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Problem 3.1: Properties of the Riemann Curvature Tensor [Written | 8 pt(s) ]

ID: ex_properties_riemann_tensor:rt24

Learning objective

The purpose of this task is to become familiar with the Riemann curvature tensor, our mathematical tool

to describe curvature in general relativity. You study the symmetries of this tensor (which can simplify

calculations significantly), and show that there are not as many independent components as one naïvely

expects.

As a reminder, the Christoffel symbols are given by

Γi
jk =

1

2
gim (gmj,k + gkm,j − gjk,m) . (1)

These are the connection coefficients of the unique, torsion-free, metric-compatible Levi-Civita

connection on a Riemannian manifold.

In the lecture, the curvature tensor was derived as function of the connection coefficients:

Riklm = gis (∂lΓ
s
km − ∂mΓ

s
kl + Γs

nlΓ
n
km − Γs

nmΓ
n
kl) . (2)

Riklm is called Riemann curvature tensor if the connection is the Levi-Civita connection Eq. (1).

a) Show that the Riemann curvature tensor takes the form 2pt(s)

Riklm =
1

2
(gim,k,l + gkl,i,m − gil,k,m − gkm,i,l) + gab

(
Γa

klΓ
b
im − Γa

kmΓ
b
il

)
. (3)

b) The Riemann curvature tensor features several symmetries and identities. 3pt(s)

It is antisymmetric (A) in the first two and last two indices and symmetric (S) under a swap of

the first two with the last two indices. It also fulfills the first Bianchi identity (B):

(A) Riklm = −Rkilm = −Rikml (4a)

(S) Riklm = Rlmik (4b)

(B) Riklm +Rilmk +Rimkl = 0 (4c)

Prove these identities.

We are now prepared to discuss the independent components of the Riemann curvature tensor.

Simple counting tells us that the tensor consists of D4 components (fields), where D denotes the

dimension of the manifold. For example, in the usual D = 4-dimensional spacetime of general
relativity, we have 256 components. However, symmetries reduce this number considerably:
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c) Show that the symmetries (A), (S) and (B) reduce the number of (algebraically) independent 3pt(s)

components to

D2(D2 − 1)

12
. (5)

Hint: First, infer the number of independent components due to (A) and (S), and then subtract the number

of unique equations that (B) implies.

In conclusion, you have shown that on the D = 4-dimensional spacetime of general relativity, the
256 fields that make up the Riemann curvature tensor reduce to only 20 algebraically independent

fields.

Note:This does not mean that all of these 20 fields are physical degrees of freedom in general relativity! As we

will discuss in the lecture, there are actually far fewer since general relativity has a gauge symmetry (which is

related to its background independence and invariance under arbitrary coordinate transformations).

Problem 3.2: Geodesic Deviation [Oral | 5 pt(s) ]

ID: ex_geodesic_deviation:rt24

Learning objective

In our everyday experience of (nearly) flat space, we expect parallel straight lines to keep the same

distance from each other, no matter how far they extend. In curved spaces, this is not necessarily the

case: Initially parallel Geodesics – the straight lines on Riemannian manifolds – may cross or diverge.

In this exercise, you show that this behavior can be directly related to the curvature of the manifold. The

resulting geodesic deviation equation serves as a motivation for a geometric theory of gravity, in that it

suggests a purely geometric description of gravitational tidal effects, and a relation between gravity and

curvature.

A geodesic is a curve γ(λ) on a manifold which (locally) minimizes the distance between two

points. Because we only consider the torsion-free Levi-Civita connection, geodesics are equivalent

to autoparallel curves.

The defining equation for (affinely parametrized)

geodesics is then

d2γµ

dλ2
+ Γµ

αβ

dγα

dλ

dγβ

dλ
= 0 . (6)

We now consider a small, two-dimensional patchV
embedded in a larger, higher dimensional manifold

M, and a continuous family of geodesics γs(λ)
parametrized by s ∈ R. We assume that every

point in V belongs to exactly one geodesic and can

therefore be labeled by the coordinates (s, λ) (we
assume that the geodesics do not cross in V!).
It is then natural to define the two vector fields

Sµ :=
∂γµ

s (λ)

∂s
(“Deviation”) and T µ :=

∂γµ
s (λ)

∂λ
(“Velocity”) . (7)
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This setup is illustrated in the sketch above.

In the following we want to show that, when traveling along a geodesic, adjacent geodesics can be

attracted or repelled with a rate determined by the local curvature.

a) As a first preliminary step, show that 1pt(s)

DSµ

Dλ
=

DT µ

Ds
or equivalently TαSµ

;α = SαT µ
;α , (8)

since the Levi-Civita connection is torsion free (= symmetric).

b) As a second preliminary step, convince yourself that T µ is a parallel vector field, i.e., show that 1pt(s)

TαT β
;α = 0 . (9)

Because of the relation

γµ
s+ds − γµ

s = Sµds , (10)

we can interpret Sµ as the distance to another infinitesimally close geodesic. A change of this vector

(more precisely: its “acceleration”) then tells us whether nearby geodesics are being attracted or

repelled from each other.

The geodesic deviation Aµ is therefore defined as the second derivative of Sµ along the geodesic:

Aµ :=
DSµ

Dλ2
. (11)

c) Use your preliminary results to derive the geodesic deviation equation 3pt(s)

Aµ = Tα
(
T βSµ

;β

)
;α
= Rµ

αβνT
αT βSν . (12)

Hint: Remember the Ricci identity from the lecture, which relates the commutator of covariant derivatives

to the curvature tensor:

Bν;α;β −Bν;β;α = Rσ
ναβBσ . (13)
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Problem 3.3: Charged particle in a gravitational field [Oral | 9 (+6 bonus) pt(s) ]

ID: ex_charge_in_gravitational_field:rt24

Learning objective

In this exercise you explore and analyze the apparent “paradox” of a charge at rest in a gravitational field.

Einstein’s equivalence principle (EEP) states that local effects of gravity are indistinguishable from

acceleration: a small laboratory at rest on Earth is indistinguishable from an accelerated rocket far away

from Earth. It is well known from electrodynamics that accelerated charges emit radiation (synchrotron

radiation, bremsstrahlung, …). In combination with the EEP, this seems to suggest that a charge at rest in

a gravitational field (say, on a table in an earth-bound laboratory) should radiate as if it were accelerateda!

But our daily experience clearly tells us that this is not the case!

This “paradox” has a long-standing history. It has first been studied by Max Born and Wolfgang Pauli at

the beginning of the 20th century, but wasn’t conclusively explained until much later in 1960 by Fulton

and Rohrlich. In this exercise, we follow the pedagogic exposition by Almeida and Saa:

https://doi.itp3.info/10.1119/1.2162548
aAccording to general relativity, it is accelerated, as it does not follow a geodesic in spacetime.

Let us consider a charged particle with charge e at rest in a (non-inertial) laboratory K on the

surface of Earth with coordinates (ct̄, x̄, ȳ, z̄), henceforth called the comoving observer (see sketch

below). The proper time displayed by a clock attached to the charge is denoted τ .

For our purpose, we can consider the gravitational field of Earth as homogeneous, so that – in

accordance with Einstein’s equivalence principle – the situation is equivalent to a charge in a

laboratory with constant proper acceleration g ≡ c2/α in z-direction.

For comparison (and to simplify the problem), we also consider an inertial (free-falling) observer I
with inertial coordinates (ct, x, y, z) observing the same charge. Note that the charge is accelerated
upwards with respect to this inertial observer:

The idea is now to use the inertial frame I to solve the problem within the framework of special

relativity (i.e., by using the Maxwell equations in their Lorentz covariant form). To resolve the

“paradox,” we then transform these solutions into the comoving frame K , exploiting the general

covariance of Maxwell’s equations, and the tensorial transformation of the field strength tensor Fµν .
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In Problem 6.1 (last semester) you already calculated the world line of a relativistic rocket with

constant proper acceleration in an inertial frame. Thus, we already know that the world line of the

charged particle has the form

rµ(τ) = (α sinh(cτ/α), 0, 0, α cosh(cτ/α))I =

(
cte, 0, 0, α

√
1 +

c2t2e
α2

)
I

(14)

in the inertial coordinates of the free-falling observer I . Here, τ is the proper time of the particle
and te is the coordinate time measured by clocks at rest in I .

a) To get an intuition for the hyperbolic motion of the charged particle Eq. (14), sketch the world 1pt(s)

line in the z-t-plane. Split the spacetime diagram of I into four regions, separated by the light
cone of the origin, and explain the Rindler horizon of the accelerated charged particle.

In Problem 7.2 (last semester) you learned that the Maxwell equations can be written in their

manifestly Lorentz covariant form as

F µν
,ν = ∂νF

µν = −4π

c
jµ , (15)

where F µν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor, Aµ is the four-potential,

and jµ is the four-current induced by the charged particle. For a point particle, it is given by

jµ(x) = ec

∫
dτ δ(4)(x− r(τ))uµ , (16)

where uµ = drµ

dτ
is the four-velocity of the charged particle.

b) Use the Lorenz gauge ∂µA
µ = 0 to derive the wave equation for the four-potential and solve it. 2pt(s)

Hint: The solution of the wave equation �Aµ(x) = 4π
c j

µ(x), which also respects the event horizons
discussed in a), can be written as

Aµ(x) =

∫
d4x′Gret(x− x′)

4π

c
jµ(x′) , (17)

where the retarded Green’s function is given by

Gret(x) =
1

2π
θ(x0)δ (xνxν) (18)

and θ(x0) is the Heaviside step function.

∗c) Use your solution from b) to calculate the electromagnetic field strength tensor F µν . +1pt(s)

Hint: Start from the four-potential in the form

Aµ = 2e

∫
dτ θ(ct− r0(τ))δ

(
(x− r(τ))2

)
uµ(τ) , (19)

and calculate the gradient ∂νAµ.

The following chain rule might be useful: ∂νδ(f) = ∂f/∂xν

df/dτ
d
dτ δ(f).

The final result should read

∂νAµ =
e

|uR|
d

dτ

[
uµRν

uR

]∣∣∣∣
τ=τret

, (20)

where all expressions are to be evaluated at the retarded proper time τret, which is implicitly defined by

RµRµ = (xµ − rµ(τ))2
!
= 0. For simplicity, we introduced the relative vector Rµ := xµ − rµ(τ) and

omit indices in scalar contractions, i.e., uR ≡ uµRµ.
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Recall that the electromagnetic field strength tensor relates to the electric and magnetic fields as

F µν = ∂µAν − ∂νAµ =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 . (21)

d) Calculate the electric and magnetic fields E andB of the accelerated charged particle in the 2pt(s)

inertial frame I using Eq. (20) and (21), and the world line rµ(τ) in Eq. (14).

The result reads

E =
c3e

α |uR|3

 xz
yz

(xµxµ)2

4α2 − α2

4
− (uR)2

c2

 and B =
c3e

α |uR|3

−cty
ctx
0

 , (22)

where the uR is always to be evaluated at the retarded proper time τret.

∗e) Show that the prefactor uR = uµRµ evaluates to +3pt(s)

uµRµ|τ=τret
= ± c

2α

√
(α2 + xµxµ)2 + 4α2(x2 + y2) , (23)

where the right-hand side has no τ -dependence anymore.

Hint: Rewrite the expression in terms of r0 = cte instead of τ and use the conditions for the retarded

time.

You now know the fields of a charged particle with constant proper acceleration in an inertial frame:

Eq. (22), together with Eq. (23), which show that there is a non-vanishing magnetic field, and both

fields are time dependent. This suggests that the constantly accelerated charge indeed radiates in the

free-falling frame I , consistent with what you have been told in electrodynamics!

(If you are in doubt: Compute the Poynting vector and verify that the charge emits radiation.)

So far, so unexciting. But what does the comoving observer K see? The coordinates of this non-

inertial/accelerated observer are given by Rindler coordinates x̄µ = (ct̄, x̄, ȳ, z̄), defined by the

(non-linear) coordinate transformation

xµ = (ct, x, y, z)I ≡
(√

2z̄α sinh (ct̄/α) , x̄, ȳ,
√
2z̄α cosh (ct̄/α)

)
I
. (24)

If you compare this transformation to the trajectory of the accelerated charge Eq. (14), you find

r̄µ(τ) = (cτ, 0, 0, α/2)K (25)

i.e., the charge is at rest in the Rindler coordinate system [at the position (x̄, ȳ, z̄) = (0, 0, α/2)],
and the Rindler time t̄ coincides with the proper time τ . This shows that the Rindler coordinates are

a reasonable coordinate system for the earth-bound laboratory in which the charge is at rest.

Note:The Rindler coordinates only cover the spacetime region |ct| ≤ z in I (the so called Rindler wedge). You

can use your sketch from a) to visualize this region.

f) Express the Rindler coordinates x̄µ of K in terms of the inertial coordinates xµ of I . 3pt(s)

Then calculate the transformation matrix ∂xµ

∂x̄ν and its inverse ∂x̄µ

∂xν .
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Since the electromagnetic field strength F µν is a contravariant tensor, it transforms under arbitrary

coordinate transformations as

F̄ µν =
∂x̄µ

∂xα

∂x̄ν

∂xβ
Fαβ . (26)

Note that also in Rindler coordinates the components of the electromagnetic field strength tensor

can be identified as the electric and magnetic fields B̄ and Ē:

F̄ µν =


0 −Ēx −Ēy −Ēz

Ēx 0 −B̄z B̄y

Ēy B̄z 0 −B̄x

Ēz −B̄y B̄x 0

 . (27)

Note:This is a subtle claim. To show this, you must first operationally define what the electric and magnetic

fields are, for example, by using the Lorentz force. Then you must show that the fields Ē and B̄ in Eq. (27)

play the proper role in the Lorentz force law inK .

g) Calculate the magnetic field B̄ inK by transforming the relevant components of the electro- 1pt(s)

magnetic field tensor [using Eq. (22) for the fields].

Use your result to argue that the Poynting vector S̄ vanishes for the comoving observer. With

this you have shown that – consistent with observations – the charge does not radiate in the

earth-bound laboratory!

∗h) For completeness, calculate also the transformed electric field Ē by using the explicit form of +2pt(s)

uµRµ in Eq. (23).

Show that the electric field in this frame is no longer time dependent – consistent with the result

from g) that the charge does not radiate!

In conclusion, you have shown that the inertial observer I measures an accelerating and radiating
charge, whereas the non-inertial comoving observer measures a charge at rest without magnetic

field and only a static electric field.

More generally, you have shown that the concept of radiation is observer dependent! This means

that statements like “object X emits radiation” or “object X emits N photons” are not observer-

independent, an insight that has ramifications far beyond classical electrodynamics. (For example,

in quantum field theory, the notion of “particles” becomes observer dependent, which leads to

phenomena like Hawking radiation or the Unruh effect.)

Note: Instead of solving the Maxwell equations in an inertial frame, and subsequently transforming the

solutions into the Rindler frame, one can also solve the Maxwell equations directly in the Rindler frame. These

equations follow from the generally covariant form of the Maxwell equations:

Fµν
;ν =

1
√
g
∂ν(

√
gFµν) =

4π

c
Jµ . (28)

Here, the semicolon ; denotes the covariant derivative, g is given by the determinant of the metric tensor
g = − det(gµν), and J

µ = 1√
g j

µ is the covariant four-current.

In particular, this implies that the conventional form of Maxwell’s equations you learn in electrodynamics is,

strictly speaking, not valid in earth-bound laboratories as these are not inertial (and the usual [not generally

covariant] Maxwell equations are only valid in inertial coordinates). However, the deviations due to the

(homogeneous) gravitational field in a typical lab are so small that they can be ignored. Nonetheless, one can

show (using your results from above), that the electric field of a point charge at rest on the surface of earth is

not exactly a spherically symmetric Coulomb field!
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