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2. Kinematic Consequences

In this chapter we study implications of the special Lorentz transformations Eq. (1.75) and Eq. (1.77) that
follow without imposing a model-specific dynamics (= equations of motion). We refer to these implications
as kinematic because they follow from fundamental constraints on the degrees of freedom of all relativistic
theories. The phenomena we will encounter are therefore features of spacetime itself – and not of some
entities that live on/in (or couple to) spacetime.

¡! The phenomena we will encounter are not “illusions” (in the sense that we“see” things differently than
they“really are”). Remember that we precisely defined what we mean by observers/reference frames;
in particular, we emphasized that we do not “look” at anything, we measure events in a systematic way,
using a well-defined structure called ← inertial system. All phenomena we will encounter are derived from
and to be understood in this operational, physically meaningful context.

2.1. Length contraction and the Relativity of Simultaneity

1 | ^ Inertial systems A
vx
�! A0 with rod on x0-axis and at rest in A0:

Remember that A
vx
�! A0 denotes a boost in x-direction with vx (as measured in A) where the

spatial axes of both A and A0 coincide at t D 0:

In such situations, we refer to A0 as the ⁂ rest frame of the rod and A as the ⁂ lab frame (some
call A the ⁂ stationary frame). In the following, coordinates of events in the inertial system A0 are
marked by primes.

↓ Lecture 6 [19.11.25]
2 | First, we have to define what we mean by the“lenght” of an object:

“Length” is an intrinsically non-local concept. It is not something you can measure or define at a
single point in space. Consequently, there are no“length-events” in E . Thus we need an algorithm
(= operational definition) of what we mean by“length”.

^ Two event types:

feLg D fhLeft end of rod detectedig (2.1a)

feRg D fhRight end of rod detectedig (2.1b)
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Think of an event type as a set (equivalence class) of all elementary events that you deem ↑ type-
identical (but not ↑ token-identical). In the example given here, there will be many events eL in
spacetime that signify “Left end of rod detected” (if there is one rod, there will be one such event
for each time t); these are different events of the same type feLg.

One could even declare that the event type feLg is what we refer to as “the left end of the rod.”

! Algorithm LENGTH to compute“Length of Rod” in system K at time t :

LENGTH:

→ Input: Coincidences E, Inertial system label K, Time t

← Output: Length lK of rod at time t as measured in K

1. Find (unique) event L 2 E with feLg 2 L and .t; El/K 2 L.

2. Find (unique) event R 2 E with feRg 2 R and .t; Er/K 2 R.

3. Return lK WD jEl � Er j.

Here, feLg 2 L is shorthand for feLg \ L ¤ ;. In words: the coincidence class L contains an
event of the type “Left end of rod detected”.

Note that we define“length” as the spatial distance between the two ends of the rod at the same
time t (as measured by the clocks inK). I hope you agree that this is what one typically means by
“length.”

3 | We now apply this algorithm twice, in the lab frame A and the rest frame A0:

i | Rest frame A0:

⁂ Proper length �⁂ Rest length WD Length of rod in A0:

l0 WD LENGTH.E; t 00IA
0/ D jEl 00 � Er

0
0j D jl

0
0 � r

0
0j (2.2)

with simultaneous clock events .t 00; El
0
0/A0 2 L0 and .t 00; Er

0
0/A0 2 R0.

The time t 00 that we choose is irrelevant since the rod is (by definition) at rest in A0. Since
the rod lies on the x0-axis, it is El 00 D .l

0
0; 0; 0/ and Er

0
0 D .r

0
0; 0; 0/.

The subscript “0” in L0 indicates that this is a specific event (coincidence class) we selected
in A0 to compute the length of the rod. It does not mean“as seen from the rest frame A0” or
anything like that. Remember that coincidence classes in E are objective information!

ii | Lab frame A:

Length of moving rod in A:

l WD LENGTH.E; t IA/ D jEl � Er j (2.3)

with simultaneous clock events .tl ; El/A 2 L and .tr ; Er/A 2 R with tl D tr D t .

The time t that we choose might be irrelevant as well, but we do not know this yet.

¡! There is no reason to assume that the eventsL0/R0 chosen in A0 to measure the length of
the rod are identical to the events L/R used in A: L0 ¤ L andR0 ¤ R in general.

4 | How does l0 relate to l?
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i | In Section 1.5 we did a lot of hard work to compute the transformation ' which transforms
the coordinates of an event in one inertial system into the coordinates of the same event in
another inertial system. We identified the transformation as the Lorentz transformation:

ƒ.A
vx
�! A0/ W ŒE�A D .t; Ex/ D x 7! ƒvx

x D x0
D .t 0; Ex0/ D ŒE�A0 (2.4)

ii | So let us use this tool [namely Eq. (1.77)] to obtain the coordinates of the events L and R
(used for the length measurement in A) in the rest frame A0 of the rod:

ŒL�A0 D

8̂̂̂̂
<̂
ˆ̂̂:
ct 0l D 


�
ctl �

vx

c
lx
�

l 0x D 
.lx � vxtl/

l 0y D ly

l 0´ D l´

and ŒR�A0 D

8̂̂̂̂
<̂
ˆ̂̂:
ct 0r D 


�
ctr �

vx

c
rx
�

r 0
x D 
.rx � vxtr/

r 0
y D ry

r 0
´ D r´

(2.5)

Here we use El D .lx ; ly ; l´/ and Er D .rx ; ry ; r´/. Since we declared that the rod is fixed on
the x0-axis of A0, and feLg 2 L and feRg 2 R, it must be l 0y D l 0´ D r 0

y D r 0
´ D 0, and

therefore El D .lx ; 0; 0/ and Er D .rx ; 0; 0/. That is, the rod is not rotated by the boost and
always lies on the x-axis of A as well. In particular: l D jEl � Er j D jlx � rxj.

! Two immediate conclusions:

a | In A0 the two events L and R are no longer simultaneous:

tl D tr in A but t 0l ¤ t
0
r in A0 (since lx ¤ rx). (2.6)

! The simultaneity of events is observer-dependent.

This ambiguity of simultaneity can be graphically illustrated in a spacetime diagram (for
details on how to draw the .t 0; x0/-axes in A: → Problemset 2):

• As a side note, this calculation implies that not only is it generally not true that
L0 D L andR0 D R, it is actually impossible (at least for both pairs).

• In the sketch above, the “interior of rod”-events are painted gray. One is tempted
to ask: Which “line” of these events is the rod? The counterintuitive answer is
that this depends on the observer: For A-observers, horizontal lines of gray events
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make up “the rod”, whereas for the A0-observer tilted lines are “the rod”. It is
actually more reasonable to think of the complete area of gray events as “the rod”,
just as the event type feLg is “the left edge” of the rod. This suggests that our
intuitive concept of the instantaneous existence of extended objects – which feels so
natural to us – is, to some extend, misleading.

b | In A0 the coordinate distance is different:

jl 0x � r
0
xj
tl Dtr
D 
 jlx � rxj

vx¤0

¤ jlx � rxj D l (2.7)

¡! The time-dependence cancels so that the expressions are time-independent.

At this point, it is a bit premature to identify the left-hand side as the rest length l0
of the rod because these are spatial coordinates of events that are not simultaneous!
(Remember that the length of any object in any frame is defined as the coordinate
distance of simultaneous events.)

However, since A0 is (by definition) the rest frame of the rod, the position labels of the
A0-clocks adjacent to the ends of the rod are the same for all events:

l 0x
feLg2L
D l 00

r 0
x

feRg2R
D r 0

0

9=; ) jl 0x � r
0
xj D jl

0
0 � r

0
0j D l0 (2.8)

!⁂ Length contraction �⁂ Lorentz contraction:

A rod of rest length l0 is shorter if measured from an inertial system in relative motion:

l D l0

q
1 � v2

c2

v¤0
< l0 (2.9)

• ¡! Due to isotropy, this result is true for any length of extended objects in the
direction of the boost. A rod along the y0-axis, for example, is contracted according
to Eq. (2.9) for a boost in y-direction, but not for a boost in x-direction.

• The rod is just a proxy for any physical object; the Lorentz contraction therefore
affects all physical objects in the same way. The contraction is not a dynamical
feature of the object itself (like a force that compresses the atomic lattice) but an
intrinsic property of space(time).

• Note that we say above“if measured from…” and not “as viewed from….” This
distinction is important: If you ask how you would visually perceive extended objects
flying by (or how they look on a picture taken by a camera) you have to factor in
that the photons bouncing of the object at different points take different times to
reach your eye (our the camera sensor). If you do the math (→ Problemset 3), this
additional optical effect leads to the surprising result that 3D objects actually do
not look “squeezed” but rotated. This implies in particular that a moving sphere
still looks like a sphere and not like an ellipse (↑ Penrose-Terrell effect [43, 44], see
also Ref. [45]).

You can experience this effect (among others) in the educational game“A Slower
Speed of Light,” which has been developed by the MIT Game Lab for educa-
tional purposes, and can be downloaded here for Windows, Mac, and Linux (→
Problemset 3):
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→Download“A Slower Speed of Light”

Recently, the Penrose-Terrell effect was visualized in a laboratory experiment where
the speed of light was “virtually” reduced to less than 2ms�1 [46].

You should always keep in mind, however, that this “looking” is not what we refer
to as observing in relativity; the latter has been defined operationally as a
measurement procedure at the beginning of this course.

2.2. Time dilation

1 | ^ Inertial systems A
vx
�! A0 and a clock Ex0 at rest in A0:

2 | ^ Two events:

A0-Clock Ex0 meets A-clock Ex0: .t 00; Ex
0/A0 � .t0; Ex0/A 2 E0 (2.10a)

A0-Clock Ex0 meets A-clock Ex1: .t 01; Ex
0/A0 � .t1; Ex1/A 2 E1 (2.10b)

¡! The two eventsE0 andE1 relate three different clocks: The single A0-clock Ex0 and two different
A-clocks Ex0 and Ex1.

3 | As for length, the concept of “duration” cannot be defined locally in spacetime. We therefore need
an operational definition (algorithm) of “duration”:

DURATION:

→ Input: Two events E0 and E1, Inertial system label K

← Output: Time interval �tK between events as measured in K

1. Find (unique) clock event .t0; Ex0/K 2 E0.

2. Find (unique) clock event .t1; Ex1/K 2 E1.

3. Return �tK WD t1 � t0.

Hopefully you agree that this is a reasonable definition of the duration (or time interval) between
two events.

4 | We can now apply this algorithm to determine the time elapsed betweenE0 andE1:

In A0
W �t 0 D DURATION.E0; E1IA

0/ D t 01 � t
0
0 Measured by a single clock! (2.11a)

In A W �t D DURATION.E0; E1IA/ D t1 � t0 Measured by two clocks! (2.11b)

5 | How does �t relate to �t 0?
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i | Since .t 00; Ex
0/A0 � .t0; Ex0/A and .t 01; Ex

0/A0 � .t1; Ex1/A, we can use the Lorentz transformation
to translate between the coordinates:
Inverse of Eq. (1.77)
�����������!

Remember thatƒ�1
Ev
D ƒ�Ev because of reciprocity; the inverse Lorentz transformation can

then be obtained by substituting vx 7! �vx :

ŒE0�A D

(
ct0 D 


�
ct 00 C

vx

c
x0
�

x0 D 
.x
0
C vxt

0
0/

and ŒE1�A D

(
ct1 D 


�
ct 01 C

vx

c
x0
�

x1 D 
.x
0
C vxt

0
1/

(2.12)

We omit the other two coordinates since they are invariant anyway; the transformation of
the spatial coordinate is also not necessary for the following derivation.

ii | Subtracting the equations for the time coordinate of both events yields:

c.t1 � t0/ D 
c.t
0
1 � t

0
0/ (2.13)

Note that in the inverse Lorentz transformation Eq. (2.12) the position coordinate in A0 is x0

for both events because the same A0-clock takes part in both coincidences.

iii | ⁂ Time dilation:

! The moving clocks in A0 run slower than the stationary clocks in A:

�t D
�t0q
1 � v2

c2

v¤0
> �t0 (2.14)

We renamed�t 0 � �t0 to emphasize the analogy to the proper length l0:

�t0: ⁂ Proper time elapsed in A0 between E0 and E1
�t : Time elapsed in A between E0 and E1

• The characteristic feature of the proper time �t0 between two (time-like separated)
eventsE0 andE1 is that it can be measured by a single inertial clock that takes part in
both events. All other time intervals must be measured by subtracting the reading of
two different clocks. Eq. (2.14) tells you that these time intervals are always longer than
the proper time�t0.

• ¡! Due to isotropy, our result above is true for boosts in any direction.

Note that in the derivation above, we did not impose any special constraints on the
positions of the clocks (except that they coincide pairwise atE0 andE1). In particular,
we did not assume (despite the sketch suggesting this) that the clocks are located on
the x=x0-axis. All clocks in A0 are slowed down in the same way, irrespective of their
location!

• This result does not contradict our assumption that all clocks are type-identical (= run
with the same rate if put next to each other at rest) because the two events needed
to compare the tick rate of moving clocks necessarily describe coincidences between
different pairs of clocks.

6 | Relativity principle:

Because of the relativity principle SR time dilation must be completely symmetrical: The A0-clocks
run slower compared to the A-clocks, and the A-clocks run slower compared to the A0 clocks.
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That this is indeed that case (without being a clock“paradox”) is best illustrated in a symmetric
spacetime diagram:

The existence of the “median frame”A00 between A
vx
�! A0 can be easily shown with the addition

for collinear velocities Eq. (1.70). This symmetric form of a spacetime diagram is sometimes called
↑ Loedel diagram [47] and makes the symmetry between inertial frames manifest; in particular,
the units on the axes of A and A0 are identical (they are not identical to the units of A00, tough). In
this symmetric form, the t 0-axis is orthogonal to the x-axis and the t -axis to the x0-axis. Note that

because of the relativistic addition of velocities, it is A00
Qvx
�! A0 and A00

�Qvx
��! A with Qvx D vx



1C


and tan.'/ D Qvx

c
(→ Problemset 3). Only in the non-relativistic limit vx=c ! 0 one finds Qvx D vx

2

as naïvely expected.

Note that due to the relativity of simultaneity, the two observers use different pairs of clock-events
to decide which of the two origin clocks runs slower:

• ForA the two clock events QD and C are simultaneous such that one has to conclude that the
(blue) A0-clock runs slower than the (red) A-clock.

• By contrast, for the observer A0 the two eventsD and QC are simultaneous such that one has
to conclude that the (red) A-clock runs slower than the (blue) A0-clock.

It is evident from the diagram that there is no disagreement about coincidences of events (or
readings of clocks). It is just the observer-dependent concept of simultaneity that leads to the
seemingly “paradoxical” reciprocity of time dilation.

7 | Experiments:

• Muon decay [48]:

Muons quickly decay into electrons (and neutrinos):

��
! e�

C �� C N�e : (2.15)

This decay can be readily observed in storage rings of particle colliders like CERN. The
lifetime of muons at rest (measured by clocks in an inertial laboratory frame) is �0� �
2:1948.10/ µs. However, the lifetime of muons in flight (close to the speed of light) is
measured to be �� � 64:368.29/ µs, i.e., much longer! If one carefully takes into account
the speed of the muons and additional experimental imperfections, this result fits Eq. (2.14)
with deviations of only� 0:1% [48].

Notes:

– In the rest frame of the flying muons one would measure the usual lifetime �0� �
2:1948.10/ µs. However, in this frame, the laboratory is Lorentz contracted such that the
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muon reaches exactly the same point in space where it decays in this “shorter” lifetime.
Note how time-dilation and Lorentz contraction provide different explanations for the
same experimental obervation.

– One can also use different particle species to study time dilation, for example pions (a
sort of meson, i.e., a hadron with one quark and one antiquark) [49].

• Hafele-Keating experiment [50, 51]:

In 1971, J.C. Hafele and R. E. Keating took four Cesium atomic clocks along commerical jet
flights around the globe twice: once eastward and once westward. Compared to a reference
clock on the ground, the clocks on the eastward flight lost on average � 59 ns (= they
ran slower) and the clocks on the westward flight gained � 273 ns (= they ran faster). To
understand this qualitatively, note that the reference clock on the ground is rotating (together
with earth) and therefore is not an inertial clock. Therefore imagine an (approximately)
inertial reference system flying along earth around the sun, and from this system look down
on the north pole; earth is now slowly rotating beneath you. From this inertial system,
the eastward flight has higher velocity than the reference clock, which, in turn, has higher
velocity than the westward flight. Thus you find that the eastward clock runs slower than the
reference clock which runs slower than the westward clock (this is also true if the clocks are
accelerated,→ below). These theoretical considerations are explained in [50].

2.3. Addition of velocities

Details: → Problemset 2

1 | ^ Particle moving with Eu0 D
dEx0

dt 0 in system K 0 and inertial system K with K
Ev
�! K 0:

2 | Velocity Eu in K:

Eu D
dEx
dt
� Ev ˚ Eu0 $

1

1C Ev�Eu0

c2

�
Ev C
Eu0


v
C


v

c2.1C 
v/
.Eu0
� Ev/ Ev

�
(2.16)

Proof: Use Eq. (1.75) (→ Problemset 2).

¡! The relativistic addition of velocities ˚ is in general not commutative (Ev ˚ Eu ¤ Eu ˚ Ev) nor
associative [Ev˚ .Eu˚ Ew/ ¤ .Ev˚ Eu/˚ Ew]. As you can easily see from Eq. (2.16), it is also not linear:
.�Ev/˚ .�Eu/ ¤ �.Ev ˚ Eu/. Be careful: There are different notations (in particular: orderings) used
in the literature.
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3 | ^ Non-relativistic limit (c !1 ) 
v ! 1):

lim
c!1

Ev ˚ Eu0
D lim
c!1

Eu0
˚ Ev D Ev C Eu0 (2.17)

! Galilean addition of velocities

4 | Special case: Ev D .vx; 0; 0/:

ux $
vx C u

0
x

1C
vxu

0
x

c2

; uy $
u0
y=
v

1C
vxu

0
x

c2

; u´ $
u0
´=
v

1C
vxu

0
x

c2

: (2.18)

¡! Note that also the transverse components of Eu0 are modified, but in a different way than the
collinear component u0

x . For Eu
0 D .u0

x ; 0; 0/ we get our previous result for collinear velocities
Eq. (1.70) back.

5 | Thomas-Wigner rotation [52, 53]:

Remember that for collinear addition of velocities the concatenation of two boosts yields another
boost: ƒvx

ƒux
D ƒwx

[recall Eq. (1.57)].

As a straightforward (but tedious) calculation using two general boosts Eq. (1.75) shows, this is not
true in general: ƒEvƒEu ¤ ƒ Ew with Ew D Eu˚ Ev. Rather one finds

ƒEvƒEu D ƒEu˚EvƒR.Eu;Ev/ (2.19)

with the ⁂ Thomas-Wigner rotation R.Eu; Ev/ 2 SO.3/ (we omit the expliclit form of R.Eu; Ev/ here).

This is not in contradiction with our general addition for velocities above because there we were
only interested in the velocity of a moving particle (which you can identify with the origin of its
rest frameK 00); we completely ignored the axes ofK 00. The Thomas-Wigner rotation tells you that
the concatenation of two pure boosts is not a pure boost in general.

2.4. Proper time and the twin“paradox”

1 | ^ Time-like trajectory P � E of a spaceship with departureD 2 P and arrival A 2 P .

^ Coordinate parametrization Ex.t/ of P in system K with

departure ŒD�K D .tD; ExD/ and arrival ŒA�K D .tA; ExA/ W (2.20)

Formally, P is a set of coincidence classes parametrized inK by the clock events .t; Ex.t//K :

P D f Œ.t; Ex.t//K � j t 2 ŒtD; tA� g � E : (2.21)

This suggests the formal notation ŒP �K D .t; Ex.t//.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → KINEMATIC CONSEQUENCES

64
PAGE

2 | Thought experiment:

The spaceship takes a clock along and resets it to �D D �.tD/ at departureD.

What is the reading �A D �.tA/ of the clock at arrival A?

We assume that the clock in the spaceship is type-identical to the clocks used for inertial observers.

3 | Idea:

Approximate the trajectory by a polygon of N segments i D 1; : : : ; N separated by time steps ti
(with t0 WD tD and tN WD tA):

i | Let �ti WD ti�1 � ti and �Exi WD Ex.ti�1/ � Ex.ti /

For each segment, there is an inertial frame K 0 with a t 0-axis that follows the spacetime
segment (because all segments are time-like!). This is the instantaneous rest frame of the
spaceship where the clock in the spaceship and the origin clock ofK 0 are at the same place and
at rest relative to each other. Since the clocks are type-identical, the time��i accumulated
by the spaceship clock on this segment is identical to the time �t 0i elapsed for the origin
clock of K 0 on this segment: ��i D �t 0i . This time is equal to the spacetime interval
.�s0

i /
2 D .c�t 0i /

2 � 0 because the origin clock is at rest in K 0 (so that �Ex0
i D

E0). But
remember that the spacetime interval .�s0

i /
2 is Lorentz invariant so that we can calculate

the same number in any inertial system: .�s0
i /
2 D .�si /

2 D .c�ti /
2 � .�Exi /

2.

In summary, on the i th interval, the spaceship clock accumulates the time

��i D
�si

c
WD

q
�s2i

c
D

p
.c�ti /2 � .�Exi /2

c
D �ti

q
1 � .�Exi=�ti /

2

c2 (2.22)

The above chain of arguments provided us with a physical interpretation for the Lorentz
invariant spacetime interval .�s/2 > 0 of time-like separated events: It measures (up to a
factor of c) the time accumulated by an inertial (= unaccelerated) clock that takes part in
both events.

ii | Continuum limit N !1 (v.t/ WD jEv.t/j D j PEx.t/j):

d� D
ds
c
D dt

r
1 �

PEx.t/2

c2 ,
dt
d�
D 
v.t/ (2.23)

Note that this is just an infinitesimal version of the time-dilation formula Eq. (2.14) with
�t ! dt and�t0 ! d� .
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Since .�s/2 D .�s0/2 is Lorentz invariant:

K
ƒ
�! K 0

W dt

r
1 �

PEx.t/2

c2 D
ds
c
D

ds0

c
D dt 0

r
1 �

PEx0.t 0/2

c2 (2.24)

You can check this also explicitly using the Lorentz transformation Eq. (1.75).

iii | !⁂ Proper time accumulated by the spaceship clock along the trajectory P :

��ŒP � D lim
N!1

NX
Segment
iD1

��i D

Z
P

d� D
Z

P

ds
c
WD

Z tA

tD

dt

r
1 �

PEx.t/2

c2 (2.25)

• As constructed, the proper time��ŒP � of a time-like trajectoryP , parametrized by Ex.t/
for t 2 Œt0; t1�, is the time elapsed by a clock that follows this trajectory in spacetime.

• ¡! This result is valid for accelerated clocks.

In general, special relativity can described the physics of accelerated objects as
long as the descpription of the process is given in an inertial coordinate system (as is
the case here).

• ¡! The right-most expression in Eq. (2.25) yields the same result in all inertial systems
K [recall Eq. (2.24)]. This is why �ŒP � is a function of the event trajectory P and
not its coordinate parametrization Ex.t/. This is important: It tells us that all inertial
observers will agree on the reading of the spaceship clock �A at arrivalA (although their
parametrization Ex.t/may look different).

• Note that since Ex.t/ is assumed to be time-like, it is 8t W j PEx.t/j < c such that the
radicand is always non-negative.

• �Œ�� is a functional of the trajectory P ; this is why we use square-brackets.

4 | Which trajectory P � between the two eventsD and A maximizes the proper time��?

i | D and A are time-like separated! 9 Inertial system K 0 D K.D;A/ with

ŒD�K0 D .t 0D D 0; Ex
0
D D

E0/ and ŒA�K0 D .t 0A; Ex
0
A D
E0/ (2.26)

That is, without loss of generality, we can Lorentz transform into an inertial systemwhere the
two events happen at the same location (and by translations we can assume that this location
is the origin E0 and that the coordinate time is t 0D D 0 atD). We label the time and space
coordinate in K 0 by t 0 and Ex0. Because of the relativity principle SR , K 0 is as good as any
system to describe events.
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ii | Time of an arbitrary path P 3 D;A with ŒP �K0 D .t 0; Ex0.t 0//:

��ŒP � D

Z t 0A

t 0D

dt 0
r
1 �

PEx0.t 0/2

c2

Ex0.t 0/�E0
�

Z t 0A

t 0D

dt 0 D t 0A � t
0
D D ��ŒP

�� (2.27)

Here P � is the trajectory betweenD and A that is parametrized by the constant function
Ex0.t 0/ � E0 inK 0. In other inertial systems, this trajectory will not be constant; however, it is
inertial, i.e., P � is described by a trajectory betweenD and A with uniform velocity.

Check this by applying a Lorentz transformation to the coordinates .t 0; E0/K0 !

! Clocks that travel along the inertial trajectory P � betweenD and A collect the
largest proper time �� D ��ŒP ��.

Collecting the“largest time”means that the these clocks run the fastest.

5 | It is important to let this result sink in:

LetK 0 be the rest frame of earth (which is located in the origin E0) and consider two twins of age �D :

• Twin S departs with a Spaceship atD, flies away from earth, turns around and returns to
earth at A. Twin S therefore follows a trajectory similar to P2 in the sketches above.

• Twin E stays on Earth. He follows the inertial trajectory P � in the sketches above.

We just proved above:

hAge of Twin S at Ai D ��ŒP2�C �D < ��ŒP ��C �D D hAge of Twin E at Ai

This is the famous ⁂ Twin“paradox” : Twin S aged less than Twin E.

6 | Why there is no paradox:

• If you don’t see why the above result should be paradoxical:

Good! Move along. Nothing to see here! ,

• Why one could conclude that the above result is paradoxical (= logically inconsistent):

– From the view of Twin E, Twin S speeds around quickly, thus time-dilation tells him
thatTwin S should age slower. And indeed, when Twin S returns, he actually didn’t
age as much.

– Now, you conclude, due to the relativity principle SR , we could also take the perspective
ofTwin S (i.e., our system of reference is now attached to the spaceship). ThenTwin S
would conclude that time-dilation makesTwin E (who now, together with earth, speeds
around quickly) age more slowly. But this does not match up with the above result that,
when both twins meet again at A, Twin S is the younger one! Paradox!

The resultion is quite straightforwad:

The invocation of the relativity principle SR in the last point is not admissible! Remember
that SR only makes claims about the equivalence of inertial systems. Now have a look at the
trajectory P2 of the spaceship again: it is clearly accelerated and cannot be inertial. And
that there is at least a period where the spaceship (and Twin S) is accelerating is a neccessity
forTwin S to return toTwin E (at least in flat spacetimes, but not so in curved ones [54])!
This implies that the reunion of both twins at A requires at least one of them to not stay in
an inertial system. This breaks the symmetry between the two twins and explains why the
result can be (and is) asymmetric.
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• ¡! For historical (and anthropocentric) reasons, the “twin paradox” is called a “paradox.”
We stick to this term because we have to – and not because it is appropriate name. The term
“paradox” suggests an intrinsic inconsistency of relativity. As we explained above: This
is not the case. All “paradoxes” in relativity are a consequence of unjustified, seemingly
“intuitive” reasoning. The root cause is almost always an inappropriate, vague notion of
“absolute simultaneity” that cannot be operationalized.

• An overview on different geometric approaches to rationalize the phenomenon can be found
in Ref. [55].

Below are two widely used spacetime diagrams of an idealized version whereTwin S changes
inertial systems only once from SD to SA halfway through the journey atR. You can think of
this as an instantenous acceleration at the kink. Note, however, that the acceleration itself
is dynamically irrelevant for the arguments; it is only important that the inertial frames in
which Twin S departs and returns are not the same:

– In the left diagram the slices of simultaneity in the two systems SD and SA are drawn. As
predicted by time-dilation (andmandated by SR ),Twin S observes the clocks ofTwinE
to run slower during his “inertial periods”, i.e., while he stays in a single inertial system.
However, the moment Twin S“jumps” from SD to SA atR, his notion of simultaneity
changes instantaneously: In SD ,R andRD are simultaneous; in SA, however,R and
RA are simultaneous. Due to this jump, the record of Twin S contains now a temporal
gap for events on earth (highlighted interval). It is this “missing” time interval that
overcompensates the slower running clocks on earth (as observed from SD and SA) and
makesTwin S conclude thatTwin E ages faster (in agreement with the actual outcome
of the experiment).

If you wonder what happened to the (missing) observations of events in the triangle
RARRD : there is a nice explanation in Schutz [5]. (The bottom line is that Twin S
constructs a bad coordinate system by stopping the recording of events in system SD
when he reachesR.)

– In the right diagram, we draw light signals (“pings”) of an earth-bound clock next to
Twin E sent to Twin S. Twin S receives these signals and measures their period. This
idealizes howTwin S sees (not observes!) the clocks ticking on earth (and, by proxy, how
fastTwin E ages). It is important to understand the difference between this “seeing”
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and our operational definition of observing (using the contraption called an ← inertial
system, as used in the left diagram). As demonstrated by the diagram, Twin S first sees
the clock on earth ticking slower; but when he turns around atR, the clocks on earth
(apparantly) speed up significantly. In the end, this speedup overcompensates for the
slowdown during the first part of the journey so thatTwin S again arrives at the (correct)
conclusion that Twin E ages faster. Note that the speedup of the earth-bound clock
seen by Twin S during the second half of his journey does not contradict time-dilation
because seeing is not observing. This is similar to the ↑ Penrose-Terrell effect in that a
genuine relativistic effect (here: time-dilation) is distorted by an additional “imaging
effect” due to the finite speed of light.

• In our careful derivation above, we not only showed that Twin S ages less than Twin E; we
also showed that this conclusion is independent of the inertial observer! Thus we know that
there will be no dispute about the different ages between different inertial observers.

• TheHafele-Keating experiment [50,51] and themuondecay experiments [48],mentioned pre-
viously in the context of time-dilation, are experimental confirmations of the twin“paradox.”
So our theoretical prediction above (thatTwin S ages less thanTwin E) is experimentally
confirmed. End of discussion.

• Our derivation of the accumulated proper time along trajectories in spacetime is both mathe-
matically sound and experimentally confirmed. This qualifies special relativity as a
successfull theory of physics. Operationally there is nothing to complain about: the theory
does its job to produce quantiative predictions of real phenomena. So why do so many people
(physicists included) – despite the various efforts to visualize the phenomenon – have this
nagging feeling of dissatisfaction that they cannot get rid of? The reason, so I would argue, is
the human brain and its proclivity to inject concepts of absolute simulateneity into its model
building. This qualifies the historical overemphasis of the twin “paradox” as a meta problem:
The question to study is not how to“solve” the twin“paradox” (as we showed above, there
is nothing to solve); the question to study is why so many peoply thought (and still think)
that there is a problem in the first place. This meta problem is an actual problem to study; but
it falls into the domain of cognitive science, and not physics!

7 | Two lessons to be learned from this:

You can outlive your inertial-system-dwelling peers

by changing inertial systems (= accelerating) at least once.

• ¡! You“live longer” when speeding around than your twin on earth, i.e., when you return,
your twin might be 80 and have reached the end of his lifespan while you are still in your
fourties. This is a real, observable effect, not an illusion of sorts. However, “living longer”
does not mean that you somehow have “more time to spend” than your twin because all
physical phenomena in your spaceship experience the same effect. It is not your metaboslism
that slows down wrt. other physical phenomena around you, it is time itself. Put differently:
If you and your twin both try to read as many books as possible during your lifetimes (say one
per month), both of you will have read roughly the same amount of books when either of you
dies (say at the age of 80).

• The mere fact that our universe really allows for this (at least in theory) makes it much more
interesting than its boring alternative: a Galilean universe.
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and

Phenomena like length contraction and the twin “paradox” are physically real.

Their “paradoxical” flavor is a phenomenon of human cognition, not physics.

This is why we put “paradox” always in quotes in the context of relativity.
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↓ Lecture 7 [26.11.25]

3. Mathematical Tools I: Tensor Calculus

In this chapter we introduce tensor calculus (↑ Ricci calculus) for general coordinate transformations '
(which will be useful both in special relativity and general relativity). The coordinate
transformations ' relevant for special relativity are Lorentz transformations (and therefore linear)
which simplifies expressions often significantly (→ Chapter 4). However, this special feature of coordinate
transformations in special relativity is not crucial for the discussions in this chapter.

Goal: Construct Lorentz covariant (form invariant) equations
(for mechanics, electrodynamics, quantum mechanics)

Question: How to do this systematically?

Note that (we suspect that) Maxwell equations are Lorentz covariant. Clearly this is not obvious and
requires some work to prove; we say that the Lorentz covariance is not manifest: it is there, but it is hard
to see. Conversely, without additional tools that make Lorentz covariance more obvious, it is borderline
impossible to construct Lorentz covariant equations from scratch (which we must do for mechanics and
quantum mechanics!).

We are therefore looking for a “toolkit” that provides us with elementary “building blocks” and a set of
rules that can be used to construct Lorentz covariant equations. This toolbox is known as tensor calculus
or ↑ Ricci calculus; the “building blocks” are tensor fields and the rules for their combination are given by
index contractions, covariant derivatives, etc. The rules are such that the expressions (equations) you can
build with tensor fields are guaranteed to be Lorentz covariant. This implies in particular that if you can
rewrite any given set of equations (like the Maxwell equations) in terms of these rules, you automatically
show that the equations were Lorentz covariant all along. We then say that the Lorentz covariance is
manifest: one glance at the equation is enough to check it.

Later, in general relativity, our goal will be to construct equations that are invariant under
arbitrary (differentiable) coordinate transformations (not just global Lorentz transformations). Luckily, the
formalism we introduce in this chapter is powerful enough to allow for the construction of such → general
covariant equations as well. This is why we keep the formalism in this chapter as general as possible, and
specialize it to special relativity in the next Chapter 4. The discussion below is therefore already a
preparation for general relativity; it is based on Schröder [1] and complemented by Carroll [56].

3.1. Manifolds, charts and coordinate transformations

1 | D-dimensional Manifold

= Topological space that locally “looks like”D-dimensional Euclidean space RD :
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