 (10.32)

so that the decomposition Eq. (10.31) is irreducible for Lorentz transformations.

— Terms like W (i #)Wg and Wy W are Lorentz invariant on their own and do not mix
with their counterparts Wy (i #) ¥y, and W g ¥y, under continuous Lorentz transformations
Ay € SO (1, 3).

— Under additional (gauge) symmetries, the left- and right-handed fields Wy, /g (then
multiplets) can transform under different representations of these new symmetry groups!
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10.2.2 Overview

1 Field content:

« Fermions (= Spin—%):

Generation n I I 101
€L €R ML MR L TR
Leptons
veL (Ver) | vuL (VuR) | Ve (VeR) (10.33)
Quarks Lo UR L CR L IR
do dr |sL SR by, bg

- Here, each symbol x7, /g denotes a four-component, chiral bispinor field which
describes both a fermion and its corresponding antifermion (recall the QED
Lagrangian). Note that the chirality is reversed for the antiparticles: er,
describes left-handed electrons and right-handed positrons.

- The right-handed neutrinos (in parantheses) have not been observed. In
the standard model, these fields are completely uncharged (mathematically
speaking, they transform under the trivial representation of all gauge groups);
thus these fields are typically omitted in the Lagrangian (however, they may be
required to explain the neutrino masses, - below).

- The three generations of fermions are not necessary for the symmetry
considerations that follow. We will simply sum over the generation index n. It
is unclear why there are three generations; however, so far there is no evidence
for a fourth generation. All stable baryonic matter in the observable universe is
made from first generation fermions as the other generations are much heavier
and decay quickly into first generation particles.

- While the total number of generations is not determined, the fact that each
generation contains three chiral leptons (e.g. er,eR, ver) and four chiral
quarks (e.g. ur,dr,uR,dR) is crucial to cancel the so called ckiral anomaly
when quantizing the theory. The number of quarks and leptons is therefore
not independent, * P&S pp. 705-707!
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« Vector bosons (= Spin-1):

Force Electroweak Strong
Gauge group | SU(2)L x U(l)y SU®B)¢
# Generators 3+1=4 8
Gauge fields | W) (i = 1,2,3), B, | G%(a =1,...,8) (10.34)
Before Higgs SSB
Gauge bosons Wt W=,z 8 Gluons
After Higgs SSB

Warning: The gauge field B, of the U(1)y symmetry does not correspond to the
photon y of QED (- Higgs mechanism in the GWS theory below).

« Scalar bosons (= Spin-0):

2 x Complex Higgs fields ¢ ¢° 2B Real Higgs field & (10.35)

Before Higgs SSB After Higgs SSB

The three missing dof after SSB give the three vector bosons W= and Z their mass
(<> longitudinal component).

Why is nature like this? That doesn’t look very pretty!

Well, we don’t know! The most likely answer is that at very high energies (the
# GUT scale ~ 10%° eV) the picture becomes more symmetric with fewer distinct
fields. The mess we observe may be caused by spontaneous symmetry breaking at our
“low” energies. Finding a “prettier” construction is the quest for a GUT, a Grand
Unified Theory. However, one should always be careful when assessing the “beauty” (=
simplicity?) of theories. We are not entitled to live in a “simple and comprehensible”
universe!

2 | Question: How to put this “chaos” into a consistent (= relativistic, renormalizable) QFT?

Answer:

Lsm = Lews + L£qcp + LoF + LGhost (Standard model) (10.36)

The above Lagrangian contains all physical fields and interactions of the Standard
Model. However, for actual computations one has to add two “auxiliary” terms £gr
and £gnost to account for the complications that arise from the quantization of Yang-
Mills gauge theories [39]. £r contains Gauge Fixing terms similar to —(0* A4,,)% /2§
(¢« Faddeev-Popov procedure, in particular Eq. (8.31)) to prevent the overcounting of
gauge-equivalent field configurations. &£gpest contains unphysical ghost fields which are
needed to account for the determinant det (§G(A%)/d«) which, for non-abelian gauge
theories, is no longer independent of the gauge field (¢f Eq. (8.28b) and the step before).
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3 | 'Two parts:
o Electroweak Standard Model £gws
= Glashow-Weinberg-Salam (GWS) Theory

= Unification of weak & electromagnetic force
(+ mass generation through Higgs mechanism)

The GWS theory is named after Sheldon Glashow, Steven Weinberg and Abdus Salam;
all three were awarded the 1979 Nobel Prize in Physics “for their contributions to
the theory of the unified weak and electromagnetic interaction between elementary
particles, including, inter alia, the prediction of the weak neutral current.”

¢ Quantum Chromodynamics £qcp = Strong force

10.2.3 The Glashow-Weinberg-Salam Theory

GWS theory = Unification of the electromagnetic and weak interaction of the standard model;
explains the masses of W+ and Z bosons and all the fermions (including quarks) with the
Higgs mechanism.

Goal: Generalize the Higgs mechanism to the Standard model

1| Lagrangian:

LEWS = LFermion + iYang—Mills =+ :CHiggs + Lyukawa (10.37)

We will discuss each term separately in the following.

2 Gauge symmetry (pre-Higgs, i.e., without SSB of the vacuum):

SUQ2); X Uy (10.38)
—— N——
Weak isospin ~ Weak Hypercharge

« SU(2); — 3 generators T?, i = 1,2, 3 with
[Ti, Tf] = jglikTk (10.39)

— Irreducible representations: (hats denote representation matrices)

- 1D: Trivial representation 77 = 0 (= Singlet representation)

- 2D: Pauli matrices 7% = % (= Doublet representation)
(In the following, 7" always denotes the doublet representation.)

— Eigenvalue of 73 = The weak isospin 73 (doublet: 73 = £1; singlet: T3 = 0)
(For eigenvalues we do not write hats as these are not matrices but numbers.)

e U(l)y — 1generator Y
[Y, Ti] =0 (10.40)

(Since the gauge group is a direct product of SU(2)z, and U(1)y.)
1 Schur’s lemma — ¥ = Number x 1 = Hypercharge ¥ x 1
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3 | SU(2)r, Representations:

We focus here on the first generation fermions. The values (= representations) of the
weak hypercharge cannot be infered at this point; we will discuss them after the Higgs
mechanism.

« Left-handed fields = Isospin doublets:

— ur VeL CrL UML 199 Vel
v = (dL),(eL)’ (SL)’(ML)’ (bL)’(IL) (10.41)

Gen. I Gen. IT Gen. III

— Weak isospin: T3(ver) = +1 and T3(ez) = -1 ...

The notation used here is conventional but a bit confusing: With

VeL
( o ) (10.42)

we mean that the chiral bispinor field v,z (x) is of the form
Ver (x) = ¥L(x) ® ((1)) e L>R'")®C*®C} (10.43)

with some left-chiral bispinor field ¥ (x). The last factor (C% is the spin—%
representation space of SU(2); and C* is the representation space of the Dirac
bispinor. It is then

1 . . 1
T3(ver) = +§ o T3, (x) = Y (x) ® 73 ((])) — +§veL(x). (10.44)

|
as flavours (of first-generation leptons). Similarly, u7 and d, are the flavours of
first-generation quarks.

The basis vectors that span (C%, say Vel = ((1)) and e;, = (0) are refered to

« Right-handed fields = Isospin singlets:

VR = UR.dR.€R, CR,SR.JLR. IR.DR.TR (10.45)
~———
Gen. I Gen. II Gen. III

In the following, ¥ denotes a doublet and v a singlet. If we write Wy, we refer to a
doublet of left-handed components (as above).

— Weak isospin: T3(eg) =0...

- Note that we omit right-handed neutrinos veg, ... because such particles have
never been observed [40]. If they exist, one could add them to Eq. (10.45) just
as any other right-handed fermion (- below).

- One may wonder why left- and right-handed fields are treated so differently.
The answer is observations: Experiments show that the weak interaction only
couples to left-handed fermions (and right-handed antifermions). To represent
this fact about nature mathematically, right-handed fermions must be isospin
singlets.
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« Higgs fields = Isospin doublet:

o = (f;(;) (10.46)

— Weak isospin: T3(¢™) = 1 and T3(¢%) = —3

- Both ® and its scalar components ¢+ and ¢° are often refered to as “Higgs
field”. Note that despite the vectorial notation, the fields ¢ and ¢° are com-
plex (Lorentz) scalars. That is, “scalar” refers to their trivial transformation
under Lorentz transformations. The Higgs field ® does not transform trivially
under SU(2)1 gauge transformations, as its doublet structure reveals. In a
nutshell: The Higgs field is a Lorentz scalar (= Spin-0 irrep of SO™ (1, 3)) but
a SU(2)1, gauge doublet (= Spin—% irrep of SU(2)).

- The fact that the Higgs field is a isospin doublet is essential for the Higgs
mechanism (- below); it is this property that allows for the generation of Dirac
mass terms for the fermions.

— Gauge transformations on fields:

Left-handed doublet: ¥y = ¢! 72¢() (iT'8' () g, (10.47)
(S —
=V, (x)
Right-handed singlet: /g = ! YR yp (10.48)
Higgs doublet: & = el Trna) (i T8 () g (10.49)

where Y, =Y -1,,Yg =Y -land Yy =Y - 1,

Note that here also the hypercharge is an operator. As we consider a direct sum of
possibly unitary equivalent but different copies of irreps, Y can take different values on
these irreps (- later).

Note: The weak hypercharge Y is a fixed number for each irrep, e.g., Y(ur) = Y(dr),
but can differ for different irreps: Y (ur) # Y(er) (» Higgs mechanism below).

4 | Kinetic energy for fermions & Minimal coupling:

iFermion = Z EL (i ML)‘I’L + Z ER (i MR)‘/fR (10.50)

53 ¥R

The sums go here over the doublets in Eq. (10.41) and the singlets in Eq. (10.45).

with covariant derivatives

Dpy=0d,—igW.T'—ig'B, VL (10.51)

g/ Wli: coupling constant / gauge field for weak isospin
g’/ By: coupling constant / gauge field for weak hypercharge
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Note that [77, Y7 ] = 0 for all i so that the fields W;i and By do not mix under gauge
transformations and thus can have different coupling constants g and g/, respectively.

The Lagrangian Eq. (10.50) violates charge conjugation symmetry C (swaps left-handed
fermions with left-handed antifermions) and parity P (swaps left-handed and right-
handed fermions) as much as possible since left(right)-handed (anti)fermions couple
weakly but right(left)-handed (anti)fermions do not (® Wu experiment). Note that
CP swaps a left-handed fermion with a right-handed antifermion so that Eq. (10.50) is
CP-symmetric.

— Transformation of the gauge fields:

~ 1 ~ ]
4 g

Recall Eq. (9.28) and Eq. (9.10). Here we use the shorthand notation W, = W;'LYA"" .

© Example 10.1: Beta decay

To draw a connection to previous knowledge, focus on the two left-handed
first-generation terms in Eq. (10.50)

:ﬁFermion = (ﬁL EL) (l aL) (Zﬁ) + (veL gL) (lﬁL) (VeL) + ... (10.54)

er
and
DLuz—ig(Wlf"l+W27A"2)+...:—ii(0 WJ)+... (10.55)
7 iz J2 Wu 0

with W := 1/v/2 (W,! F iW2). Thus we find terms of the form

L Fermion ~ le upytdp + W, epy*ver +he + ... (10.56)

Now think of a second-order pro-
cess (¢« Eq. (4.126)) that includes -
both vertices that derive from
these terms (there would be a
contraction of two let fields in-
volved that produces a gauge field Wevou
propagator) and add an #p and
a down quark that do not partic-
ipate in the interaction for good b
measure: d 4

Protou

The d quark with (electric) charge —% decays into a u quark with charge —I—%,
emitting a W~ boson with charge —1 which subsequently decays into an electron
e~ and an electron antineutrino v,.
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5

8

This is nothing but the f~-decay you already know from your physics course in
kindergarten. Note that all fermions/anti-fermions that connect to the vertices are
left-handed/right-handed (e, describes a left-handed electron and a right-handed
positron).

Dirac mass terms? Should be of the form

m(Wp g+ v r¥y) —  Undefined! (10.57)

< Elementary terms of the form Xz yg with x, y Dirac spinors
— Not SU(2), gauge invariant since

 x7, is component of a SU(2);, doublet

« but yg transforms as a SU(2), singlet

The argument here is the same as, e.g., for an expression like £p? that is not a Lorentz
scalar since £ = p° is component of a four vector.

— X1 yr isnot a SU(2)r, singlet (i.e., not gauge invariant)
— We cannot add Dirac mass terms to the Lagrangian!
Solution: Yukawa coupling and Higgs mechanism (- below)

Kinetic energy for gauge bosons — Yang-Mills Lagrangian:

1 .
£ Yang—Mills = —Z(B” ")? — Z(wa)z (10.58)
with By, =0, By — 0, By (10.59)
Wi, =0, Wi —a, W) +ge*wiwk (10.60)
| S —
Interactions between
gauge bosons

Here, ¢'/% = f1/k gre the structure constants of SU(2), © Problemset 14 (optional).
Higgs field:

Lhiges = (D @) (D @) — p? @70 — A(2T D)2 (10.61)

with covariant derivative
Dy =0,—igW,T —ig'B, Yy (10.62)

Note that (®T®)2 #£ |¢pT|* 4 |¢°|*; the latter term is Lorentz- but n#ot gauge invariant
so that only the former is an allowed interaction. The form of the Higgs potential is
then given by the condition of renormalizability. To make the vacuum stable, A > 0 is
required.

Higgs mechanism Part I: Masses for the gauge bosons
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i Let u? < 0 — Non-zero VEV of Higgs field:

2
Wig (@) = D = % (S) with v = ,/T“ (10.63)

Use the global SU(2);, symmetry to rotate the isospin such that @ takes this form.

i | Define the electric charge (operator)

0=T>+Y esu)r ®u(l)y (10.64)

— Choose Y(®) = +% so that

A 1 1 . A

0%y = (—5 + 5) Pg=0 = elQa(x)(D() = @y (10.65)
This is why the lower Higgs field is called ¢°: it is uncharged, Q(¢°) = 0. By
contrast, the upper field ¢t has charge Q(¢™) = +1. Choosing the hypercharge
fixes the representation of the Higgs field under U(1)y, just as demanding the
doublet structure fixed the representation under SU(2)y..

— Gauge symmetry U(1) o generated by Q is unbroken:

SUQ)L x Uy 225 gy (10.66)
——
Unbroken gauge

group of QED

Three generators of the global symmetry group are spontaneously broken while
one generator (Q) remains unbroken. This is what we want, as we know that there
should be one massless gauge boson: the photon.

Conclusion: The generator of U(1)y (the weak hypercharge Y) and the generator
of U(1) o (the electric charge Q) are not the same!

iii | <t Fluctuations of ® around &y in the unitary gauge:

1 0
d(x) = ﬁ (v “h (x)) (10.67)

h(x): real scalar Higgs field
The excitations of this field are the famous # Higgs bosons.
iv ®(x)in Eq. (10.61):
2

v

(D ®) (D @) = A [(W)? + W] + (=W + &' B’} + ..

(10.68)

(We focus here on the terms that generate the gauge boson masses.)
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v | Define the new fields

1
wWE = 75 (W, Fiw?) (10.69)
4 =;( W2 —¢'B) (10.70)
SRVl A '
. 1 73
Ay = W (&'W; + gBy) (10.71)

The ratio of g and g’ defines the so called & Weinberg angle Oy : cos Oy =
g/+v/ g% + g’?. This parameter is not predicted by the SM but one of the many
input parameters that have to be determined experimentally. It is also called weak
mixing angle as it describes the mixing of Wlf and B/, that yields A4,.

9
v\ 2 _ 1 jv\2
(10.68) = (%) Wirw—+ 4+ 3 (5) &> +g*HZ)*+... (10.72)
———
miy my

and (express the covariant derivative in the new fields)

/

88

/ g2 + g/2
—_———
Electron charge e

>

Dgy=0u—(..)—1i (10.73)

We conclude:
» A,: massless, neutral (Q = 0) gauge field of QED
. let: massive, charged (Q = +1) gauge bosons of weak interaction
 Z,: massive, neutral (Q = 0) gauge boson of weak interaction

To see that Z,, and A, are electrically neutral and Wlfc is charged, inspect
the Yang-Mills Lagrangian Eq. (10.58) and rewrite it in terms of the new fields
Eq. (10.71). You will find vertices of the form W1 W~ A, but no vertices of the
form ZZ A or AAA; i.e., the photon described by A4,, only couples to the Wf
bosons.

9 | Interlude:
With Eq. (10.64) we can fix the hypercharge Y by the (observed) electric charge Q.
Examples:
Veew) = Qler) = Ter) = =1 - (=3 ) = 0074
Y(er) = Q(er) —T>(eg) = —1—0=—1 (10.75)

We will need these two hypercharges to understand the Yukawa coupling below.
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10 Higgs mechanism Part II: Masses for the fermions

How to form a gauge invariant term including left- and right-handed fermions?
Must be a SU(2), singlet and hypercharge-neutral (Y = 0)!

— Couple left-handed fermion doublet, Higgs doublet, and right-handed fermion
singlet via a Yukawa term: [Compare: ¢ WW (Yukawa) vs. 4, Wy "W (Maxwell)]

—Ve (Wr - ®)eg +hc. with ¥y = (VeeL) (10.76)
L
Ye: coupling constant
Note that
1 1
Y(®) + Yer) ~Y(¥1) = 5 — 1~ (—2) =0 (10.77)
and

¢O

SU(2) 1 singlet

N +
(V- P)er = (Ver @L)- (¢ ) erR=¢" Vereg +¢°-erer  (10.78)

Scalars x Dirac inner products

so that Eq. (10.76) is both SU(2)1, and U(1)y invariant. The last expression reveals
the Yukawa-form of the interaction clearly.

Higgs mechanism: ¢ > 0 and ¢ > v/+/2 —

_Ye¥

V2

with fermion mass me = y.v/+/2

(10.76) = (eLer +erer) + ... (10.79)

The same works for the other charged leptons and the quarks - but not the neutrinos
if their right-handed counterparts are excluded. Thus, in the (minimal) Standard
Model, neutrinos are massless because of their missing right-handed partners!

In general, we can couple different fermion generations:

This is possible since fermions of the same type (charged lepton /, neutrino
v, up-type u and down-type d quark) but different generations have the same
hypercharge and isospin.

iYukawa = F;;;n @T &) urIlQ - Frtr];n @T o dIn?

—Tl, L] ®I%-T" L7 dv% +he. (10.80)

There are implicit sums over the fermion generations m and n.
All other symbols are fixed labels:

o m,n € {LILIII}: fermion generations

e x €{u,d,l,v}: fermion types
Examples: l}e = eR, l% = LR, uIR = UR, uIIIz = CRy .-

I ,: coupling constants (complex matrix, not necessarily symmetric)
Example: FII | = Ve from above
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« QF, LT left-handed quark- resp. lepton doublets of generation m
Examples: 0 = (uy dp)and Iy = (vur  KL), -

o O =gl <I>"-‘: Higgs doublet with opposite hypercharge: Y (®) = —1
This representation is requ1red to make the terms hypercharge neutral [to

see this, use Y(u'y) = Y(d ) = —3 and Y(QL) = —f] Note that &
transforms in the same 1sosp1n irrep as CD

ii .~ The Yukawa couplings Eq. (10.80) ...
« ... generate mass terms for quarks and charged fermions.

... cannot generate mass terms for neutrinos if there are no right-handed
neutrinos. (— Neutrinos are massless in the standard model.)

« ... lead to generation-changing transitions of quarks.
(™ CKM matrix and P&S pp. 721-724)

The generation mixing in Eq. (10.80) implies that the quark states that take
part in weak interactions (# interaction eigenstates) are not the eigenstates of
the mass operator (s mass eigenstates) that describe freely propagating particles.
Then one can show that a (mass eigenstate) s-quark that propagates freely can
decay into a (mass eigenstate) u-quark by coupling to a (virtual) W ~-boson:

— -

heu T /8 Ve <

(rew T S
If there are no right-handed neutrinos, such transitions are forbidden for
leptons (which so far matches experimental observations).

« ... lead to generation-changing transitions of neutrinos if right-handed neutrinos
are added. (™ PMNS matrix and ™ Neutrino oscillations)

© Note 10.1

Adding right-handed neutrinos v% to produce the Dirac mass term in
Eq. (10.80) can be used to explain the experimentally observed masses
of neutrinos [41,42] and might even contribute to dark matter. Alternatively
(or in addition), right-handed neutrinos can obtain mass through a * Majorana
mass term (which comes with an additional free parameter m g unrelated to the
Higgs VEV v and the Yukawa coupling strength I'),,,,)

o
&L Majorana = —szVR(VR)c + h.c. (10.81)
with the charge conjugation of a field (¢ Eqg. (3.104))

- C%v* = —iy2v*. (10.82)
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(Note that without charge conjugation it is trivially VRvg = 0. For the
Majorana mass term, it does not matter whether vg is part of a Dirac or
Majorana spinor as long as it is not charged.)

Right-handed neutrinos vg are called ## sterile neutrinos as they have vanishing
weak isospin 73 = 0 and electric charge Q = 0 (and therefore hypercharge
Y = 0). Hence they do not interact through the three forces described by the
standard model; in particular, the Lagrangian Eq. (10.81) is gauge invariant
(this would not be true for any other fermion with non-vanishing U(1) charge!).
Note that they do interact via the Yukawa coupling in Eq. (10.80) with the
Higgs field and the left-handed lepton fields. So, if they exist, right-handed
neutrinos could be detected indirectly by studying their decay channels.

Both of these mass terms (Dirac from £yyawa and Majorana from &sjorana)
are combined in the ™ (Type I) Seesaw mechanism [43,44] to explain the
extremely small neutrino masses (compared to all other fermions) [45]. The
masses of the mass esgenstates (which are then Majorana fermions) are given
by [44]

2

m
my~—2 and my~mpg sothat mymy~ m? (10.83)
MR

for mg > m, = y,v/~/2. (Remember that m g is unconstrained, * Ref. [44]
for arguments why it could be very large. Note that Eq. (10.81) breaks lepton
number conservation and therefore should happen at mass scales much larger
than the electroweak scale.)

The very small m; would correspond to the mass of our left-handed neutrinos
while the very large m, would be the mass of the hypothetical right-handed
neutrino. The relation mymy ~ m? with fixed Dirac mass m,, gives rise to
the name “Seesaw mechanism”: Large m, corresponds to small 727 and vice
versa. Note that the Seesaw mechanism naturally leads to m; <« m, where
m,y, is expected to be of the scale of the other leptons/quarks (which is way to
heavy to be consistent with the extremely light neutrinos).

Note: Massive neutrinos are “beyond Standard Model physics”. However,
since they can be described by straightforward extensions of the SM (e.g.
by the Seesaw mechanism) without modifying its gauge group, the neutrino
masses are sometimes treated as part of SM physics.

10.2.4 Quantum Chromodynamics

We discuss QCD here only superficially to connect with concepts that we learned previously.

1
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— 8 generators K% a = 1,...,8 with (in general, SU(N ) has N? — 1 generators)
[K“,Kb] = jfabege (10.85)

Here we use the unconventional label K¢ to distinguish the generators from the SU(2),
generators 7" of the weak force.

— Irreducible representations:

« 1D: Trivial representation K% = 0 (= Singlet representation)
« 3D: Defining representation (physicist parlance: fundamental representation):

K4 = % with 3 x 3 Hermitian Gell-Mann matrices A, (= 7izplet representation)

Gell-Mann matrices are the analog of Pauli matrices for SU(3).

2 | Field representations:

e Quarks = SU(3)¢ triplets

qr
q=14¢ forq € {u,d,c,s,t,b} (10.86)

qp
with colors r (red), g (green), b (blue)

Note that each color field ¢, is a Dirac bispinor, i.e., we extended the number of
quark fields threefold!

The notion of “colors” is not gauge invariant: For instance, a “red” quark ¢, can be
transformed into a mixture of red, green, and blue quarks by a gauge tranformation

Uc(x):
dr qr
dge | =Uc| O (10.87)
db 0

 Leptons & Higgs fields = SU(3)¢ singlets — Ignore them in QCD

Since the leptons (e, v, ...) do not interact via the strong force, they carry the
trivial (singlet-) representations of SU(3)c, i.e., their fields are not extended into
triplets and it is K¢ = 0 for actions of SU(3)¢ transformations on their fields.

— Gauge transformation of fields:

Quark triplet: § = i KBY() q (10.88)
=Uc (x)
3 Lagrangian:
. 1
Zqep =) G Pc)g — 1(Gg,)? (10.89)
q
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Note the missing mass terms! As explained above, the masses of quarks are generated by
the Higgs mechanism and electroweak SSB.

with covariant derivative
Dcy =0, — igsGZI%“ (10.90)

gs: coupling constant of the strong force
Gy, 8 gauge fields — 8 gauge bosons = 8 Gluons

« Eq. (9.28) for the transformation of G, = GZI%‘I under Uc (x).
The Gauge field strength is defined as usual:

Gfiy = 0,65 — uGf\ + g /"G, G;) (10.91)

© Note 10.3

 No additional Higgs mechanism:
- Quark masses are generated by electroweak SSB
- Gluons are massless
+ Gluons carry color charges and can therefore interact with each other (« Note 9.1)

Mathematically, this means that gluons transform in a non-trivial representation
of SU3)c (not the three-dimensional defining irrep of quarks but the so called
adjoint representation which is 8-dimensional for SU(3)). Gluons act then on colored
quarks and change their color. That is, if we write |c) for the three color states of a
quark (¢ = r, g, b), gluon states can be generated from matrices of the form |c)(c’|
(one says that gluons carry a color ¢ and an anticolor ¢"). However, this suggests
3 x 3 = 9 gluon states, but there are only 8! The hitch is that the linear combination

KO = Ir)(rl + lg){g] + 1b)(b] (10.92)

is forbidden (physically, this means that a gluon can never transform in the singlet
representation, i.e., a gluon cannot be coloreless). That K is nor part of the
generating set of s1(3) can be seen easily since

- 50,
ST — 1, (10.93)

has determinant —1! That is, a coloreless gluon would imply a gauge group U(3)
rather than SU(3). However, such a gluon would not be constrained by confinement,
and therefore contradicts current experimental evidence. Thus the gauge group of
QCD is SU(3) with 8 gluons and not U(3) with 9 (* p. 279ff. of Ref. [46]).

The Gell-Mann matrices are then 8 particular linear combinations of the 9 matrices
|c){c’| that are linearly independent of K°, e.g., A1 = |r)(g| + |g)(r|.
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« Renormalization: Let oy = 25 then

4
eff, 2 q>—>00 g
adi(gc) —— 0 —  Asymptotic freedom (10.94)
2
q-—0
af(g?>) —— oo* —  Confinement™ (10.95)

Compare this with the running of a.(¢?) in QED, « Eq. (6.251).
For experimental results * P&S Fig. 17.23 on p. 595.

That is, quarks at very high energies (e.g. in hadrons) behave almost like free
particles. By contrast, at low energies, their interaction becomes so strong that free
particles that carry a color charge (i.e. are not a color singlet) do not exist (thus we
observe only mesons and baryons that are “white”).

(*) Note that a diverging coupling constant does 7ot prove confinement (QED
also has a divergence, known as Landau pole, which is not related to confinement,
« Note 6.4). Up to know, the existence of confinement in QCD and the true
IR behavior of af remains unproven resp. unknown (confinement is supported
by numerical lattice QCD calculations though) since this regime is not accessible
by perturbation theory. The reason for the opposite running of the coupling
constant (compared to QED) is the existence of virtual gluon bubbles in the vacuum
polarization diagrams that lead to “antiscreening” (1 p. 293ff of Ref. [46]).

10.2.5 Summary

« Gauge symmetry group of the standard model:

SUQ). x Uy x SUB)c (10.96)
~—— —— ——
Weak isospin ~ Weak Hypercharge  Color charge

Electroweak SSB
U)o
——
Electric charge

Our vacuum has lost the global SU(2);, x U(l)y symmetry since the Higgs field
developed a VEV (by the way, it is unclear why this happened). The “true Lagrangian
of the universe” still has this symmetry, only our low-energy vacuum ‘“hides” this
symmetry from us. Thus spontaneous symmetry breaking is sometimes refered to as
spontaneous symmetry hiding.
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o Fermions and their interactions:

b4 9/:/0“( (QTJM “1) @ - a }Su(s)c

1‘n‘7>/ev‘

7 so*e3)

3 J?Mcr«‘p L'rp or

U2
daAle’s

/eya/au S
' (Spin £)

(
(

@ SO*3)
(:l$7>mar

In total there are
[2 Leptons + 2 Quarks x 3 Colors] x 3 Generations = 24 Dirac bispinors  (10.97)
each consisting of 4 complex fields — 96 complex fields for fermions.

(This count includes right-handed neutrinos for good measure.)

» The standard model Lagrangian £gy contains 18 parameters (can be more if addi-
tional extensions to the SM are considered, e.g., neutrino masses « Note 10.1) that
cannot be derived but must be measured by experiments:

- 9 x Fermion masses: mg, my,... (recall that neutrinos are massless in the SM)

- 1 x Higgs mass mj, ~ 125GeV
(This is the famous result from the observation at LHC in 2012 [47])

- 1 x Higgs field VEV v
- 3 x Gauge field couplings: g, g’, g5

- 4 x CKM matrix parameters: 02,... (describe the mixing of quark generations
and possible CP-violating terms, hidden in the Yukawa coupling matrices of
Eq. (10.80)) (1 P&S p. 721ff)

In conclusion, the SM does not seem to be good candidate for a truly fundamental theory
(which should be a more efficient “compression” of the laws of nature). This is one of
the reasons to look for a GUT (* Grand Unified Theory = Unification of all three forces of
the SM) or even a TOE (1 Theory Of Everything = Unification of all three forces of the
SM and gravity) that allows for the computation of some (or all) of these parameters ab
initio.

« Have a look at Ref. [48] if you want to know more about the representation theory of the
standard model (and its possible extensions to GUTs).
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