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[--.] In my own development Michelson’s result has not had a considerable influence. I
even do not remember if I knew of it at all when I wrote my first paper on the subject
(1905). The explanation is that I was, for general reasons, firmly convinced how this
could be reconciled with our knowledge of electro-dynamics. One can therefore understand
why in my personal struggle Michelson’s experiment played no role or at least no decisive
role.

— The Michelson Morley experiment did not kickstart SPECIAL RELATIVITY.

» Modern Michelson-Morley like tests of the isotropy of the speed of light achieve much higher
precision than the original experiment. The authors of Refs. [32,33], for example, report
an upper bound of Ac/c ~ 10717 on potential anisotropies of the speed of light by rotating
optical resonators.

. 4 Lecture 4 [05.11.25]
14 | Two observations:

(1) Mo evidence that there is 7o relativity principle for electrodynamics.
(2) Why does Galilean relativity R treat mechanics differently anyway?

Put differently: Why should mechanics, a branch of physics artificially created by human
society, be different from any other branch of physics? This is not impossible, of course, but
it certainly lacks simplicity! (To Galilei’s defence: At his time “mechanics” was more or
less identical to “physics”.)

— A. Einstein writes in §2 of Ref. [10] as his first postulate:

1. Die Gesetze, nach denen sich die Zustinde der physikalischen Systeme dndern, sind
unabhdngig davon, auf welches von zwei relativ zueinander in gleichformiger Translations-
bewegung befindlichen Koordinatensystemen diese Zustandsinderungen bezogen werden.

We reformulate this into the following postulate:

§ Postulate 4: (Einstein’s principle of) Special Relativity Sk

No meeharnical experiment can distinguish between inertial systems.

Note the difference to Galilean relativity [6R| according to which no experiment governed by classical
mechanics can distinguish between inertial systems. Einstein simply extended this idea to all of
physics - no special treatment for mechanics!

i! There are various names used in the literature to refer to [SR. Here we call it the principle of
special relativity, where the “special” refers to its restriction on snertial systems — as compared to
the principle of general relativity in GENERAL RELATIVITY that refers to a// frames (> later). To
emphasize its difference to Galilean relativity [6R|, some authors call [SR the universal principle of
relativity, where “universal” refers to its applicability on a// laws of nature (not just the realm of
classical mechanics).

15 | But now that there are more contenders (mechanics, electrodynamics, quantum mechanics) all of
which must be invariant under the same transformation ¢, we have to open the quest for ¢ again:

What is ¢?
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Observafion\ Events /Observaﬁon

The differently colored/shaped trajectories symbolize phenomena of mechanics (red), electro-
dynamics (blue), and quantum mechanics (green). According to [SR|, a// of them must be form-

invariant under a common coordinate transformation ¢.

i! To reiterate: This is noz a question about symmetry properties of equations or models! It is an
experimentally testable fact about reality. There is only one correct ¢ and it is just as real as the
three-dimensionality of space.

1.4. Transformations consistent with the relativity principle

Since this is a theory lecture, so we cannot do experiments. Let us therefore weaken the question slightly:

What is most general form of ¢ consistent with reasonable assumptions about reality?

§ Assumptions 1

SR Special Relativity: There is no distinguished inertial system.
1S Isotropy: There is no distinguished direction in space.
HO Homomgenesty: There is no distinguished place in space or point in time.

co Continusty: ¢ is a continuous function (in the origin).

Something is “distinguished” if there exists an experiment that can be used to identify it unambiguously.
This derivation follows Straumann [9] with input from Schroder [1] and Pal [34].
Detailed calculations: @ Problemset 2

1 Setup:

-

N R,V,s, p
< Two inertial systems K —— K.

< Event E € & with coordinates x = (t,X)g € Eand x’ = (t/,X")g’ € E:
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We are interested in the transformation ¢ = ¢, . > with

x' = g(x). (1.32)

Note that [SR forbids us to use the inertial system labels K or K’ in the definition of ¢! We can
only use the relative parameters (R, ¥, s, b) measured in K wrt K'.

2 | Affine structure:

Our first goal is to show that ¢ must be an affine map.

i < Event E € & with coordinates ¥ = x + a in K for some shift a € R4,

i = Homogeneity HO —

!
o(x +a) —¢(x) = d'(p.a) (1.33)
a’ (¢, a): Shift in K’ independent of x (this reflects homogeneity in space and time)

Imagine the right-hand side ¢’ (¢, a) where not independent of x. Then there would be an
interval (say, a rod of spatial extend @) that has the same length G in K no matter where it is
located, but variable length d(¢, d, X) in K’ as a function of X. The observer in K’ can then
use this “magic rod” to pinpoint absolute positions in space (the same argument works in
time, then with a clock instead of a rod).

i ~Forx =0:d(p,a) =¢(a)—¢0)—
p(x +a) = ¢(x) + ¢(a) — ¢(0). (1.34)
iv, Let U(x):= ¢(x)—¢(0) —
U(x +a)=Y(x)+Y(@) and ¥(0)=0. (1.35)

This would be satisfied if ¥ were linear! But we do not know this yet ...
v Claim: W(x) continuous at x = 0 (follows from €0) = WV is linear.
a| Eq.(1.35) > W(nx) = nW(x) for n € N (show by induction!)
b Eq.(1.35) > W(—x) = —W¥(x) (use ¥(0) = 0) »> W(nx) = n¥(x) forn € Z

¢ < Rational numberr = 7, m,n € Z —

r¥(x) = ZW(x) = %lll(mx) = %\Il(nrx) = 2W(rx) =W(rx). (136)
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. Eq. (1.35) .
d  W(x) continuous at x = 0 —— W(x) continuous everywhere.

Show this using the definition of continuity, i.e., limy_,o W(x) = W(0)!

W continuous

e r¥(x)=VY(rx)forr e Q ———— r¥(x) = ¥Y(rx) forr e R
Remember that real numbers are defined in terms of (equivalence classes of') limits of
rational numbers, i.e., Q is dense in R.

f | In conclusion:
V(x +a)=VY(x)+ V(@) and Y(rx)=r¥(x) (1.37)

— U is linear.

vi = If Wis linear, p(x) = W(x) + ¢(0) is affine:

o(x)=Ax+a (1.38)

with A = A(R, U, s, I;) a4 x 4matrixanda = a(R, v, s, };) a 4-dimensional vector.

3 a is simply a spacetime translation [recall Egs. (1.7) and (1.9)]
— No constraints on a

If the origin O’ of K’ with coordinate xj,, = (0, 6) is shifted in K by xor = (s, 5), we must set
a :=—A - (s, b) with the A to be determined - below. In the special case of no boost (v = 0) and
no rotation (R = 1), it is simply a := (—s, —b).

— <t Homogeneous transformations (¢ = 0) in the following:

x' = @(x) = Ax. (1.39)

4 | We already know from our discussion of inertial systems [recall Eq. (1.11)]:

Rotation group SO(3) must be part of the transformations ¢ with representation

. 110
x'=Ag-ix with Ag:= ( 0T R where R € SO(3). (1.40)
This is just a fancy way to rewrite Eq. (1.11).
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5

1,3,0,0 %

&% Pure boost K ———

< (t)k = 0 — X’ = MX for an invertible matrix M € R3*3:
This is the most general transformation for the position labels of the K and K’-clocks at
t = 0. Note that we make no statements on the times ¢’ displayed by the K’-clocks at 1 = 0.

M= Ry DR, = RyDRT R = MR (1.41)

with R € O3)and MT = M.

This follows from the ¥ singular value decomposition of real matrices with Ry, R, € O(3) and
D a diagonal matrix.

With spatial rotations Eq. (1.40) we can always transform the K-coordinates by X > R™!x
such that ¥’ = MX = MXatr =0 —

1,3,0,0
&% Pure boost K ——— K':

r = Ty 3
X =Ax & f N a(Uztj_ b(j’{ o (1.42)
X =M®@®)X+e@)t

* a: v-dependent scalar

* b,e: v-dependent vectors
o« MT = M: ¥-dependent 3 x 3-matrix

Pure boosts are therefore characterized by a symmetric transformation of the spatial coor-
dinates at + = 0 in K. Geometrically, this implies that there are #4ree (orthogonal) lines
through the origin of K which are mapped onto themselves under the boost [spanned by the
real eigenvectors of M (v)]. One can show that the only other possibility is that there is a
single invariant line. This follows because a real 3 x 3 matrix M always has at least one real
eigenvector; that the possibility of #wo real eigenvectors is excluded is a special property of
Lorentz transformations and cannot be derived at this point. Note that rotation matrices
also have only one real eigenvector (the rotation axis). Thus pure boosts (with three real
eigenvectors) are those boosts without a rotation mixed in.

— We focus on pure boosts in the remainder of this derivation:

Z

(@O

i! Our characterization of a pure boost does 7ot imply that at 7 = 0 the axes of the two
systems K and K’ align (as suggested by the sketch and naively expected). If this were the
case, the eigenbasis of M () would be given by the basis vectors ¢; in K. Since we do not
know the form of M (9) (yet), we cannot make this assumption! So do not take this sketch
literally, it only illustrates symbolically the situation of a pure boost in an arbitrary direction.
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6 | Isotropy:
Here are two lines of arguments that use isotropy [IS' to restrict the form of Eq. (1.42) further:
e Argument A:

i | We claim that isotropy |IS| requires the following multiplicative structure for pure boosts
and rotations:

ARA3A g1 = Ags & Vit ApAsx = Apx’ = AgzAgx.  (L43a)
& Vi Agx L Ap-1Agz(ARX). (1.43b)
The reasoning goes as follows:

1. < Left-hand side of Eq. (1.43b):

x = (¢, X) are the coordinates of some event in K and A zx of the same event in
K’:

2. < Right-hand side of Eq. (1.43b):

We consider y = (¢, ¥) := Agrx = (f, RX) as an active transformation, i.e., y
denotes a different event that is spatially rotated from x by R. To state our isotropy
claim [IS, we now rotate the coordinate system K" in which we want to express
this event /n the same way. This implies a rotated boost A g; and a subsequent
rotation of the coordinate axes by R via A g—1. (Remember that when rotating the
coordinate axes by R, the coordinates of an event transform by A z—1.):

” Y
y K” B K//
Rx =y
£ = B Ri, o
K - ~
RV Rx =y / N
X

/ °
\
3. Spatial isotropy [IS  is the property that the event x as seen from K’ cannot be

distinguished from the rotated event y as seen from the rotated system K”; this is
Eq. (1.43b).

ii | Now we can use Eq. (1.42) to rewrite Eq. (1.43a) as

"

' £ a(RV)t + b(RY) - R¥ (1.442)
R¥' = M(R?) RX + é(R?) 1 (1.44b)
iii | A comparison with Eq. (1.42) (for all 7 and X and arbitrary v and R) leads to constraints
on the unknown functions:
- a(v) = a(RV) — a(V) = a, withv = |9|

Functions invariant under arbitrary rotations can only depend on the norm |v].
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- b(@) = RTh(RY) = b(¥) = byv
Note that b(R7)-RX = [RTl;(RT))] -X. Let R; be some rotation with axis 0 = v/v
such that Ry3 = o; then b(%) = Rgg(ﬁ) and therefore l;(ﬁ) o ¥ since rotation
matrices have only a single eigenvector.

- RM(%) = M(RO)R — M(@) = ¢y 1 + dy 067
First recall that M7 (¥) = M () such that M () can be written as sum of orthog-

onal projectors (projecting onto its eigenspaces). It is in particular Ry M (T))RﬁT L
M (¥) such that one of the eigenvectors must be 0 o< ¥. The remaining two eigen-
vectors are orthogonal to ¥ and can therefore be mapped onto each other by Rj;.
Since R; commutes with M (), their eigenvalues must be degenerate such that
the two-dimensional subspace orthogonal to 9 is a degenerate eigenspace. The
most general spectral decomposition of M (v) is then the one given above.

- RE(D) = &(RV) — é(D) = ey
This is the same argument as for b ).
e Argument B:

A shorter (but less rigorous) line of arguments goes as follows:

i | To define the unknown functions algebraically, we are only allowed to use the vector v
and constant scalars. We cannot use X or ¢t due to linearity, and any other constant vector
(like &, = (1,0,0)7) would pick out some direction and therefore violate isotropy [IS!.

ii | Since the only scalar one can construct from a single vector is its norm, |9|? = ¥ - 9, it
must be a (V) = ay.

iii | Similarly, since the only vector one can construct from a single vector is a scalar multi-
plied by the vector itself, it must be (V) = b,V and €(V) = e, v.

iv | Lastly, since M7 (v) = M(v), we can decompose the matrix into orthogonal projectors:
M) = >; A;(v) P;(v). The only projectors that can be defined by a single vector
are P = 007 and P; = 1 — Py = 1 — 307 which leads to the most general form
M) = ¢y 1+ dy 007

Both arguments lead to the same form for pure boosts A ; consistent with isotropy IS

t'=ayt+ by (V-X) (1.45a)

2/

X =cv)?+g—§17(17-fc)+evz7t (1.45b)

with v = |9| = |R¥| and (Rv - RX) = (¥ - X).
7 <t Trajectory of origin O’ of K':
e In K': X};, = 0 (This is the operational definition of the origin O'.)

> - .. . .. > . 1,9,0,
o In K: X/ = vt (This is the operational definition of v in K LK ")

In Eq. (1.45b):

0=cy ¥t + B 57T -) + eyt (1.462)
V#0&Y: = 0=cy+dy+ey (1.46b)
8 Reciprocity:
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i | <t Inverse transformation K’ ——— K from K’ to K:
Aphy=1 & Ay =A5". (1.47)
Note that v is the velocity of the origin O of K as measured in K.
In general: v/ = V (%) with unknown function V.
We assume reciprocity: v/ = —v such that
-1
AV =A;. (1.48)
While this is clearly the most reasonable/intuitive assumption, it is not trivial! Recall that v
is the speed of the origin O’ of K’ measured with the clocks in K, whereas v’ is the speed of
the origin O of K measured with djfferent clocks in K’. So without additional assumptions
we cannot conclude that the results of these measurements yield reciprocal results.
However, the assumption of reciprocity can be rigorously derived from relativity |SR, isotropy
IS| and homogeneity [HOJ, see Ref. [35]. Reciprocity is therefore not an independent assump-
tion.
i | <t Inverse transformation in Eq. (1.45):
t =ayt' —by (V-X) (1.49a)
F=coX +B5@ ) —ep it (1.49b)
i | Eq. (1.49) in Eq. (1.45) & Eq. (1.46b) 5 (we suppress the v dependence)
c2=1, (1.50a)
a’—ebv? =1, (1.50b)
e2—ebv? =1, (1.50¢)
e(la+e)=0, (1.50d)
ba+e)=0. (1.50¢)
To show this, use v = (vy,0,0)7 with v, # 0and remember that the equations you obtain
from plugging Eq. (1.49) into Eq. (1.45) must be valid for all " and X’. Use Eq. (1.46b) to
replace ¢, + d, by —ey.
We can conclude:
Eq (1.503) . . ]
—— ¢ =1 (¢ = —1 contradicts limy_o Ay = 1)
Eq. (1.50c) Eq. (1.50d)
. 2 e#0 i a+e=0
— Eq. (1.50b) = Eq. (1.50c) & Eq. (1.50¢) satisfied
9 | Collecting results from Eq. (1.50) & Eq. (1.46b):
_ _ o _ 1—a?
c=1, e=—-a, d=a-1, b_av2' (1.51)
d = a — 1 follows from Eq. (1.46b) and the first two equations.
Eq. (1.51
Eq. (1.45) 230,
/! l—a% A -
U=ayt + - (V-X) (1.52a)
X =X4[ay—1]10(0-X) —vay, it (1.52b)
with 0 := v/|v].
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10 < Special boost ¥ = (v, 0, 0)7 in x-direction:

z
z o
@]9
t=0 Y £
vy
/ xl
X
’ —a?
' =ayt + veay (1.532)
x' = Ay X — Uxdyt (1.53b)
y/ =y (1.53¢)
7=z (1.53d)
Note that v = |vy| with v, € R.
Matrix form:
/ 1—a?
l‘/ ay vxa;) t
x, — | “Vxdv * (1.54)
y 1 0 y
4 0 1 z
=:Ayy
In the following, we refer to the upper 2 x 2-block as A (vy).
11 | Group structure:
i = Relativity principle SR —
R2,52,52.,b Ry,31.51.b ! R3,53,53.b
¢(K, 2,02,52,b2 K”)O(p(K 1,01,51,b1 K/) L oK 3,V3,53,03 KN) (1.55)

for some parameters (R3, U3, 53, b3) that are a function of (R;, V;, s;, bi)i=1,2-
In words:

The concatenation of a coordinate transformations from K to K’ and from K’ to K" must be
another coordinate transformation that is parametrized by data that relates the reference systems
K with K" directly (without referring to K' in any way).

You may ask why Eq. (1.55) is a constraint on ¢ in the first place. After all, we could just
define that

o(K FaTasnbs oy g Fatronba oy e RUTSDL oy g
The problem is that the function defined such generically depends on 8 (!) parameters
Ry, vy, 51, 1;1 . Ry, Vs, 52, 52 - it is a non-trivial functional constraint on ¢ that these can
be compressed to four parameters R3, U3, 53, 53. This “compression” is mandated by the
relativity principle [SR according to which all inertial systems must be treated equally. In
particular, the transformation between two systems K and K" can only depend on parameters
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that can be experimentally determined from within these two systems. (The existence of ) a
third frame K’ cannot be of relevance for this transformation as this would make K’ special.

Combined with the existence of an inverse transformation (¢ above):
— The set of all transformations forms a ¥ (multiplicative) group.
Note that associativity is implicit since we talk about the concatenation of linear/affine maps.

In particular:
! !
Avaux - wa ¢> A(vx)A(ux) - A(wx) (1.57)

where w, = W(vy, ux) has to be determined.

« ;! Using the restricted form of the boost Eq. (1.54) that followed from previous argu-
ments, it follows indeed that the concatenation of two pure boosts i the same direction
has again the form of a pure boost (in the same direction). For the arguments that follow,
this is sufficient.

However, in general, the multiplicative group structure Eq. (1.55) allows for two boosts
to concatenate to a combination of boosts and rotations. As we will see > later, this is
indeed what happens: The concatenation of two pure boosts (in different directions)
produces a boost with a rotation mixed in (™ Thomas-Wigner rotation).

» Note that due to Eq. (1.43a) all that follows holds for any pair of collinear velocities v

and i (there is nothing special about the x-direction). Indeed, let R be a rotation that
maps ¥ and  to vectors on the x-axis, Uy := RV and i, := Ru. Then

AzAj 14 AR—lAT)XAﬁXAR L AR_IAIEXAR 12 Ay (1.58)
where W is again collinear with v and .
o
—> (use that the diagonal elements of A(w, ) must be equal)
l—a2  1-a2
va SUx : 2 21) = 2 214 (159)
vxav uxau
— Universal constant:
a2 —
K: 55 = const (1.60)
vxav
Note: [k] = Velocity 2
9
1
dy = (1.61)

\/I—KU)ZC.

We use the positive solution for a,, since lim,_,o A(v) L 1,ie., limy_gay Sy
With this we check: A(vyx)A(uyx) = A(wy) with

e
X VX

(1.62)

Eq. (1.62) becomes important later: it tells us how to add velocities in SPECIAL RELATIV-
ITY.

NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART

Institute for
i:!oret'cal
] Physics

PAGE

41



Institute wr
iiagret'cal

SR » CONCEPTUAL FOUNDATIONS hyslcs

12 Preliminary result:

Eq. (1.52) & Eq. (1.60) — Boost A in direction ¥ with velocity v = v9:

" =ay [t —k ([ -%)] (1.63a)
X' =X+[ay—1]0(0-X)—a, vt (1.63b)
with
1
ay = (1.64)

V1—xv2’

This is the most general transformation between two inertial coordinate systems that move with
relative velocity v [with coinciding origins x},, = x}, = xo = (0, 0) and without spatial rotations]
that is consistent with our basic assumptions stated at the beginning of this section: |SR|, [H0|, and
IS).

The only undetermined parameter left is «!

1.5. The Lorentz transformation

The purpose of this section is to select the value for « that describes our reality.

2
max*

13 Since [«] = Velocity > define formally: x = 1/v
Why we subscribe the velocity vmax With “max” will become clear below.
14 | Three cases:

e k=0 & vy = 00:

=
Eq. (1.63) = _, & Galilei boost (1.652)
3 =

|

=L =
|

ST

-~

— Maxwell equations are #ot form-invariant under ¢.
— Maxwell equations cannot be correct and must be modified.
— Experiment that shows the invalidity of Maxwell equations?

Note that we cannot conclude the validity of classical mechanics from this; Newton’s equa-
tions may still require modifications (without spoiling the Galilean symmetry, of course).

e k>0 & Uy < 00:

Eq. (1.63) = Vi % Lorentz boost

=X+@y-D0i{@-X)—yuvt

(1.662)
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with the # Lorentz factor (previously denoted a,)

1
v =y = ———— and ‘= U/VUmax - 1.67
Yo=Y 7 p / (1.67)

— Newton’s equations are 7ot form-invariant under ¢.
— Classical mechanics cannot be correct and must be modified.
— Experiment that shows the invalidity of Newton’s equations?

Similarly, we cannot conclude the validity of electrodynamics from this; Maxwell equations
may still require modifications (without spoiling the Lorentz symmetry).
» k < 0: Physically not relevant. (© Problemset 2; we ignore this solution in the following.)

This solution is not self-consistent (see e.g. Ref. [34]) and immediately leads to implications
that are not observed in nature.

For example, the rule Eq. (1.62) to compute the velocity w, between K /K" from the veloci-
ties vy and u,, between K/K’ and K’/ K" reads fork < 0
Ux + Uy

—_— (1.68)
1 —uyvxlk]

Wy =

Let uy, vy > 0be positive, i.e., K’ moves in positive x-direction wrt K and K” moves also
in positive x-direction wrt K'. But for large enough velocities u vy, > 1/|«| we find w, < 0
such that K" moves in negative x-direction wrt K.

No such effect has ever been observed; if you do, let us know!

Note that at no point we used or claimed that vy, is the speed of light!

Which transformation describes reality: v,y < 00 OF Upay = 00°?

15 | Evidence:

o Maximum velocity vmax & ¢ < oo for electrons:
[Plot from Ref. [36]: ™ Bertozzi experiment (1964)]

e )" = 26 fm 2

/(%J’= 1= [meeYlmge? o £,1)°

1.0+ e .
VAR T
e
+ /
’, Eelmev) | Emer | (% gy, | ()7,
0.5+h 0.5 1 867 752
10 2 .910 '828
.5 3 950 922
|§"5 33 1‘387 974
I T T 1 1 T T 1 s
8 1 2 3 4 5 6 7 B 9 16 1 12

Ek/meci

— Newton’s equations are clearly invalid for high velocities!

See Refs. [36,37] for more technical details. Note that these results were obtained decades
after Einstein published his seminal paper in 1905.
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By contrast:
No evidence for the invalidity of Maxwell equations (on the macroscopic level).

Electrodynamics, as encoded by the Maxwell equations, is of course not a truly fundamental
theory as it is the classical limit of a quantum theory: Quantum electrodynamics (QED).
For example, the linearity of the Maxwell equations (= EM waves cannot scatter off each
other) is an approximation; in QED photons can (weakly) scatter off each other! This is why I
emphasize that Maxwell theory is experimentally valid only on the macroscopic level. Note,
however, that QED has the same spacetime symmetry group as electrodynamics, namely
Lorentz transformations.

16 Hence it is reasonable stipulate v,y < 0o and postulate:

The transformations ¢ between inertial systems are given by Lorentz transformations.

These transformations must be (part of ) the spacetime symmetries of a// physical theories.

The last statement is often rephrased as follows:

All (fundamental) theories must be form-invariant (covariant) under Lorentz transformations.

This is just [SR all over again: The equations of models that describe reality must “look the same”
(more precisely: be functionally equivalent) in all inertial systems. Since the transformations
between inertial systems are given by Lorentz transformations (and not Galilean transformations,
as historically anticipated), this requires their form-invariance under Lorentz transformations.

— SPECIAL RELATIVITY restricts the structure of all fundamental theories of physics!

This is what is meant by the statement that SPECIAL RELATIVITY is a theoretical framework
(German: Ralumentheorie) or “meta theory”: It provides a “recipe” (ordering principle) of how to
construct consistent theories of physics. The Standard Model of particle physics, for example,
is form-invariant under Lorentz transformations, and if you propose an extension thereof (for
example to give neutrinos a mass) you better make sure that the terms you write down are also
form-invariant under Lorentz transformations (otherwise you will not be taken seriously!). Note,
however, that this perspective prevents an important insight: What we really study is an entity
called spacetime, and this entity has a property: Lorentz symmetry. Since all our (fundamental)
physical theories are formulated on spacetime, it should not come as a surprise that the Lorentz
symmetry of spacetime shows up all over the place.

17 Interpretation of vp,y:

i < Systems K 2 K’ and signal with velocity %% = 1/

t/
K"

@&~ |

Z
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Question: What is the velocity uy = fli—’t‘ of this signal in K?
ii = Remember (Group structure!):

V1 + U2

= v1v
14 U2

max

oK' 2 KM oK 25 K'Y = (K 2> K") with vs (1.69)

Let vy = vy and vy = u; so that v3 = uy (i.e., the signal is at rest in the origin of K”).

You can also derive this by computing the time derivative of the position of the signal in K
using a Lorentz transformation; you will do this properly when you derive a more general
addition of velocities (@ Problemset 2).

ii | Addition formula for collinear velocities:

/
Ux + U,
Uy = —————

= (1.70)
1+

vy Uy

2
Unax

Because of isotropy |IS! this formula must be true in all directions (not just in x-direction) as
long as the two velocities to be added are parallel. We still keep the index x to signify that these
are not absolute values of velocities.

« Note that for v,y — oo we get back the “conventional” (= Galilean) additivity of
velocities:

v Vmay—>00

7
o ] =7 vy + (1.71)

uy = (vx +ul) [1—

From this expansion and the validity of classical mechanics for small velocities (in
particular its law for adding velocities), we can also conclude that vy, must be /arge
compared to everyday experience.

o A historically influential experiment that (in hindsight) can be explained by the relativis-
tic addition of velocities Eq. (1.70) is the ™ Fizeau experiment [38,39] (see also ™ Fresnel
drag coefficient). The Fizeau experiment was one of the crucial hints that led Einstein to
SPECIAL RELATIVITY.

v <<O0 < vy, Ul < Umax: (Ux = Vy/Upax 50 that 0 < Uy, il < 1)

Ux = UmaxT = =~, Umax (L72)

Here we used that a + b < 1 + ab for numbers 0 < a,b < 1 since then (1 —a)(1 —b) > 0.
— “Addition” of velocities Eq. (1.70) never exceeds vmax-
— Umax plays the role of a maximum velocity.

v < Signal with maximum velocity in K': v/, = vmay:

Y — Umax + Ux - Umax + Ux - (173)
X = T oo — Vmax—— = Umax .
I+ 2a2x * Umax + Ux
max

Note that the result is completely independent of the velocity v, of K'!

— Whatever moves with the maximum velocity vm,x does so in all inertial systems!
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Please appreciate how counterintuitive this effect is from the perspective of everyday experience!
But also notice that we didn’t have to postulate it: The relativity principle SR together with
the existence of a (finite) maximum velocity is sufficient.

If you think about it: Assuming a maximum velocity (in the absence of a preferred reference
frame) automatically invalidates the simple Galilean law of additive velocities. So it is actually
not surprising at all that the maximum velocity must be independent of the reference system.

18 = Experiments (in particular: the validity of Maxwell equations) show:

Umax = ¢ = 299792458 ms™! (1.74)

Note that since 1983 the value of ¢ in the international system of units (SI) is exact by definition.

A. Einstein incorporated this insight in §2 of Ref. [10] as his second postulate:

2. Jeder Lichtstrahl bewegt sich im “ruhenden” Koordinatensystem mat der bestimmten
Geschwindigkeit V , unabhdngig davon, ob dieser Lichstrahl von einem ruhenden oder be-
wegten Korper emittiert ist.

Note that at the time it was conventional to denote the speed of light with a capital V. The
convention switched to our now standard lower-case ¢ just a few years later. For more historical
background:

© https://math.ucr.edu/home/baez/physics/Relativity/ SpeedOfLight/c.html

We can condense this into:

§ Postulate 5: Constancy of the speed of light 'SL

The speed of light is independent of the inertial system in which it is measured.

Comments:

o [f you take the validity of the Maxwell equations for granted, then v,y = ¢ < oo (and
thereby [SL) follows immediately from the relativity principle [SR because then the Maxwell
equations must be valid in all inertial systems. But you’ve learned in your course on electro-
dynamics that the wavelike solutions of these equations always propagate with group velocity
¢ in vacuum. This is only possible if the speed of light plays the role of the limiting velocity:

Umax = C.

Einstein acknowledges as much at the beginning of Ref. [11]. However, [SL| is empirically
weaker than claiming the validity of Maxwell’s equations (after all, there could be alternative
equations that also predict the velocity ¢ of wavelike solutions). At the time when Einstein
formulated [SL in [10], he also worked on the photoelectric effect (another of his annus
mirabilis papers [40]). The postulation of “quanta of light” is the foundation of quantum
mechanics, but cannot be explained by Maxwell’s equations. It is therefore reasonable
to assume that Einstein didn’t want to rely on the validity of this specific theory when
formulating his SPECIAL RELATIVITY. He therefore opted for the empirically weaker (but
still sufficient) assumption [SL.

o If you derive the transformation ¢ using bot# postulates [SR| and [SL the derivation is shorter
(see e.g. [1] or [5]); one then of course doesn’t find the Galilei transformations as an option.
Note, however, that the relativity principle [SR] is a reasonable and intuitive starting point that
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doesn’t need much convincing (after all, we witness the relativity of Newtonian mechanics
in our everyday life). By contrast, the speed of light postulate [SL clashes directly with our
everyday experience (how velocities add up, that is). Through our elaborate derivation we
learned how much is already implied by the simple, reasonable assumption of relativity. We
only had to check whether there is any evidence of a finite maximum velocity vy.,. The
counterintuitive feature that this velocity is the same viewed from all inertial systems was
then a necessary conclusion from our derivation.

t Note: Finite speed of causality (Locality)

Another insight from our [SR-based derivation of the Lorentz transformation is that the
formulation of the speed-of-light postulate SL is conceptually misleading:

» The constant vy, and its role as a maximum velocity followed without referring to light
(or electrodynamics) in any way!

Put bluntly: SPECIAL RELATIVITY is not about the “strange behavior” of light!

o The relevant speed for SPECIAL RELATIVITY is the speed of causality: How fast can
information travel, i.e., one event affect another. vy, is the maximum speed of causal
interactions, irrespective of the mediator of these interactions.

In our world, the fastest and most salient information carrier just happens to be the
electromagnetic field (“light”). For example, to synchronize our clocks with light
signals, it wasn’t the light per se we were interested in; we just used it as carrier of
information to correlate the clocks.

» Given the relativity principle SR| and our derivation in Section 1.4, we showed that
there are only two possibilities: (1) There is 7o upper bound on velocities (Galilean
symmetry) or (2) there 75 such an upper bound v,y (Lorentz symmetry). In the latter
case, every signal that propagates with v,y in some frame automatically does so in all
inertial systems. (Which immediately leads to the counterintuitive conclusion, akin to
SL, that there are signals the velocity of which does not depend on the velocity of the
observer.)

» We could replace |SL therefore by the (empirically weaker) postulate that there are 7o
instantaneous actions at a distance (this is essentially a statement about locality). This
modified postulate implies the existence of a maximal velocity vm.x < oo which, in
turn, selects the Lorentz transformation as the correct symmetry. That vy, = ¢ is
then a fact to be discovered by experiments.

o It turns out that everything with vanishing rest mass travels at this maximum speed
Umax = C. Since photons are the only elementary particles that are massless and can be
easily detected, we just happen to refer to this maximum velocity as “speed of light.”

For example: Without Higgs symmetry breaking, the W and Z bosons of the weak
interaction are massless and would propagated with light velocity, just as the photon
(the weak interactions would then be no longer “weak”). For a long time it was believed
that neutrinos are massless as well, and therefore would also propagate with the speed
of light (today we know that they have a very tiny mass).

Institute for
i:!oret'cal
] Physics

19 Special Lorentz transformations = Lorentz boosts:

Now that everything is settled, let us write down our final result in their conventional form.

i! These are not the most general (homogeneous) Lorentz transformations since we omit rotations,
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