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Information

Since we accidentally made too many exercises, enjoy this additional bonus sheet (all exercises on this

sheet are optional). If there is demand for discussing the solutions, we will offer an additional tutorial at

the start of the lecture-free period. Please let us know if you are interested in this extra tutorial during the

last tutorial session.

Problem 7.1: The Lense-Thirring effect∗ [ 8 bonuspt(s) ]

ID: ex_lense_thirring:rt24

Learning objective

The Lense-Thirring effect describes the dragging of inertial frames in the vicinity of a rotating mass. For

example, in this exercise you show that the inertial systems on the north pole of Earth slowly rotate

with respect to the fixed stars due to the rotation of Earth. The Lense-Thirring effect has no Newtonian

counterpart and thus serves as a good test for general relativity. As the effect is a consequence of the

angular momentum of the central body, it cannot be derived from the Schwarzschild metric (which is

only valid for non-rotating masses) but requires the Kerr metric instead.

To avoid the (complicated) Kerr metric, here you work in its weak-field approximation were one can use

the linearized Einstein equations [derived in Problem 6.1]. You show that in this limit, mass sources can

be treated analogously to charge distributions in electrodynamics, and lead to gravitoelectromagnetic

effects, one of which is the Lense-Thirring effect.

In Problem 6.1 you derived the linearized Einstein tensor Gµν , which simplifies in the Hilbert gauge

φµα
,α = 0 to

Gµν =
1

2
�φµν with φµν := hµν −

1

2
ηµνh and hµν(x) := gµν(x)− ηµν . (1)

Here, hµν denotes the (small) deviation of the metric gµν from flat Minkowski space (in which the

theory is linearized). With this, the linearized Einstein equations read

�φµν = −2κT µν with κ =
8πG

c4
. (2)

For our purpose, the energy-momentum tensor of the source is given by T µν(x) = ρ(x)uµ(x)uν(x),
where ρ(x) denotes the mass density and uµ(x) = dxµ

dτ
is the four-velocity field (i.e., the four-velocity

of a small chunk of matter at x).

Here we want to focus on the case of a time-independent energy-momentum tensor, ∂tT
µν = 0 [so

that T µν(x) = T µν(x)]. In this case, the linearized Einstein equations (2) simplify to

∆φµν = 2κT µν , (3)
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where we used that the metric of a time-independent source should be time-independent as well:

∂tφ
µν = 0 (the metric should be stationary).

As you know (e.g., from electrodynamics), the general solutions of the Poisson Eq. (3) are given by

φµν = −4G

c4

∫
d3x′ T

µν(x′)

|x− x′|
. (4)

a) Show that for non-relativistic velocities v
c
� 1, the line element up to first order is given by 1pt(s)

ds2 =

(
1 +

2Φ

c2

)
c2dt2 −

(
1− 2Φ

c2

)
δij dx

idxj − 2Ai dtdx
i , (5)

where we introduced Φ := c2

4
φ00 and Ai := c φ0i.

Note:The source term of Φ is the mass density, whereas Ai is related to the mass current.

b) Let us now consider a non-relativistic, free falling test particle that follows a geodesic xµ(s) in 2pt(s)

this spacetime. First, show that the spatial part of the geodesic equation

d2xµ

ds2
+ Γµ

αβ

dxα

ds

dxβ

ds
= 0 (6)

can be approximately written as

ẍi + Γi
00c

2 + 2cΓi
0j ẋ

j − c2 Γ0
00 ẋ

i = 0 , where ẋi =
dxi

dt
and ẍi =

d2xi

dt2
, (7)

if one parametrizes the trajectory in coordinate time t (instead of the affine parameter s), and
expands the result in first order of v/c.

Now use the metric (5) to calculate the Christoffel symbols, and show that the geodesic equation

Eq. (7) can be written in the form

ẍ = E + v ×B , (8)

where (in analogy to electrodynamics) we introduced the gravito-electric field E := −∇Φ and

the gravito-magnetic field B := ∇×A.

Interpret this result.

We now consider the special case of a rotating sphere of total mass M and radius R made from

uniformly distributed matter; we assume the sphere is rotating with angular velocity ω. This is of

course a model for celestial bodies like Earth.

In this case, the scalar and vector potential outside the sphere (r > R) are given by

Φ(r) = −GM

r
and A(r) = −4GMR2

5c2
ω × r

r3
. (9)

Note:The gravito-electric and gravito-magnetic fields can be derived completely analogous to the electric

and magnetic fields of a rotating charged sphere in electrodynamics.

c) Calculate the corresponding gravito-electric and gravito-magnetic fields E andB. 2pt(s)

As a sanity check, show that a test particle – initially located at rest on the rotation axis of the

sphere (e.g., above the north pole) – is accelerated towards the center of the sphere (and thus

remains on the rotation axis).
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Finally, we want to explore the phenomenon of frame dragging.

To this end, we consider a test particle with spin sµ (= internal angular momentum, think of a

gyroscope). We use this spin as a reference vector that indicates an inertial frame (in an inertial

frame, the angular momentum of a gyroscope remains constant and does not precess).

The idea is that the effects of the rotating mass (Earth) on the spin (a gyroscope) tells us how the

local inertial frames are affected by the rotation of Earth.

The four-spin vector sµ is defined in the rest frame of the spin as sµrf = (0, srf), where srf denotes the
conventional (internal) angular momentum of the gyroscope. The evolution of the spin sµ along a
geodesic xα(τ) is given by parallel transport of spin vector:

dsµ

dτ
= −Γµ

αβ

dxα

dτ
sβ . (10)

With this machinery, you can determine the effects of any spacetime on free-falling gyroscopes:

d) Calculate the evolution of the spin sµ of a gyroscope that is freely falling towards the north pole 3pt(s)

of Earth (i.e, along its rotation axis).

Hint: It is sufficient to consider the evolution in 0-th order of v
c , i.e., u

µ = dxµ

dτ ≈ (c,0).

The precession of the spin is called Lense-Thirring effect and indicates the dragging of local inertial

frames by rotating masses (called frame dragging). This means that on the poles of Earth, the local

inertial frames slowly rotate with respect to the fixed stars (which are assumed to be at rest in the

coordinates used in this exercise).

Coming back to Newton’s bucket experiment (discussed in the first lecture), this result shows that

for the water surface to stay perfectly flat, one must rotate the bucket slowly with respect to the fixed

stars because Earth is rotating beneath the bucket. This particular consequence of frame dragging is

unfortunately too small to be measured.

However, the frame dragging predicted by the Lense-Thirring effect has been measured by the space-

borne experiment Gravity Probe B (in combination with a much stronger generally relativistic
effect called geodetic precession, which has nothing to do with the rotation of Earth). For details see

the “NASA Fact Sheet”

https://doi.itp3.info/ff8d7cf9cca72031dbd39af2a952808a

and the original publication

https://doi.itp3.info/10.1103/physrevlett.106.221101 .
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Problem 7.2: Kruskal-Szekeres coordinates∗ [ 7 bonuspt(s) ]

ID: ex_kruskal_szekeres_coordinates:rt24

Learning objective

Different coordinate systems can offer different perspectives on a physical problem. This is especially

true in General Relativity. In the lecture, it was claimed that the singularity of the Schwarzschild metric

at the Schwarzschild radius r = rs is a coordinate singularity – an artifact of Schwarzschild coordinates.

The goal of this exercise is to construct and motivate a new coordinate system, called Kruskal-Szekeres

coordinates, that removes the coordinate singularity at r = rs. A first benefit of these new coordinates is

that one can describe the trajectory of probes falling into a black hole without singularities at the event

horizon [compare Problem 6.2]. Furthermore, you will see that one can extend the original Schwarzschild

spacetime (consisting of the interior and the exterior of the black hole) quite naturally by two additional

regions: a white hole and another asymptotically flat region that cannot be reached from our universe.

The Schwarzschild metric is given in Schwarzschild coordinates (ct, r, θ, ϕ) as

ds2 =
(
1− rs

r

)
c2dt2 −

(
1− rs

r

)−1

dr2 − r2dΩ2 , (11)

with Schwarzschild radius rs and dΩ
2 = dθ2 + sin2 θ dϕ2.

In these coordinates, we have the problem that (some of) the metric components gµν are singular at
the horizon r = rs. If one computes the null cones at every point of the t− r diagram, one finds
that they close up when approaching the horizon (r ↘ rs) and flip in the interior where r becomes
a time-like coordinate.

This suggest that if we somehow could construct coordinates such that the null cones look the same

everywhere, the coordinate singularity might disappear. We can find such a coordinate system by

using the null geodesics followed by light rays as a new coordinate grid.

For now we focus only on the region outside of the horizon were r > rs:

a) First, show that the equations 2pt(s)

u = ct− rs ln

(
r

rs
− 1

)
− r and v = ct+ rs ln

(
r

rs
− 1

)
+ r (12)

describe the geodesics of radially in- (v = const.) and outgoing (u = const.) light rays in the

Schwarzschild metric.

Then show that if we use u and v as new coordinates (replacing t and r), the Schwarzschild
metric takes the form

ds2 =
(
1− rs

r

)
du dv − r2dΩ2 , (13)

with r = r(u, v) defined via Eq. (12) implicitly.

b) In the (u, v)-coordinates, we have now the problem that the event horizon is infinitely far away: 2pt(s)

Show that the event horizon at r = rs is mapped to (u = ∞, v) and (u, v = −∞).

We can fix this via another coordinate transformation:

U = −e−
u

2rs and V = e
v

2rs . (14)
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This moves the event horizon to the finite coordinates (U = 0, V ) and (U, V = 0).

Show that in these coordinates the Schwarzschild metric takes the new form

ds2 =
4r3s
r

e−r/redUdV − r2dΩ2 (15)

where r = r(U, V ) is defined implicitly via Eq. (14) and Eq. (12).

At this point, we reached our goal to find coordinates which do not diverge at the event horizon: it

is now located at finite values of U and V .

Unfortunately, both U and V are light-like (null) coordinates (why?). This means that neither U nor

V deserves the label “(coordinate) time”!

The support intuition, it would be nice if we had instead one time-like and three space-like coordinates:

c) To this end, introduce the new coordinates 1pt(s)

T =
1

2
(V + U) and R =

1

2
(V − U) , (16)

and show that the Schwarzschild metric reads now

ds2 =
4r3s
r

e−r/rs
(
dT 2 − dR2

)
− r2dΩ2 . (17)

Use this result to argue that T is time-like and R space-like, respectively.

This is the Schwarzschild metric in Kruskal-Szekeres coordinates (T,R, θ, ϕ).

Note: Here r = r(T,R) is a function of T and R and implicitly defined via the previous transformations.

Note: Note that the metric components in Eq. (17) still satisfy the Einstein field equations in vacuum

because you transformed the original tensor components gµν in Eq. (11) (for which we have explicitly

shown in the lecture that they satisfy the EFEs) according to the rules of a rank-2 tensor. This is the

general covariance of the Einstein field equations in action!

The full transformation from Schwarzschild coordinates (ct, r) to Kruskal-Szekeres coordinates
(T,R) can be constructed by combining all coordinate transformations that we did so far.

One finds the explicit expressions valid outside of the black hole (r > rs):

T =

√
r

rs
− 1 e

r
2rs sinh

(
ct

2rs

)
and R =

√
r

rs
− 1 e

r
2rs cosh

(
ct

2rs

)
. (18)

Almost identical expressions (some sign changes) are valid inside the black hole (r < rs):

T =

√
1− r

rs
e

r
2rs cosh

(
ct

2rs

)
and R =

√
1− r

rs
e

r
2rs sinh

(
ct

2rs

)
. (19)

With these explicit expressions at hand, we can now study the domains for which the coordinates

(T,R) are defined, and how these map to the original Schwarzschild coordinates (ct, r) (for which
we have physical interpretations):

d) Draw a T −R diagram (Kruskal diagram) and sketch … 2pt(s)

• lines of constant t (= constant T
R
).
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• lines of constant r (= constant T 2 −R2); highlight the lines for r = 0 and r = rs.

• some null cones at points of your choosing.

Mark the region that corresponds to the exterior of the black hole (r > rs) and its interior
(r < rs), respectively.

You might be surprised that these two regions do not cover the full domain of the coordinates

(T,R). This means that we not only got rid of the singularity on the event horizon; we actually

extended the solution of the Einstein field equations into new regions of spacetime!

More specifically, you can identify two new regions in the Kruskal diagram that describe the

interior of a white hole and the asymptotically flat spacetime of a mirror universe. Which is

which and why?

Note:The solution of the Einstein field equation that you constructed in this exercise is called the maximally

extended Schwarzschild metric. Since it is a static solution (in the exterior regions) in a universe devoid of

energy and matter (except for the singularity), it does not describe the spacetime of real black holes in our

universe because (1) these form dynamically via the collapse of stars and (2) our universe it not empty. The

additional regions that we found here do not exist for such more realistic solutions! There is no evidence for

the existence of white holes, and no known physical mechanism that could produce them.
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