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2. Kinematic Consequences

In this chapter we study implications of the special Lorentz transformations Eq. (1.75) and Eq. (1.77) that
follow without imposing a model-specific dynamics (= equations of motion). We refer to these implications
as kinematic because they follow from fundamental constraints on the degrees of freedom of all relativistic
theories. The phenomena we will encounter are therefore features of spacetime itself - and not of some
entities that live on/in (or couple to) spacetime.

i! The phenomena we will encounter are 7oz “illusions” (in the sense that we “see” things differently than
they “really are”). Remember that we precisely defined what we mean by observers/reference frames;
in particular, we emphasized that we do not “look” at anything, we measure events in a systematic way,
using a well-defined structure called « snertial system. All phenomena we will encounter are derived from
and to be understood in this operational, physically meaningful context.

2.1. Length contraction and the Relativity of Simultaneity

. v . . .
1 < Inertial systems 4 —> A’ with rod on x’-axis and at rest in A’:

Remember that A —> A’ denotes a boost in x-direction with v, (as measured in A) where the
spatial axes of both A and A’ coincide at 1 = 0:
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In such situations, we refer to A’ as the s rest frame of the rod and A as the # lab frame (some
call A the # stationary frame). In the following, coordinates of events in the inertial system A’ are
marked by primes.

. . { Lecture 6 [19.11.25]
2 | First, we have to define what we mean by the “lenght” of an object:

“Length” is an intrinsically non-local concept. It is not something you can measure or define at a
single point in space. Consequently, there are no “length-events” in &. Thus we need an algorithm
(= operational definition) of what we mean by “length”.

< 'Two event types:

{er} = {(Left end of rod detected)} (2.13)
{er} = {(Right end of rod detected)} (2.1b)
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Think of an event #ype as a set (equivalence class) of all elementary events that you deem * zype-
identical (but not ™ token-identical). In the example given here, there will be many events e, in
spacetime that signify “Left end of rod detected” (if there is one rod, there will be one such event
for each time 7); these are different events of the same type {er }.

One could even declare that the event zype {ey } is what we refer to as “the left end of the rod.”

— Algorithm LENGTH to compute “Length of Rod” in system K at time #:

LENGTH:
» Input: Coincidences &, Inertial system label K, Time ¢
« Output: Length /g of rod at time ¢ as measured in K

1. Find (unique) event L € & with {er} € L and (t,f)K eL.

2. Find (unique) event R € & with {eg} € R and (¢,7)x € R.

3. Returnlg := |i—?|.
Here, {er} € L is shorthand for {e;} N L # @. In words: the coincidence class L contains an
event of the zype “Left end of rod detected”.

Note that we define “length” as the spatial distance between the two ends of the rod at the same
timet (as measured by the clocks in K). I hope you agree that this is what one typically means by
“length.”

3 | We now apply this algorithm twice, in the lab frame A and the rest frame A":

i Rest frame A’:

& Proper length = # Rest length := Length of rod in A”:
lo := LENGTH(E. 14 A') = |1}y — )| = |1 — r}| (22)

with simultaneous clock events (¢, [()ar € Lo and (), 7)4’ € Ro.

The time #; that we choose is irrelevant since the rod is (by definition) at rest in A’. Since
the rod lies on the x’-axis, itis /; = (1), 0,0) and 7, = (r{. 0. 0).

The subscript “0” in L indicates that this is a specific event (coincidence class) we selected
in A" to compute the length of the rod. It does 7ot mean “as seen from the rest frame A"” or
anything like that. Remember that coincidence classes in & are objective information!

i | Lab frame A:

Length of moving rod in A:
| := LENGTH(E, 1; A) = | — 7| (2.3)

with simultaneous clock events (¢;,1)4 € L and (¢,,7)4 € R witht; =, = 1.
The time ¢ that we choose might be irrelevant as well, but we do not know this yet.

i! There is no reason to assume that the events Lo/ R chosen in A’ to measure the length of
the rod are identical to the events L/R used in A: Ly # L and Ry # R in general.

4 | How does [y relate to [?
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In Section 1.5 we did a lot of hard work to compute the transformation ¢ which transforms
the coordinates of an event in one inertial system into the coordinates of t4e same event in
another inertial system. We identified the transformation as the Lorentz transformation:

AAS AY: [Elg=@t.5)=x—> Apx=x"=(".¥)=[Elg (@4

So let us use this tool [namely Eq. (1.77)] to obtain the coordinates of the events L and R
(used for the length measurement in A) in the rest frame A’ of the rod:

cty =y (cty — 2x1y) ct) =y (ctr — %ry)
I = y(ly —vxty) rlo= y(ry — vxly)
L =1, _, and [Rly =1 7 _ ey
y = by Iy =Ty
lé = lZ ré = rz

Here we use [ = (Ix,ly,lz)and ¥ = (ry,ry,r7). Since we declared that the rod is fixed on

the x'-axis of A’,and {e.} € L and {er} € R,itmustbe/, =1 =r, = r, = 0,and

therefore /| = (Ix,0,0) and 7 = (ry,0,0). That is, the rod is not rotated by the boost and
always lies on the x-axis of 4 as well. In particular: [ = |l — F| = |l — ry].

— Two immediate conclusions:

a| In A’ the two events L and R are no longer simultaneous:

n=t-inA but t #1in A’ (sincel, # ry). (2.6)

— The simultaneity of events is observer-dependent.

This ambiguity of simultaneity can be graphically illustrated in a spacetime diagram (for
details on how to draw the (z/, x’)-axes in A: © Problemset 2):

A ct ct'n 'Z‘.@L} {ent

 As aside note, this calculation implies that not only is it generally 7oz true that
Lo = Land Ry = R, itis actually impossible (at least for both pairs).

« In the sketch above, the “interior of rod”-events are painted gray. One is tempted
to ask: Which “line” of these events s the rod? The counterintuitive answer is
that this depends on the observer: For A-observers, horizontal lines of gray events
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make up “the rod”, whereas for the A’-observer #lted lines are “the rod”. It is
actually more reasonable to think of the complete area of gray events as “the rod”,
just as the event type {ez } is “the left edge” of the rod. This suggests that our
intuitive concept of the instantancous existence of extended objects — which feels so
natural to us - is, to some extend, misleading.

b In A’ the coordinate distance is different:

)=ty vx 70
x|

|l;—r =" yllx—rxl # |lx—rx|=1 (2.7)

i! The time-dependence cancels so that the expressions are time-independent.

At this point, it is a bit premature to identify the left-hand side as the rest length Iy
of the rod because these are spatial coordinates of events that are ot simultaneous!
(Remember that the length of any object in any frame is defined as the coordinate
distance of simultaneous events.)

However, since A’ is (by definition) the rest frame of the rod, the position labels of the
A’-clocks adjacent to the ends of the rod are the same for all events:

l/ {eL_}eL /
X - 0

; {er}ER
rx == ro

= |l —rl=lg—rol =1o (2.8)

— & Length contraction = # Lorentz contraction:

A rod of rest length /y is shorter if measured from an inertial system in relative motion:

I =loy/1-2 2% 1 2.9)

;! Due to isotropy, this result is true for any length of extended objects 7n the
direction of the boost. A rod along the y’-axis, for example, is contracted according
to Eq. (2.9) for a boost in y-direction, but not for a boost in x-direction.

» The rod is just a proxy for any physical object; the Lorentz contraction therefore
affects all physical objects in the same way. The contraction is not a dynamical
feature of the object itself (like a force that compresses the atomic lattice) but an
intrinsic property of space(time).

» Note that we say above “if measured from ...” and not “as viewed from ....” This
distinction is important: If you ask how you would visually perceive extended objects
flying by (or how they look on a picture taken by a camera) you have to factor in
that the photons bouncing of the object at different points take different times to
reach your eye (our the camera sensor). If you do the math (@ Problemset 3), this
additional optical effect leads to the surprising result that 3D objects actually do
not look “squeezed” but rotated. This implies in particular that a moving sphere
still Jooks like a sphere and not like an ellipse (™ Penrose-Terrell effect [43,44], see
also Ref. [45]).

You can experience this effect (among others) in the educational game “A Slower
Speed of Light,” which has been developed by the MIT Game Lab for educa-
tional purposes, and can be downloaded here for Windows, Mac, and Linux (@
Problemset 3):
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© Download “A Slower Speed of Light”

Recently, the Penrose-Terrell effect was visualized in a laboratory experiment where
the speed of light was “virtually” reduced to less than 2ms™! [46].

You should always keep in mind, however, that this “looking” is #ot what we refer
to as observing in RELATIVITY; the latter has been defined operationally as a
measurement procedure at the beginning of this course.

2.2. Time dilation

. v - .
1 < Inertial systems 4 —> A’ and a clock X’ at rest in A’:

PAYY | ~ Nl ]
Y 4 v Al 4 i v A
X X
S —
(z5. %) (z,. %)
> —>
A S A >
N x, ] _ - _ _ xl
Sefse30p) Selsalsalselakss QO0000D|0
& @7 & @)
<( Two events:
A’-Clock X’ meets A-clock Xo: (¢, X")ar ~ (t0,%0)4 € Eo (2.10a)
A’-Clock X’ meets A-clock X1: (t1,X")ar ~ (t1,X1)4 € E1 (2.10b)

i! The two events E, and E; relate three different clocks: The single A’-clock X" and two different
A-clocks X¢ and X;.

As for length, the concept of “duration” cannot be defined locally in spacetime. We therefore need

an operational definition (algorithm) of “duration”:

DURATION:
» Input: Two events Ey and E1, Inertial system label K
<« Output: Time interval Atg between events as measured in K

1. Find (unique) clock event (¢, Xo)x € Eo.

2. Find (unique) clock event (71,X1)kx € E;.

3. Return Atg ;=11 —1p.
Hopefully you agree that this is a reasonable definition of the duration (or time interval) between
two events.

We can now apply this algorithm to determine the time elapsed between £y and Ey:

InA": At' =DURATION(Eg, E1; A)) = ti — Z(/) Measured by a single clock!  (2.11a)
InA: At =DURATION(Ey, E1; A) =1t; —tg Measured by two clocks! (2.11b)

How does At relate to At’?
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Since (ty, X") 4 ~ (to, Xo)4 and (¢7, X")4» ~ (t1, X1)4, we can use the Lorentz transformation
to translate between the coordinates:

Inverse of Eq. (1.77)

_—5

Remember that Agl = A_; because of reciprocity; the inverse Lorentz transformation can
then be obtained by substituting vy > —vy:

cto =y (ctg + 2x')
xo = y(x" + vxtg)

cty =y (et + 2=x')

Eols =
[Eol x1 = p(x + vet})

and [E1]y = (2.12)

We omit the other two coordinates since they are invariant anyway; the transformation of
the spatial coordinate is also not necessary for the following derivation.

Subtracting the equations for the time coordinate of both events yields:

c(ty —to) = yel(ty —tg) (2.13)
Note that in the inverse Lorentz transformation Eq. (2.12) the position coordinate in A’ is x’
for both events because the same A’-clock takes part in both coincidences.
% Time dilation:

— The moving clocks in A’ run slower than the stationary clocks in A4:

At 0
A= B 2 At (2.14)

We renamed At’ = Aty to emphasize the analogy to the proper length ly:

Atg: & Proper time elapsed in A’ between E and E;
At: Time elapsed in A between Eg and £

o The characteristic feature of the proper time Aty between two (time-like separated)
events Eo and E is that it can be measured by a single inertial clock that takes part in
both events. All other time intervals must be measured by subtracting the reading of
two different clocks. Eq. (2.14) tells you that these time intervals are always longer than
the proper time Afto.

* ;! Due to isotropy, our result above is true for boosts in any direction.

Note that in the derivation above, we did #ot impose any special constraints on the
positions of the clocks (except that they coincide pairwise at E¢ and E;). In particular,
we did not assume (despite the sketch suggesting this) that the clocks are located on
the x /x’-axis. A/l clocks in A" are slowed down in the same way, irrespective of their
location!

e This result does ot contradict our assumption that all clocks are type-identical (= run
with the same rate if put next to each other at rest) because the two events needed
to compare the tick rate of moving clocks necessarily describe coincidences between
different pairs of clocks.

6 | Relativity principle:

Because of the relativity principle SR time dilation must be completely symmetrical: The A’-clocks
run slower compared to the A-clocks, and the A-clocks run slower compared to the A’ clocks.
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That this is indeed that case (without being a clock “paradox”) is best illustrated in a symmetric
spacetime diagram:

A ct A4

Siwldaueout A Siwldaueout
(\“ A " AI)
\, <
lo

‘ Q«:

A3

a3 X

The existence of the “median frame” A” between A —> A’ can be easily shown with the addition
for collinear velocities Eq. (1.70). This symmetric form of a spacetime diagram is sometimes called
1 Loedel diagram [47] and makes the symmetry between inertial frames manifest; in particular,
the units on the axes of A and A’ are identical (they are not identical to the units of A”, tough). In
this symmetric form, the ¢’-axis is orthogonal to the x-axis and the 7-axis to the x’-axis. Note that

. .. .. .. v -0 o~
because of the relativistic addition of velocities, it is A” — A’ and A” —> A with 7, = vy %

and tan(p) = ’77)‘ (© Problemset 3). Only in the non-relativistic limit v, /c — 0 one finds 7, = %

as naively expected.

Note that due to the relativity of simultaneity, the two observers use different pairs of clock-events
to decide which of the two origin clocks runs slower:

o For A the two clock events D and C are simultaneous such that one has to conclude that the
(blue) A’-clock runs slower than the (red) A-clock.

« By contrast, for the observer A’ the two events D and C are simultaneous such that one has
to conclude that the (red) A-clock runs slower than the (blue) A’-clock.

It is evident from the diagram that there is no disagreement about coincidences of events (or
readings of clocks). It is just the observer-dependent concept of simultaneity that leads to the
seemingly “paradoxical” reciprocity of time dilation.

7 | Experiments:

o Muon decay [48]:

Muons quickly decay into electrons (and neutrinos):
W= e v+ e (2.15)

This decay can be readily observed in storage rings of particle colliders like CERN. The
lifetime of muons az rest (measured by clocks in an inertial laboratory frame) is ) ~
2.1948(10) ps. However, the lifetime of muons in flight (close to the speed of light) is
measured to be 7, ~ 64.368(29) ps, i.e., much longer! If one carefully takes into account
the speed of the muons and additional experimental imperfections, this result fits Eq. (2.14)
with deviations of only ~ 0.1 % [48].

Notes:

- In the rest frame of the flying muons one would measure the usual lifetime 79 ~

2.1948(10) ps. However, in this frame, the laboratory is Lorentz contracted such that the
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muon reaches exactly the same point in space where it decays in this “shorter” lifetime.

Note how time-dilation and Lorentz contraction provide different explanations for the
same experimental obervation.

- One can also use different particle species to study time dilation, for example pions (a
sort of meson, i.e., a hadron with one quark and one antiquark) [49].

o Hafele-Keating experiment [50, 51]:

In 1971, J.C. Hafele and R. E. Keating took four Cesium atomic clocks along commerical jet
flights around the globe twice: once eastward and once westward. Compared to a reference
clock on the ground, the clocks on the eastward flight lost on average ~ 59ns (= they
ran slower) and the clocks on the westward flight gained ~ 273 ns (= they ran faster). To
understand this qualitatively, note that the reference clock on the ground is rotating (together
with earth) and therefore is 7ot an inertial clock. Therefore imagine an (approximately)
inertial reference system flying along earth around the sun, and from this system look down
on the north pole; earth is now slowly rotating beneath you. From this inertial system,
the eastward flight has higher velocity than the reference clock, which, in turn, has higher
velocity than the westward flight. Thus you find that the eastward clock runs slower than the
reference clock which runs slower than the westward clock (this is also true if the clocks are
accelerated,> below). These theoretical considerations are explained in [50].

2.3. Addition of velocities

Details: ® Problemset 2

1 < Particle moving with u’ = ‘é—’;c,/ in system K’ and inertial system K with K 5 K
2 e
N\
1
@ XD e
t=0 .
d ul 1
v
i )
E
_777'
Ve S
>
x
2 Velocity % in K:
- d)_é - -/ o 1 [—» ii/ Vv -/ o —»]
U=—=00uU = ——= v+ —+ —5———WU -v)v (2.16)
d 1+ 2 o o c2(1+yy)

Proof: Use Eq. (1.75) (© Problemset 2).

i! The relativistic addition of velocities & is in general not commutative (v @ 4 # 4 & U) nor
associative [V @ (U @ w) # (V@ u) @ w]. As you can easily see from Eq. (2.16), it is also not linear:
(AV) @ (Aii) # A(V & 1). Be careful: There are different notations (in particular: orderings) used
in the literature.
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3 < Non-relativistic limit (¢ — oo = y, — 1):
lim v@u' = lim 4/ @0 =0+ u’ (2.17)
cC—>0 CcC—>0
— Galilean addition of velocities
4 Special case: U = (vy,0,0):
o Ux + U . uy/y . U
ux:x—vxu)f’ uy:y—vxvu” uz=%. (2.18)
1 _|_ c2x 1 _|_ c2x 1 _|_ c2x
i! Note that also the transverse components of u” are modified, but in a different way than the
collinear component v’,. For i’ = (u/;,0,0) we get our previous result for collinear velocities
Eq. (1.70) back.
5 | Thomas-Wigner rotation [52,53]:
Remember that for collinear addition of velocities the concatenation of two boosts yields another
boost: Ay, Ay, = Ay, [recall Eq. (1.57)].
As a straightforward (but tedious) calculation using two general boosts Eq. (1.75) shows, this is no#
true in general: AzA; # Ag with w = 4 @ v. Rather one finds
AsAi = Nigi Arai,v) (2.19)
with the & Thomas-Wigner rotation R(i, v) € SO(3) (we omit the expliclit form of R(i, ¥) here).
This is not in contradiction with our general addition for velocities above because there we were
only interested in the velocity of a moving particle (which you can identify with the origin of its
rest frame K”'); we completely ignored the axes of K. The Thomas-Wigner rotation tells you that
the concatenation of two pure boosts is not a pure boost in general.
2.4. Proper time and the twin “paradox”
1 <t Time-like trajectory & < & of a spaceship with departure D € & and arrival 4 € .
< Coordinate parametrization X(7) of & in system K with
departure [D]x = (tp,Xp) and arrival [A]g = (t4,X4) : (2.20)
Formally, & is a set of coincidence classes parametrized in K by the clock events (z, X (¢))k:
P ={l(t.X)k]|t € [tp,1a]} S €. (2.21)
This suggests the formal notation [P]x = (¢, X(¢)).
1 K
4
-("D
" >
Xp X4 x
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2 Thought experiment:

The spaceship takes a clock along and resets it to tp = t(¢p) at departure D.

What is the reading 74 = t(z4) of the clock at arrival 4?

We assume that the clock in the spaceship is type-identical to the clocks used for inertial observers.

3 Idea:

Approximate the trajectory by a polygon of N segmentsi = 1,..., N separated by time steps #;

(with 7o :=tp and 1y := t4):

NICOLAI LANG

Let At; :=t;_1 —t; and A)_fi = )_f(li_l) — 55(1‘,')

For each segment, there is an inertial frame K’ with a ¢’-axis that follows the spacetime
segment (because all segments are time-like!). This is the instantaneous rest frame of the
spaceship where the clock in the spaceship and the origin clock of K’ are at the same place and
at rest relative to each other. Since the clocks are type-identical, the time At; accumulated
by the spaceship clock on this segment is identical to the time At/ elapsed for the origin
clock of K’ on this segment: Ar; = At/. This time is equal to the spacetime interval

(As))? = (cAt})*> — 0 because the origin clock is at rest in K’ (so that AX] = 0). But
remember that the spacetime interval (As/)? is Lorentz invariant so that we can calculate
the same number in any inertial system: (As/)? = (As;)? = (cA;)? — (AX;)2.

In summary, on the i th interval, the spaceship clock accumulates the time

2
Asi VA AL)? — (A%;)? [ A A
A'L'i = i . ! = \/(C l) ( Xl) = Atl 1 — —(Axlc{zAtl)2 (2.22)

Cc c c

The above chain of arguments provided us with a physical interpretation for the Lorentz
invariant spacetime interval (As)? > 0 of time-like separated events: It measures (up to a
factor of ¢) the time accumulated by an inertial (= unaccelerated) clock that takes part in
both events.

Continuum limit N — oo (v(7) := [v(1)| = |§c(z)|):

ds 002 dt
dr = . =dry/1-— xg;z) < de = Yv(t) (2.23)

Note that this is just an infinitesimal version of the time-dilation formula Eq. (2.14) with
At — dr and Aty — dr.
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Since (As)? = (As")? is Lorentz invariant:

A 3 d ds’ o
K =K' dt\ll—%’f:;:?s=dt/\/1—"£;2)2 (2.24)

You can check this also explicitly using the Lorentz transformation Eq. (1.75).

i = — &% Proper time accumulated by the spaceship clock along the trajectory #:

N :
At[P] = lim Z At = / dr = / Q = /tA dry/1— ﬂ—’f (2.25)
N—o0 P P C ip ¢

Segment
i=1

As constructed, the proper time At [$] of a time-like trajectory &, parametrized by X (¢)
fort € [to, 11], is the time elapsed by a clock that follows this trajectory in spacetime.

i! This result is valid for accelerated clocks.

In general, SPECIAL RELATIVITY can described the physics of accelerated objects as
long as the descpription of the process is given in an inertial coordinate system (as is
the case here).

i! The right-most expression in Eq. (2.25) yields the same result i all inertial systems
K [recall Eq. (2.24)]. This is why t[#] is a function of the event trajectory # and
not its coordinate parametrization X(¢). This is important: It tells us that all inertial
observers will agree on the reading of the spaceship clock 74 at arrival A (although their
parametrization X (t) may look different).

Note that since X () is assumed to be time-like, it is V; : |X(¢)| < ¢ such that the
radicand is always non-negative.

t[e] is a functional of the trajectory #; this is why we use square-brackets.

4 | Which trajectory #* between the two events D and A maximizes the proper time At?
A cd K qct K'
AT,z a7tP1

A ot

LIy

i | D and A are time-like separated — 3 Inertial system K’ = K(D, A) with

[Dlk = (1), = 0,%5, =0) and [Alg = (}. %, = 0) (2.26)

That is, without loss of generality, we can Lorentz transform into an inertial system where the
two events happen at the same location (and by translations we can assume that this location
is the origin 0 and that the coordinate time is 7, = 0 at D). We label the time and space

coordinate in K’ by ¢’ and X’. Because of the relativity principle [SR, K’ is as good as any

system to describe events.
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5

Time of an arbitrary path # > D, 4 with [Pk = ¢/, X'(¢")):

t//‘l S0l )_é,(t/)Ea txil
AT[P] = / de’\/1— "f}# < dt’ =ty —t, = AT[P*]  (227)
D D

Here 2* is the trajectory between D and A that is parametrized by the constant function
X'(#") = 0in K’. In other inertial systems, this trajectory will not be constant; however, it is
inertial, i.e., * is described by a trajectory between D and A with uniform velocity.

Check this by applying a Lorentz transformation to the coordinates (¢’, 0)k!

— Clocks that travel along the inertial trajectory $* between D and A collect the
largest proper time t* = At[P*].

Collecting the “largest time” means that the these clocks run the fastest.

It is important to let this result sink in:

Let K’ be the rest frame of earth (which is located in the origin 0) and consider two twins of age tp:

« Twin S departs with a Spaceship at D, flies away from earth, turns around and returns to
earth at A. Twin S therefore follows a trajectory similar to &, in the sketches above.

« Twin E stays on Earth. He follows the inertial trajectory #* in the sketches above.

We just proved above:

(Age of Twin S at A) = At[P2] + p < AT[P*] + tp = (Age of Twin E at A)
g g

This is the famous #% Twin “paradox”: Twin S aged less than Twin E.

6  Why there is #o paradox:

« If you don’t see why the above result should be paradoxical:

Good! Move along. Nothing to see here! ©

o Why one could conclude that the above result is paradoxical (= logically inconsistent):

- From the view of Twin E, Twin S speeds around quickly, thus time-dilation tells him
that Twin S should age slower. And indeed, when Twin S returns, he actually didn’t
age as much.

- Now, you conclude, due to the relativity principle [SR|, we could also take the perspective
of Twin S (i.e., our system of reference is now attached to the spaceship). Then Twin S
would conclude that time-dilation makes Twin E (who now, together with earth, speeds

around quickly) age more slowly. But this does not match up with the above result that,

when both twins meet again at A, Twin S is the younger one! Paradox!
The resultion is quite straightforwad:

The invocation of the relativity principle [SR in the last point is not admissible! Remember
that [SR only makes claims about the equivalence of inertial systems. Now have a look at the
trajectory &, of the spaceship again: it is clearly accelerated and cannot be inertial. And
that there /s at least a period where the spaceship (and Twin S) is accelerating is a neccessity
for Twin S to return to Twin E (at least in flat spacetimes, but not so in curved ones [54])!
This implies that the reunion of both twins at A requires at least one of them to #ot stay in
an inertial system. This breaks the symmetry between the two twins and explains why the
result can be (and is) asymmetric.
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o ;! For historical (and anthropocentric) reasons, the “twin paradox” is called a “paradox.”
We stick to this term because we have to - and not because it is appropriate name. The term
“paradox” suggests an intrinsic inconsistency of RELATIVITY. As we explained above: 7%s
is not the case. All “paradoxes” in RELATIVITY are a consequence of unjustified, seemingly
“intuitive” reasoning. The root cause is almost always an inappropriate, vague notion of
“absolute simultaneity” that cannot be operationalized.

» An overview on different geometric approaches to rationalize the phenomenon can be found

in Ref. [55].
Below are two widely used spacetime diagrams of an idealized version where Twin S changes
inertial systems only once from Sp to S4 halfway through the journey at R. You can think of
this as an instantenous acceleration at the kink. Note, however, that the acceleration itself
is dynamically irrelevant for the arguments; it is only important that the inertial frames in
which Twin S departs and returns are not the same:

« "
‘ O‘a QO?V\'\«& _

E

0 / Dy >
b x S x
- In the left diagram the slices of simultaneity in the two systems Sp and Sy are drawn. As
predicted by time-dilation (and mandated by [SR'), Twin S observes the clocks of Twin E
to run slower during his “inertial periods”, i.e., while he stays in a single inertial system.
However, the moment Twin S “jumps” from Sp to S4 at R, his notion of simultaneity
changes instantaneously: In Sp, R and Rp are simultaneous; in S4, however, R and
R4 are simultaneous. Due to this jump, the record of Twin S contains now a temporal
gap for events on earth (highlighted interval). It is this “missing” time interval that
overcompensates the slower running clocks on earth (as observed from Sp and Sy4) and

makes Twin S conclude that Twin E ages faster (in agreement with the actual outcome
of the experiment).

If you wonder what happened to the (missing) observations of events in the triangle
R4RRp: there is a nice explanation in Schutz [5]. (The bottom line is that Twin S
constructs a bad coordinate system by stopping the recording of events in system Sp
when he reaches R.)

- In the right diagram, we draw /ight signals (“ pings”) of an earth-bound clock next to
Twin E sent to Twin S. Twin S receives these signals and measures their period. This
idealizes how Twin S sees (not observes!) the clocks ticking on earth (and, by proxy, how
fast Twin E ages). It is important to understand the difference between this “seeing”
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and our operational definition of observing (using the contraption called an « inertial
system, as used in the left diagram). As demonstrated by the diagram, Twin S first sees
the clock on earth ticking slower; but when he turns around at R, the clocks on earth
(apparantly) speed up significantly. In the end, this speedup overcompensates for the
slowdown during the first part of the journey so that Twin S again arrives at the (correct)
conclusion that Twin E ages faster. Note that the speedup of the earth-bound clock
seen by Twin S during the second half of his journey does not contradict time-dilation
because seesng is not observing. This is similar to the ™ Penrose-Terrell effect in that a
genuine relativistic effect (here: time-dilation) is distorted by an additional “imaging
effect” due to the finite speed of light.

* In our careful derivation above, we not only showed that Twin S ages less than Twin E; we
also showed that this conclusion is independent of the inertial observer! Thus we know that
there will be no dispute about the different ages between different inertial observers.

o The Hafele-Keating experiment [50,51] and the muon decay experiments [48], mentioned pre-
viously in the context of time-dilation, are experimental confirmations of the twin “paradox.”
So our theoretical prediction above (that Twin S ages less than Twin E) is experimentally
confirmed. End of discussion.

e Our derivation of the accumulated proper time along trajectories in spacetime is both mathe-
matically sound and experimentally confirmed. This qualifies SPECIAL RELATIVITY as a
successfull theory of physics. Operationally there is nothing to complain about: the theory
does its job to produce quantiative predictions of real phenomena. So why do so many people
(physicists included) - despite the various efforts to visualize the phenomenon - have this
nagging feeling of dissatisfaction that they cannot get rid of ? The reason, so I would argue, is
the human brain and its proclivity to inject concepts of absolute simulateneity into its model
building. This qualifies the historical overemphasis of the twin “paradox” as a meta problem:
The question to study is not how to “solve” the twin “paradox” (as we showed above, there
is nothing to solve); the question to study is why so many peoply thought (and still think)
that there is a problem in the first place. This meta problem is an actual problem to study; but
it falls into the domain of cognitive science, and not physics!

7 | Two lessons to be learned from this:

You can outlive your inertial-system-dwelling peers

by changing inertial systems (= accelerating) at least once.

* ;! You “live longer” when speeding around than your twin on earth, i.e., when you return,
your twin might be 80 and have reached the end of his lifespan while you are still in your
fourties. This is a real, observable effect, not an illusion of sorts. However, “living longer”
does 7ot mean that you somehow have “more time to spend” than your twin because all
physical phenomena in your spaceship experience the same effect. It is not your metaboslism
that slows down wrt. other physical phenomena around you, it is #me itself. Put differently:
If you and your twin both try to read as many books as possible during your lifetimes (say one
per month), both of you will have read roughly the same amount of books when either of you
dies (say at the age of 80).

 The mere fact that our universe really allows for this (at least in theory) makes it much more
interesting than its boring alternative: a Galilean universe.
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and

Phenomena like length contraction and the twin “paradox” are physically real.

Their “paradoxical” flavor is a phenomenon of human cognition, not physics.

This is why we put “paradox” always in quotes in the context of RELATIVITY.
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3. Mathematical Tools I: Tensor Calculus

In this chapter we introduce tensor calculus (1 Ricci calculus) for general coordinate transformations ¢
(which will be useful both in SPECIAL RELATIVITY and GENERAL RELATIVITY). The coordinate
transformations ¢ relevant for SPECIAL RELATIVITY are Lorentz transformations (and therefore linear)
which simplifies expressions often significantly (- Chapter 4). However, this special feature of coordinate
transformations in SPECIAL RELATIVITY is not crucial for the discussions in this chapter.

Goal: Construct Lorentz covariant (form invariant) equations
(for mechanics, electrodynamics, quantum mechanics)

Question: How to do this systematically?

Note that (we suspect that) Maxwell equations are Lorentz covariant. Clearly this is not obvious and
requires some work to prove; we say that the Lorentz covariance is not manifest: it is there, but it is hard
to see. Conversely, without additional tools that make Lorentz covariance more obvious, it is borderline
impossible to construct Lorentz covariant equations from scratch (which we must do for mechanics and
quantum mechanics!).

We are therefore looking for a “toolkit” that provides us with elementary “building blocks” and a set of
rules that can be used to construct Lorentz covariant equations. This toolbox is known as tensor calculus
or ™ Ricci calculus; the “building blocks” are tensor fields and the rules for their combination are given by
index contractions, covariant derivatives, etc. The rules are such that the expressions (equations) you can
build with tensor fields are guaranteed to be Lorentz covariant. This implies in particular that if you can
rewrite any given set of equations (like the Maxwell equations) in terms of these rules, you automatically
show that the equations were Lorentz covariant all along. We then say that the Lorentz covariance is
manifest: one glance at the equation is enough to check it.

Later, in GENERAL RELATIVITY, our goal will be to construct equations that are invariant under
arbitrary (differentiable) coordinate transformations (not just global Lorentz transformations). Luckily, the
formalism we introduce in this chapter is powerful enough to allow for the construction of such - general
covariant equations as well. This is why we keep the formalism in this chapter as general as possible, and
specialize it to SPECIAL RELATIVITY in the next Chapter 4. The discussion below is therefore already a
preparation for GENERAL RELATIVITY; it is based on Schroder [1] and complemented by Carroll [56].

3.1. Manifolds, charts and coordinate transformations

1 D-dimensional Manifold

= Topological space that locally “looks like” D-dimensional Euclidean space R2:

S =S? o~ R:.
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