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To do so, each observerK plugs into V the two events (which are objective) an its own label
K (since this is the only non-random choice possible).

But then two different observersK andK0 will pick different coordinates .ti ; Exi / (measured
by different clocks) to compute their value of Ev, which obviously can yield different outcomes
(as expected for velocities). Note that for the velocities to be really different it must be
ŒK0� ¤ ŒK�, i.e., the two inertial systems must belong to different frames.

• Example 2: Duration & Simultaneity

A very natural question is how much time passed between two events E1 and E2. The
formal prescription how to answer this question is given by the algorithm T .E1; E2IK/:

1. Select the event .t1; Ex1/K 2 E1.

2. Select the event .t2; Ex2/K 2 E2.

3. Compute and return the value �t D t2 � t1.

For the very same reason as for the velocity algorithm above, the return value of course
will depend on the chosen“clock events” .ti ; Exi /. And so for the very same reason that
velocities can be observer-dependent, time intervals can be as well. Since we define“simul-
taneity” as the property�t D 0, this possibility for observer-dependent results directly
transfers to our notion of simultaneity!

Note that we did not make quantitative statements about the outcomes for different observers.
We neither showed how velocities depend on the frame nor whether simultaneity really is relative.
(It could just be the case that in our world t2 � t1 always equals t 02 � t

0
1 for a fixed event.) This

depends on the actual numbers of the coordinates. Such statements therefore require quantitative
statements about the relation of .t; Ex/K 2 E and .t 0; Ex0/K0 2 E, which we do not know at this
point (this is exactly the question for the functional form of the coordinate transformation ').

However, what we did show is the possibility that simultaneity is relative, just as we already expect
velocities to be! So when we later find the correct transformation ' and (surprise!) that indeed
simultaneity is not an observer independent fact, you should not be surprised.

Question: Can the values of the electric and magnetic fields EE and EB be included in E? If not,
can you think of an algorithm that determines the electric and magnetic fields EE and EB using
only coincidence data available in E? Do you expect the electromagnetic field to be observer-
dependent?

↓ Lecture 3 [29.10.25]
7 | Henceforth:

Unless noted otherwise, all frames will be inertial (with Cartesian coordinates).

!We will (almost exclusively) work with inertial coordinate systems.

We use the concept of inertial systems because to describe physics by equations, coordinates are a
useful tool. As it turns out, Cartesian coordinates allow for particularly simple equations (at least if
space is Euclidean). So our concept of inertial systems as defined above is the most useful one.

8 | Physical Models:

Let us fix a bit of terminology:

• ⁂ (Physical) laws are ontic features of reality (↑ scientific realism).

Physical laws can only be discovered; they can neither be invented nor modified.

• ⁂ (Physical) models are algorithms used to describe reality.
These algorithms are typically encoded in the language of mathematics.

Physical models are invented and can be modified; I will use the terms model and theory
interchangeably.
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¡! These definitions are by no means conventional and you will find many variations in the literature.
For the following discussion, it is only important that the terms we use have precise meaning.

Experiment

x Observations

x

ct

Model
B

Model
A

¡! The validity of models cannot be proven; we can only gradually increase our trust in a model by
repeated observations (experiments) – or reject it as invalid by demonstrating that its predictions
contradict reality (↑ Karl Popper). Note that models might describe reality only approximately and
in specific parameter regimes and still be useful.

You may dismiss this focus on terminology as “philosophical banter.” Conceptual clarity, however,
is absolutely crucial for science – in particular for relativity. Whenever there is confusion in
physics, it is often rooted in the conceptual fuzziness of our thinking.

1.2. Galilei’s principle of relativity

9 | Example: Newtonian mechanics

i | Definition of the model:

• ^ Closed system of N massive particles with masses mi and positions Exi .

• ^ Force exerted by k on i :

Fk!i .Exk � Exi / D .Exk � Exi /fk$i .jExk � Exi j/ (1.15)

It is fk$i D fi$k and therefore Fk!i .Exk � Exi / D �Fi!k.Exi � Exk/.

! Newtonian equations of motion (in some inertial systemK):

mi
d2 EXi
dt2

D

X
k¤i

EFk!i . EXk � EXi / (1.16)

We denote with EXi � EXi .t/ coordinate-valued functions; i.e., Exi D EXi .t/ determines a
spatial point Exi for given t .

Remember: This model fully implements “Newton’s laws of motion”:

1. Lex prima:

A body remains at rest, or in motion at a constant speed in a straight line, unless
acted upon by a force.
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This is the ↓ principle of inertia. It is part of the definition of the concept of a Newtonian
force used in Eq. (1.16). Note that it is not a consequence of Eq. (1.16) for Fk!i � 0. It
rather defines (together with the lex tertia below) the frames and coordinate systems
(← inertial systems) in which Eq. (1.16) is valid (recall IN ).

2. Lex secunda:

When a body is acted upon by a net force, the body’s acceleration multiplied by its
mass is equal to the net force.

This is just the functional form of Eq. (1.16) in words.

3. Lex tertia:

If two bodies exert forces on each other, these forces have the same magnitude but
opposite directions.

This is guaranteed by the property Fk!i D �Fi!k of the forces. Together with the
lex secunda this is an expression of momentum conservation. For two particles:

m1
dv1
dt
Cm2

dv2
dt
D

dp1
dt
C

dp2
dt
D F2!1 C F1!2 D 0 (1.17)

This implies in particular that two identical particles (m1 D m2) that are both at rest at
t D 0must obey v1.t/ D �v2.t/ for all times (recall IN* ).

ii | Application of the model:

K

x

ct

Exi .t/
Different
solutions

ma D F

Same
model

Different
initial
conditions

K

x

ct

Ex
0
i
.t/

As a working hypothesis, let us assume that the model Eq. (1.16) describes the dynamics of
massive particles perfectly (from experience we know that there are at least regimes where it
is good enough for all practical purposes).

iii | Symmetries of Newtonian mechanics:

To understand the solution space of Eq. (1.16) better, it is instructive to study transformations
that map solutions to other solutions.

a | ⁂ Galilei transformations:

We define the following coordinate transformation:

G W R4 ! R4 W .t; Ex/ 7! .t 0; Ex0/

(
t 0 D t C s

Ex0
D REx C Evt C Eb

(1.18)

A Galilei transformationG is characterized by 10 real parameters:
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• s 2 R: Time translation (1 parameter)

• Eb 2 R3: Space translation (3 parameters)

• Ev 2 R3: Boost (3 parameters)

• R 2 SO.3/: Spatial rotation (3 parameters; rotation axis: 2, rotation angle: 1)

The set of all transformations forms (the matrix representation of ) a group:

G
"

C
D fG.R; Ev; s; Eb/g ⁂ Proper orthochronous Galilei group (1.19)

with group multiplication

G3 D G1 �G2 D G.R1R2„ƒ‚…
R3

; R1Ev2 C Ev1„ ƒ‚ …
v3

; s1 C s2„ ƒ‚ …
s3

; R1 Eb2 C Ev1s2 C Eb1„ ƒ‚ …
Eb3

/ (1.20)

You derive this multiplication in → Problemset 1 and show that the group axioms are
indeed satisfied.

As a special case, themultiplication yields the rule for addition of velocities inNewtonian
mechanics:

G.1; Ev1; 0; E0/ �G.1; Ev2; 0; E0/ D G.1; Ev1 C Ev2„ ƒ‚ …
Ev3

; 0; E0/ (1.21)

The full Galilei group is generated by the proper orthochronous transformations together
with space and time inversion:

G D hG
"

C
[ fP; T gi ⁂ Galilei group (1.22a)

P W .t; Ex/ 7! .t;�Ex/ Space inversion (parity) (1.22b)

T W .t; Ex/ 7! .�t; Ex/ Time inversion (1.22c)

b | Galilei covariance & Form-invariance:

Details: → Problemset 1

^ Coordinate transformation Eq. (1.18)

We express the total differential and the trajectory in the new coordinates:

d
dt
D

dt 0

dt
d
dt 0
D

d
dt 0

(1.23)

and

EX 0
i .t

0/ D R EXi .t/C Evt C Eb D R EXi .t
0
� s/C Ev.t 0 � s/C Eb (1.24a)

, EXi .t/ D R
�1
h
EX 0
i .t

0/ � Ev.t 0 � s/ � Eb
i

(1.24b)

Note that EX 0
i .t

0/ corresponds to a spacetime point .t 0; Ex0
i / with Ex0

i �
EX 0
i .t

0/ which is
the image .t 0; Ex0

i / D G.t; Exi / of a spacetime point .t; Exi / with Exi � EXi .t/.

Thus the left-hand side of the Newtonian equation of motion Eq. (1.16) reads in new
coordinates:

mi
d2 EXi .t/

dt2
D mi

d2

dt 02
R�1

h
EX 0
i .t

0/ � Ev.t 0 � s/ � Eb
i
D R�1mi

d2 EX 0
i .t

0/

dt 02
(1.25)
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Note that the quantitymi d2

dt2
EXi .t/ is not invariant; it transforms with anR�1 2 SO.3/.

And the right-hand side:X
k¤i

EFk!i . EXk.t/ � EXi .t// D R
�1
X
k¤i

EFk!i . EX
0
k.t

0/ � EX 0
i .t

0// (1.26a)

Here we used the form of the force Eq. (1.15), that EXk.t/ � EXi .t/ D R�1Œ EX 0
k
.t 0/ �

EX 0
i .t

0/� and j EXk.t/ � EXi .t/j D j EX 0
k
.t 0/ � EX 0

i .t
0/j because of R 2 SO.3/.

Note that the force on the right-hand side is not invariant either; luckily, it transforms
with the same R�1 2 SO.3/; it “co-varies” with the left-hand side!

In conclusion, Newton’s equation of motion Eq. (1.16) reads in the new coordinates:

R�1mi
d2X 0

i .t
0/

dt 02
D R�1

X
k¤i

EFk!i . EX
0
k.t

0/ � EX 0
i .t

0//„ ƒ‚ …
! Covariance

(1.27a)

�R
, mi

d2X 0
i .t

0/

dt 02
D

X
k¤i

EFk!i . EX
0
k.t

0/ � EX 0
i .t

0//„ ƒ‚ …
! Form-invariance

(1.27b)

(You can easily check that this holds for P and T as well.)

!

Newton’s EOMs Eq. (1.16) are form-invariant under Galilei transformations.

Or: Newton’s EOMs Eq. (1.16) are Galilei-covariant.

↓ Interlude: Nomenclature

LetX be some group of coordinate transformations (here: X D G the Galilei group).

• A quantity is calledX -invariant if it does not change under the coordinate transfor-
mation. Such quantities are calledX -scalars.

An example is the massm in Eq. (1.16) (which is also constant).

• A quantity is calledX -covariant if it transforms under some given representation of
theX -group. If this representation is the trivial one (i.e., the quantity does not change
at all) this particularX -covariant quantity is then also anX -scalar.

An example of a Galilei-covariant (but not invariant) quantity is the force EFk!i which
transforms under a representation of G .

• An equation is called X -covariant if the quantity on the left-hand side and on the
right-hand side areX -covariant (under the sameX -representation).

An example is Newton’s lex secunda Eq. (1.16) wheremi d2

dt2
xi .t/ transforms in the

same (non-trivial) representation as EFk!i .

• X -covariant equations have the feature that a X -transformation leaves them form-
invariant, i.e., they“look the same” afterX -transformations because their left- and
right-hand side vary in the same way (they“co-vary”). Note that the quantities in a
form-invariant equation do not have to be invariant.

An example is again Eq. (1.16) as we just showed. Note that Ex0
i .t

0/ and Exi .t/ are
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different vectors such that the two sides of the equation as not invariant (but covariant).

c | Active symmetries:

There is something additional and particularly useful to be learned from the coordinate
transformation above. We showed:

If EXi .t/ satisfies mi
d2 EXi .t/

dt2
D

X
k¤i

EFk!i . EXk.t/ � EXi .t// (1.28a)

then EX 0
i .t

0/ satisfies mi
d2 EX 0

i .t
0/

dt 02
D

X
k¤i

EFk!i . EX
0
k.t

0/ � EX 0
i .t

0// (1.28b)

But t 0 in the lower statement is just a dummy variable that can be renamed to whatever
we want:

If EXi .t/ satisfies mi
d2 EXi .t/

dt2
D

X
k¤i

EFk!i . EXk.t/ � EXi .t// (1.29a)

then EX 0
i .t/ satisfies mi

d2 EX 0
i .t/

dt2
D

X
k¤i

EFk!i . EX
0
k.t/ �

EX 0
i .t// (1.29b)

Use colors to highlight the changes.

! EX 0
i .t/ D R

EXi .t � s/C Ev.t � s/C Eb is a new solution of Eq. (1.16)!

Note that for s D 0 it is EX 0
i .0/ D R EXi .0/ C Eb and PEXi .0/ D R

PEXi .0/ C Ev, i.e., the
solution EX 0

i .t/ satisfies different initial conditions.

!We say:

The Galilei group G is an ⁂ invariance group or an (active) symmetry of
Eq. (1.16).

↓ Interlude: Active and passive transformations

It is important to understand the conceptual difference between the two last points:

• In the previous step we took a specific trajectory (solution of Newton’s equation) and
expressed it in different coordinates. We then found that the differential equation
obeyed by the same physical trajectory in these new coordinates “looks the same” as
in the old coordinates. We called this peculiar feature of the differential equation
“Galilei-covariance” or “form-invariance”. This type of a transformation is called
passive because we keep the physics the same and only change our description of it.

• In the last step, we have shown that there is a dual interpretation to this: If a differential
equation is form-invariant under a coordinate transformation, then we can exploit this
fact to construct new solutions from given solutions (in the same coordinate system!).
This type of transformation is called active because we keep the coordinate frame fixed
and actually change the physics. You can therefore think of active transformations/sym-
metries as “algorithms” to construct new solutions of a differential equation (a quite
useful feature since solving differential equations is often tedious).

10 | Galilean relativity:
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i | Remember:

The law of inertia holds (by definition) in all inertial systems.

! The “inertial test” IN cannot be used to distinguish inertial systems.

This is a tautological statement because we define inertial systems in this way!

Empirical fact:

Every mechanical experiment (not just the “inertial test”) yields the same result in
all inertial systems.

This is not a tautology but an empirically tested feature of reality.

This motivates the following postulate (first given by Galileo Galilei):

§ Postulate 2: Galilei’s principle of Relativity GR

No mechanical experiment can distinguish between inertial systems.

¡! In this formulation, GR encodes a (so far uncontested) empirical fact. In particular, it does
neither refer nor rely on (the validity of ) any physical model, e.g., Newtonian mechanics. As
such we should expect that it survives our transition to special relativity.

Here is amore operational formulation of GR : You describe a detailed experimental procedure
using equipment governed bymechanics (springs, pendula, masses,…) that can be performed
in a closed (but otherwise perfectly equipped) laboratory. Then you copy these instructions
withoutmodifications and hand them to scientists with labs in different inertial systems. They
all perform your instructions and get some results (e.g. the final velocities of a complicated
contraption of pendula). When they report back to you, their results will all be identical.
This is the essence of GR .

ii | In the language of models that describe themechanical laws faithfully, GR can be reformulated:

§ Postulate 3: Galilei’s principle of Relativity GR'

The equations that describe mechanical phenomena faithfully have the same
form in all inertial systems.

If this would not be the case you could distinguish between different inertial systems by
checking which formula you have to use to describe your observations. Imagine a rotating
(non-inertial) frame where you have to use a modified version of Newton’s EOMs (that
include additional terms for the Coriolis force) to describe your observations.

Note that “the same form” actually means that the models are functionally equivalent (have
the same solution space). Functional equivalence is equivalent to the possibility to formulate
the model (= equation of motion) in the same form.

iii | Under the assumption (!) that Newtonian physics (in particular Eq. (1.16)) describes
mechanical phenomena faithfully, this implies:

Newton’s equations of motion have the same form in all inertial systems.
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¡! This statement is not equivalent to GR or GR' as it relies on an independent empirical
claim (namely the validity of Newton’s equation as a model of mechanical phenomena).

We can now combine this claim with our (purely mathematical!) finding concerning the
invariance group of Newton’s equations:

Ex

K

t

ma D F

Ex.t/

R; Ev; s; Eb

' D G.R; Ev; s; Eb/

Ex0

K0

t 0

ma0 D F 0

Ex0.t
0/

EventsObservation Observation

! Preliminary/Historical conclusion:

'.K
R;Ev;s;Eb
�����! K 0/

‹
D G�1.R; Ev; s; Eb/ 2 G

Recall that rotating the coordinate axes byR makes the coordinates of fixed events rotate in
the opposite directionR�1 (the same is true for the other transformations). Thus we must
use the inverse Galilei transformationG�1 for the mapping .t; Ex/ 7! .t 0; Ex0/ fromK toK 0.

Note that due to the semi-direct product structure ofG
"

C [recall Eq. (1.20)] it isG�1.R; Ev; s; Eb/ $
G.R�1;�R�1Ev;�s;�R�1.Eb � sEv// for a generic Gaililei transformation (→ Problemset 1).
Only for special cases (where only one of the four transformations is non-trivial) this simplifies
as one would expect, e.g.,G�1.R; E0; 0; E0/ D G.R�1; E0; 0; E0/.

Since this is a course on relativity, we should be skeptical (like Einstein) and ask:

Is this true?

1.3. Einstein’s principle of special relativity

11 | Mathematical fact:

The Maxwell equations of electrodynamics are not Galilei-covariant.

Proof: → Problemset 1
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Here for your (and my) convenience the Maxwell equations in vacuum (in cgs units):

Gauss’s law (electric): r �E D 0 (1.30a)

Gauss’s law (magnetic): r �B D 0 (1.30b)

Law of induction: r �E D �
1

c
@tB (1.30c)

Ampère’s circuital law: r �B D
1

c
@tE (1.30d)

“Handwavy explanation” for the absence of Galilei symmetry:

The Maxwell equations imply the wave equation for both fields:�
r
2
�
1

c2
@2t

�
X D 0 for X 2 fE ;Bg : (1.31)

Here the speed of light c plays the role of the phase and group velocity of the waves; i.e., all light
signals propagate with c. Form-invariance under some coordinate transformation ' implies that
the same light signal propagates with the same velocity c in all coordinate systems related by '. This
is clearly incompatible with the Galilean law for adding velocities (according to which a signal with

velocity u0
x in frameK 0 propagates with velocity ux D u0

x C vx in frameK ifK
vx
�! K 0).

12 | The simplest escape from our predicament:

Maybe there is no relativity principle for electrodynamics?

Reasoning: If we cling to the validity of Newtonian mechanics and Galilean relativity GR , we are
forced to assume ' D G as the transformation between inertial systems. Since the Maxwell
equations are not form-invariant under these transformations, they look differently in different
inertial systems. So there must be a (class of ) designated inertial coordinate systems ŒK0� in which
the Maxwell equations in the specific form Eq. (1.30) you’ve learned in your electrodynamics
course are valid.

! ŒK0� = Frame in which the“luminiferous aether” is at rest (?)

13 | Michelson Morley experiment (plots from [29, 30]):

Michelson’s original setup (1881) Michelson &Morley’s improved setup (1887)

! The (two-way) speed of light is the same in all directions.

! There is no“luminiferous aether” ŒK0�.
(Or it is pulled along by earth – which contradicts the observed ↑ aberration of light.)

! The speed of light c cannot be fixed wrt. some designated reference frame ŒK0�.

!No experimental evidence that the Maxwell equations do not hold in all inertial systems.

! Relativity principle for electrodynamics?!

• Historical note:

A. Einstein writes in a letter to F. G. Davenport (see Ref. [31]):
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[...] In my own development Michelson’s result has not had a considerable influence. I
even do not remember if I knew of it at all when I wrote my first paper on the subject
(1905). The explanation is that I was, for general reasons, firmly convinced how this
could be reconciled with our knowledge of electro-dynamics. One can therefore understand
why in my personal struggle Michelson’s experiment played no role or at least no decisive
role.

! The Michelson Morley experiment did not kickstart special relativity.

• ModernMichelson-Morley like tests of the isotropy of the speed of light achieve much higher
precision than the original experiment. The authors of Refs. [32, 33], for example, report
an upper bound of�c=c � 10�17 on potential anisotropies of the speed of light by rotating
optical resonators.

↓ Lecture 4 [05.11.25]
14 | Two observations:

(1) No evidence that there is no relativity principle for electrodynamics.

(2) Why does Galilean relativity GR treat mechanics differently anyway?

Put differently: Why should mechanics, a branch of physics artificially created by human
society, be different from any other branch of physics? This is not impossible, of course, but
it certainly lacks simplicity! (To Galilei’s defence: At his time“mechanics” was more or
less identical to “physics”.)

! A. Einstein writes in §2 of Ref. [10] as his first postulate:

1. Die Gesetze, nach denen sich die Zustände der physikalischen Systeme ändern, sind
unabhängig davon, auf welches von zwei relativ zueinander in gleichförmiger Translations-
bewegung befindlichen Koordinatensystemen diese Zustandsänderungen bezogen werden.

We reformulate this into the following postulate:

§ Postulate 4: (Einstein’s principle of) Special Relativity SR

No(((((mechanical experiment can distinguish between inertial systems.

Note the difference to Galilean relativity GR according to which no experiment governed by classical
mechanics can distinguish between inertial systems. Einstein simply extended this idea to all of
physics – no special treatment for mechanics!

¡! There are various names used in the literature to refer to SR . Here we call it the principle of
special relativity, where the“special” refers to its restriction on inertial systems – as compared to
the principle of general relativity in general relativity that refers to all frames (→ later). To
emphasize its difference to Galilean relativity GR , some authors call SR the universal principle of
relativity, where“universal” refers to its applicability on all laws of nature (not just the realm of
classical mechanics).

15 | But now that there are more contenders (mechanics, electrodynamics, quantum mechanics) all of
which must be invariant under the same transformation ', we have to open the quest for ' again:

What is '?
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