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Problem 4.1: The Hilbert energy-momentum tensor [Written | 6 pt(s) ]

ID: ex_hilbert_energy_momentum_tensor:rt24

Learning objective

In this exercise, you familiarize yourself with the Hilbert energy-momentum tensor which is the source of

gravity in general relativity. It is named after the mathematician David Hilbert, who introduced it in his

derivation of the field equations

https://doi.itp3.info/10.1007/bf01448427

as variation of the Lagrangian density with respect to the metric of spacetime. (Can you identify the

relevant equation in the paper?)

Here you calculate the Hilbert energy-momentum tensor explicitly for the electromagnetic field in

vacuum; you will recover the symmetric Belinfante-Rosenfeld energy-momentum tensor discussed in

Problem 7.3 (last semester). As a further example, you study the real Klein-Gordon field theory, derive its

generally covariant equation of motion, and its Hilbert energy-momentum tensor.

In the lecture, the Hilbert energy-momentum tensor was defined as

Tµν :=
2
√
g

δ(
√
gL)

δgµν
≡ 2

√
g

[
∂(
√
gL)

∂gµν
− ∂λ

∂(
√
gL)

∂(gµν,λ)

]
, (1)

where L =
√
gL is the Lagrangian density, with the scalar Lagrange function L, the metric tensor

gµν and its determinant g = − det (gµν).

The general covariant action of electrodynamics in vacuum is given by

SEM[Aα, g
µν ] =

∫
d4x

√
gL =

∫
d4x

√
g

(
− 1

16π
gαµgβνFαβFµν

)
, (2)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor and Aµ the four-potential.

a) Calculate the Hilbert energy-momentum tensor Tµν of electromagnetic fields in vacuum. 2pt(s)

Compare it to the symmetric Belinfante-Rosenfeld energy-momentum tensor from last semester.

Hint: From Problem 2.1 you know that ∂g
∂gµν

= ggµν .

Use gµλg
λν = δνµ to show that ∂g

∂gµν = −gµαgνβ
∂g

∂gαβ
.

As a second example, we want to study the real Klein-Gordon field, the simplest relativistic field

theory. On flat Minkowski space, the Lorentz covariant action of the Klein-Gordon field is given by

SSRT
KG [φ] =

∫
d4x

1

2

(
ηµνφ,µφ,ν −m2φ2

)
(3)

with real scalar field φ and mass parameterm; ηµν is the Minkowski metric in inertial coordinates.
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b) Use the minimal coupling principle (MCP) to transform the action (3) into its generally covariant 1pt(s)

form SART
KG [φ, gµν ] for an arbitrary metric gµν in arbitrary coordinates.

c) Use the Euler-Lagrange equations (i.e., vary the action with respect to φ) to derive the generally 1pt(s)

covariant Klein-Gordon equation in curved spacetime.

Hint: Use the Laplace-Beltrami operator∆φ := φ;µ
;µ = 1√

g∂µ
(√

ggµνφ,ν

)
from Problem 2.1 to simplify

your result.

d) Now calculate the Hilbert energy-momentum tensor Tµν for the Klein-Gordon field. 1pt(s)

e) Finally, show explicitly that the covariant divergence of the energy-momentum tensor vanishes 1pt(s)

for solutions of the equations of motion: T µν
;ν = 0.

As demonstrated in the lecture, this is a consequence of the diffeomorphism invariance of

SART
KG [φ, gµν ]. It can be interpreted as energy-momentum conservation in local inertial systems,

but does not correspond to an integral conservation law (= conserved charge) on generic

spacetimes (= spacetimes without Killing vectors).

Problem 4.2: General Relativity in 2+1 Dimensions [Oral | 6 pt(s) ]

ID: ex_gravity_in_two_dimensions:rt24

Learning objective

In general relativity, the effects of gravity are locally described by the curvature of a four-dimensional

Lorentzian spacetime manifold. But the Einstein field equations make sense in arbitrary spacetime

dimensions (that is, on D = d + 1-dimensional Lorentzian manifolds). Since the degrees of freedom
encoded in the curvature depend on the dimension of the manifold, this raises the question whether higher

or lower-dimensional twins of general relativity behave differently than our “normal” 3+1-dimensional

theory.

In this exercise, you study the special case of 2 + 1-dimensional general relativity, i.e., the theory that a
hypothetical “flatland Einstein” – an inhabitant of a world with two spatial dimensions– would have

written down. Specifically, you show that there is no gravitational force in such a world; in this sense,

general relativity in 2 + 1-dimensions is “trivial”.

In Problem 3.1 you have shown that the Riemann curvature tensor Rρ
µνσ has D2(D2 − 1)/12

independent components due to its symmetries. The Ricci tensor Rµν = Rσ
µνσ , on the other hand, is

a symmetric matrix, and therefore has D(D + 1)/2 independent components.

Interestingly, for D = 2 + 1 these two numbers are equal, suggesting that one can express the

Riemann curvature tensor in terms of the Ricci tensor. We show now that this is true:

a) We denote by Curv the space of rank-4 tensors Aαβµν with the same symmetries as the Riemann 3pt(s)

curvature tensor: antisymmetric in the first and last two indices (A), symmetric under exchanging

the first and last two indices (S), and it fulfills the first Bianchi identity (B):

(A) Aαβµν = −Aβαµν = −Aαβνµ , (4a)

(S) Aαβµν = Aµναβ , (4b)

(B) Aαβµν + Aµαβν + Aβµαν = 0 . (4c)
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Show that for any symmetric rank-2 tensor Aαβ the rank-4 tensor defined via

Aαβµν :=
1

D − 2

[
Aανgβµ −Aβνgαµ −Aαµgβν +Aβµgαν −

gσρAσρ

D − 1
(gανgβµ − gαµgβν)

]
, (5)

is an element of Curv.

Furthermore, show that any symmetric 2-tensor Aβµ can be written as the trace of a tensor in

Curv, e.g., Aβµ = gανAαβµν .

b) Use your results from a), in combination with a dimensionality argument, to show that there is 2pt(s)

exactly one rank-4 tensor which traces to the Ricci tensor in D = 2 + 1 dimensions. Conclude
that this must be the curvature tensor.

In the lecture it was shown that, for a matter distribution given by T µν , the Ricci tensor is constrained

by the Einstein field equations (here without cosmological constant)

Gµν = Rµν −
1

2
Rgµν = −κTµν . (6)

Here R = Rµ
µ is the Ricci scalar. Note that these equations are well-defined in arbitrary spacetime

dimensions D.

c) Use your result from b) to show that in vacuum (Tµν = 0), the curvature tensor is identically 1pt(s)

zero in D = 2 + 1 spacetime dimensions. That is: Spacetime is locally flat! Convince yourself

that this conclusion cannot be drawn in our real D = 3 + 1-dimensional spacetime.

You have shown that in D = 2 + 1 dimensions the Riemann curvature tensor vanishes identically
in vacuum. Intuitively, this tells us that there are no gravitational effects away from matter. For

example, the tidal effects described by the geodesic deviation equation (Problem 3.2) are absent.

One can show that if the curvature tensor vanishes in an open region of spacetime, then one can

construct coordinates such that the metric simplifies to the Minkowski metric ηµν in that region.
Thus, in D = 2 + 1 dimensions, empty space becomes Minkowski space, and no gravitational

attraction is possible (also other gravitational effects are absent, such as gravitational waves).

Note: Note that Newtonian gravity in two spatial dimensions is not trivial. (What is the Green’s function of

the Laplace operator in 2D?) Thus 2 + 1-dimensional general relativity and 2-dimensional Newtonian gravity

are not equivalent in the non-relativistic limit!

Note:The fact that there are no (local) dynamical degrees of freedom in pure 2+1 gravity does not mean that

the theory is completely “trivial”. As Edward Witten showed, it is equivalent to a topological Chern-Simons

field theory (a particular class of gauge theories):

https://doi.itp3.info/10.1016/0550-3213(88)90143-5

The paper is – as usual for Witten – nice to read, but requires mathematics that is beyond this course. (But

not by much. We are mostly missing the tetrad formalism.)
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Problem 4.3: Einstein’s original formulation of the field equations [Oral | 3 (+2 bonus) pt(s) ]

ID: ex_einsteins_original_field_equations:rt24

Learning objective

In 1915 Einstein published his paper “Die Feldgleichungen der Gravitation”

https://doi.itp3.info/650aebc80e4c295a6c3d40cd0df42889

in which he spelled out the field equations of general relativity in their final form.

In this exercise, your task is to read this (short!) paper and translate Einstein’s original formulation into

the modern form of the field equations.

a) Read the 1915 paper and identify the equation that corresponds to the modern form of the 3pt(s)

Einstein field equations (without cosmological constant Λ)

Gµν = −κTµν , (7)

where the Einstein tensor is defined asGµν = Rµν− 1
2
gµνR, with Ricci tensorRµν , Ricci scalarR,

and the metric tensor gµν . Tµν is the energy-momentum tensor and κ is Einsteins gravitational

constant.

Which of Einstein’s symbols correspond to which of our modern notation?

Finally, identify and discuss equations and concepts in Einstein’s paper that do not have a direct

equivalent in our modern treatment of the field equations.

∗b) In the lecture, we introduced the more general form of the field equations +2pt(s)

Gµν + Λgµν = −κTµν , (8)

with cosmological constant Λ ∈ R.
This modification was not yet included in the 1915 paper, but introduced by Einstein in 1917 in

his paper “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie”

https://doi.itp3.info/45606292de2af71198a29a3045ecbb05

in which he studied the consequences of his field equations for the universe as a whole.

Read the paper and identify the complete field equations (8) in Einstein’s notation.

For what purpose did Einstein introduce the cosmological constant?
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