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Problem 5.1: The Palatini action [Written | 4 (+3 bonus) pt(s) ]

ID: ex_palatini_formalism:rt24

Learning objective

In the lecture, it was claimed that the Einstein field equations follow by variation of the Einstein-Hilbert

action. In this exercise you prove this. However, instead of the straightforward (but cumbersome)

calculation presented in the script, here you employ the so called Palatini formalism, where one treats

the metric and the connection as independent degrees of freedom. A benefit of this approach is that the

Levi-Civita connection (Christoffel symbols) does not have to be postulated – it follows naturally from

the variational principle.

In the lecture, you learned that the metric gµν and the connection Γ
α
µν of a differentiable manifold are

a priori unrelated concepts. Remember that the curvature tensor Rα
µνβ is defined via the connection

(and not the metric); only after one introduces the metric-compatible and torsion-free Levi-Civita

connection, it becomes the Riemann curvature tensor that can be expressed in terms of the metric.

Here we take half a step back and treat metric and the connection as independent entities (we

restrict the connection to be torsion-free [symmetric] but not necessarily metric-compatible). The

Einstein-Hilbert action (without cosmological constant) is then a functional of both the metric and

the connection:

S[g,Γ] =
c3

16πG

∫
dx4√ggµνRµν(Γ) . (1)

Here the Ricci tensor is computed from the curvature tensor as usual, but the latter is computed

from the connection coefficients and does not depend on the metric.

Eq. (1) must now be varied with respect to both gµν and Γ
α
µν ; this is called the Palatini formalism.

a) Vary the action with respect to the metric gµν , 1pt(s)

δgS[g,Γ]
!
= 0 , (2)

and show that this yields the Einstein field equations in vacuum.

Since the connection coefficients are independent degrees of freedom, we should expect another set

of equations of motion from varying the action wrt. the connection:

δΓS[g,Γ]
!
= 0 . (3)

To this end, it is convenient to write the general (torsion-free) connection Γα
µν as a sum of the

metric-compatible Levi-Civita connection Γ̂α
µν (Christoffel symbols) and a symmetric tensor C

α
µν :

Γα
µν = Γ̂α

µν + Cα
µν . (4)

This is always possible because the difference of two connections is a tensor. (Show this!)
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b) Compute the equations of motion for Cα
µν by varying the action wrt. C

α
µν (instead of Γ

α
µν). 3pt(s)

Show that Cα
µν = 0 satisfies them.

Hint: Before performing the variation, you can identify the terms ∇̂νC
α
µα − ∇̂αC

α
µν in the action

(∇̂ is the usual covariant derivative with the Christoffel Symbols Γ̂α
µν ). They do not contribute to the

variation. Why is that?

With your result in b) you have shown that any metric that solves the Einstein Field equations with

the Levi-Civita connection also extremizes the action in the Palatini formalism. What remains to be

shown is that the Levi-Civita connection is the unique solution that extremizes the Palatini action

under the constraint of vanishing torsion.

∗c) Show that the equations of motions obtained in part b) imply that Cα
µν = 0 for a torsion-free +3pt(s)

connection (Cα
µν = Cα

νµ ). That is, show that the unique, torsion-free solution of Eq. (3) is the

Levi-Civita connection.

Hint: It is easier to work with equations where all indices are contravariant, i.e., Cαβγ .

Hint: Use the EOMs to establish relations between the traces of Cαβγ and show that they must vanish.

Problem 5.2: Hafele-Keating experiment — Part 2 [Oral | 7 pt(s) ]

ID: ex_hafele-keating_experiment_gr:rt24

Learning objective

In this exercise, we want to revisit the Hafele-Keating experiment, for which you already calculated the

contributions from special relativistic time dilation in the last semester (Problem 5.1). Here you use our

newly developed machinery of general relativity to re-derive your previous results, but now including

an additional contribution due to gravitational time dilation (which is needed to explain the measured

data of the experiment!).

As a reminder, the experimental results were reported in

https://doi.itp3.info/10.1126/science.177.4044.168

and the theory was developed in

https://doi.itp3.info/10.1126/science.177.4044.166.

We consider a coordinate system with origin in the center of Earth that is not rotating (see sketch

below). In the time scales we are interested in, one can ignore the motion of Earth along its orbit (we

only need to consider its rotation); one can also neglect effects of the sun and other celestial bodies.

The experiment makes use of three clocks (recall the description in Problem 5.1 of last semester):
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• The stationary clock S is located on the surface

of Earth (R = 6.4 × 106m) at the equator with
an initial longitude ϕ = 0. Since our coordinate
system is not rotating with the Earth, the longi-

tude of this clock changes with Earth’s angular

velocity Ω = 2π/24 h.

• The eastward flying clock E is initially located

at a height h above the stationary clock S (in an

airplane), and then flies eastward with the total

angular velocity Ω + ω.

• Thewestward flying clockW starts at the same

point as E (in another airplane), but then flies

westward with the total angular velocity Ω− ω.

Here, ω = v/(R + h) corresponds to the angular velocity of the planes carrying the clocks with
respect to Earth; v denotes their speed (wrt. ground), h is their altitude above ground, and R is the

radius of Earth. We assume that all clocks are ideal, i.e., they measure proper time.

a) Parametrize the world lines of the clocks S, E, andW in spherical coordinates (ct, r, ϕ, θ). After 1pt(s)

which (coordinate) time T , and at which longitude Φ will the three clocks meet again? (Ignore

that the airplanes are then still h above the stationary clock.)

The proper time ∆τ measured by an ideal clock along its world line γ is given by

∆τ =
1

c

∫
γ

ds =
1

c

∫
γ

√
gµν ẋµẋνdλ , (5)

where ẋµ ≡ dxµ

dλ
is the tangent vector to the world line and λ is some parametrization.

As shown in the lecture, the metric of the curved spacetime outside of Earth is well approximated

by the radially symmetric Schwarzschild metric

ds2 =
(
1− rS

r

)
c2dt2 −

(
1− rS

r

)−1

dr2 − r2 sin2(θ) dϕ2 − r2 dθ2 , (6)

where rS = 2GM⊕/c
2 ≈ 8.9mm is the Schwarzschild radius of Earth.

b) Assume that all three clocks are set to τ = 0 at their departure. Derive an expression for the 1pt(s)

proper time τi displayed by the three clocks i ∈ {S,E,W} when they meet again at S.
c) Calculate the proper time differences τE − τS and τW − τS and expand your results for small 3pt(s)

values of rS
R

� 1, RΩ
c

� 1 and h
R
� 1.

Compare your result to the equations (2) and (3) of the theory paper

https://doi.itp3.info/10.1126/science.177.4044.166

by Hafele and Keating.

Hint: For the expansion, check the order of magnitudes of the three different ratios to decide up to which

order you need to expand the result.
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d) Finally, use a velocity of v = 200m/s and a height of h = 10 km for the east and westward 2pt(s)

flying clocks. Calculate the proper time differences and compare your numbers with the results

in the paper.

Compare the contribution from the special relativistic time dilation with the contribution from

the “new” gravitational time dilation. Can one neglect the effects of general relativity to explain

the experimental data?

Problem 5.3: Pendulum clocks as ideal clocks [Oral | 9 pt(s) ]

ID: ex_ideal_clocks:rt24

Learning objective

Ideal clocks are defined as any periodic process that measures proper time τ . Thus, whether a clock is

ideal or not depends on the specific process used to build the clock and the situation in which it is used.

The purpose of this exercise is to demonstrate that whether a clock is ideal can be calculated using a theory

describing the clock. To illustrate this, you show that a simple pendulum clock measures proper time if

it is at rest on the surface of Earth. To this end, you show that Newtonian mechanics in a homogeneous

gravitational field follows from the Schwarzschild metric under reasonable approximations.

We consider a simple pendulum clock at rest on the surface of Earth. Our goal is to show that (within

reasonable approximations) the clock oscillates periodically in the proper time that elapses at the

position of the clock.

As shown in the lecture, the spacetime outside of Earth is approximately the Schwarzschild metric

ds2 =
(
1− rs

r

)
c2dt2 −

(
1− rs

r

)−1

dr2 − r2(dθ2 + sin2(θ) dϕ2) , (7)

here given in Schwarzschild coordinates (ct, r, ϕ, θ), with the Schwarzschild radius of Earth rs =
2GM⊕/c

2 ≈ 8.9mm.

a) As a fist step, calculate the proper time τ , which elapses at the position of the pendulum at 1pt(s)

r = re, as a function of the coordinate time t. (re is the radial coordinate of the surface of Earth.)

Now that we know the relationship between τ and t, we want to show that the pendulum is a

periodic process in τ .

Since the equations of motion for classical mechanics on curved spaces are quite complicated, we

use some (justified) approximations. The following scales are relevant for our problem:

The Earth radius re, the Schwarzschild radius rs, the length of our pendulum l, and the typical
velocity of the pendulum v. We know that rs

re
� 1, and it is reasonable to assume that l

re
� 1 and

v
c
� 1 (the pendulum is small and non-relativistic).

b) Introduce the new spatial coordinates (the time coordinate remains the same) 3pt(s)

x := r sin θ cosϕ, y := r sin θ sinϕ, z := r cos θ − re , (8)

with the clock located at x = (x, y, z) = 0.
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Show that the metric in the vicinity of the clock (|x| . l) takes the approximate form

ds2 ≈
(
1− rs

re
+

zrs
r2e

)
c2dt2 − dx2 − dy2

−
(
1 +

rs
re

+
r2s
r2e

− zrs
r2e

)
dz2 − 2xrs

r2e
dxdz − 2yrs

r2e
dydz ,

(9)

where the z-direction points away from the center of Earth.

Hint: Rewrite the Schwarzschild metric in the new coordinates and expand to second order in rs
re

and l
re
.

c) The position xµ of the mass of the pendulum follows the generally covariant equation of motion 4pt(s)

Kµ = m
Duµ

Dτ
= m

(
d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ

)
with uµ =

dxµ

dτ
. (10)

Here,Kµ denotes the (non-gravitational) force exerted by the string or rod of the pendulum on

the massm.

Use leading-order approximations in rs
re

� 1, l
re

� 1 and v
c
� 1 to show that the right-hand

side (= gravitational part) of the equations of motion can be approximated as

Kx = m
d2x

dt2
, Ky = m

d2y

dt2
Kz = m

d2z

dt2
+mg (11)

with the gravitational acceleration g = GM⊕
r2e

= rsc2

2r2e
.

Hint: Approximate the two terms in Eq. (10) separately to leading order: First, use Eq. (9) to evaluate the

leading order of d2x
dτ2

(you can assume that d2t
dτ2

is of higher order). Then show that the second term can be

approximated by c2Γµ
00. Since the pendulum is driven by gravitational effects, the two terms are of the

same order of magnitude, e.g. d2xi

dt2
∼ g.

Note:The τ in this subtask is not the proper time from subtask (a) that elapses for someone at rest next

to the pendulum, but the proper time that elapses for someone swinging along with the pendulum!

You have now shown that one can recover the equations of motion of classical Newtonian mechanics

in a homogeneous gravitational field from the Schwarzschild metric. In this approximation, we can

easily solve the equations of motion of the pendulum and, using our result from subtask a), relate

the periodicity of the pendulum to the proper time:

d) Assume that the pendulum swings in the xz-plane. The forceK = (Kx, Ky, Kz) must then be 1pt(s)

chosen such that the motion of the mass is constrained to

x = l sinφ and z = −l cosφ , (12)

where φ denotes the deflection of the pendulum from the vertical.

Derive the solution to the equations of motion for the pendulum in the small angle approximation

(sinφ ≈ φ) and use your results from a) to show that it is periodic in τ .
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