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Problem 2.1: Useful relations for general relativity [Written | 9 pt(s) ]

ID: ex_useful_relations_for_gr:rt24

Learning objective

In this exercise you derive some useful relations for calculations involving the metric tensor, covariant

derivatives, and the Christoffel symbols. This prepares you for calculations in the lecture and hones you

skills in tensor calculus.

For example, you show that dnx is not a scalar under arbitrary coordinate transformations so that

integration over a scalar function is not invariant as well. By contrast, the combination
√
g dnx is a

scalar, which makes this a useful quantity that you will encounter throughout this course.

Recall from our discussion of tensor calculus in the last semester that the Christoffel symbols are

defined as

Γi
kl =

1

2
gim (gmk,l + gml,k − gkl,m) , (1)

where gij is a given Riemannian metric tensor, and a comma denotes a partial derivative, e.g.,

gij,k = ∂kgij . The inverse of the metric tensor gij is denoted by gij , with

gijg
jk = δki , (2)

and can be calculated explicitly via Cramer’s rule

gij =
1

g
∆ji . (3)

Here we used the determinant of the metric tensor g = − det(gij) and the cofactor ∆ij , i.e., the

determinant of the matrix obtained by removing the i-th row and j-th column of the matrix gij ,
multiplied by (−1)i+j .

Using the Laplace expansion, we can also express the determinant of the metric via the cofactors

g =
∑
m

gim∆im , (4)

where we only sum overm with a fixed index i.

Note: The minus sign in the definition of g = − det(gij) is conventional, such that g > 0 for the metric

tensors of general relativity. Also note, that the cofactor matrix∆ is not a tensor, which is why we will always

write it with lower indices and no Einstein summation is implied.

a) Show that the contraction of the Christoffel symbols Γi
ki can be expressed as 3pt(s)

Γi
ki =

1

2g

∂g

∂xk
= ∂k ln

√
g . (5)

Hint: Show that gij = 1
g

∂g
∂gji

by differentiating Eq. (4) with respect to gij and use this to simplify Γi
ki.
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b) Similarly, show that 2pt(s)

gklΓi
kl = −∂mg

im − 1
√
g
∂i√g = − 1

√
g
∂m

(√
ggim

)
. (6)

Hint: Prove and use the relation gikg
kj,l = −g ,l

ik gkj .

The covariant derivative of a Lorentz scalar φ, a contravariant vector Ai, and a contravariant tensor

Bij are defined as follows:

φ;l := φ,l , (7a)

Ai
;l := Ai

,l + Γi
lmA

m , (7b)

Bij
;l := Bij

,l + Γi
lmB

mj + Γj
lmB

im . (7c)

c) Use your results from a) to derive the following relations for the covariant divergence of a vector 3pt(s)

field Ai and a tensor field Bij , as well as the covariant Laplacian applied to a scalar field φ:

Ai
;i =

1
√
g
∂i
(√

gAi
)
, (8a)

Bij
;j =

1
√
g
∂j

(√
gBij

)
for an antisymmetric tensor Bij = −Bji , (8b)

φ;i
;i =

1
√
g
∂i
(√

ggimφ,m

)
. (8c)

Finally, we also want to examine the volume element dnx, which is not a scalar but transforms as

dnx =

∣∣∣∣∂x∂x̄
∣∣∣∣ dnx̄ , (9)

where
∣∣∂x
∂x̄

∣∣ is the determinant of the Jacobian matrix ∂xi

∂x̄j of the coordinate transformation.

d) Use the transformation of the metric tensor ḡij(x̄) to replace the determinant
∣∣∂x
∂x̄

∣∣ and show 1pt(s)

√
g dnx =

√
ḡ dnx̄ , (10)

i.e., show that
√
g dnx is a scalar (invariant under coordinate transformations).

One can now use the modified volume element
√
g dnx to define an integral

∫
dnx

√
g φ(x) that, for

a scalar field φ(x) as integrand, is form-invariant under coordinate transformations as well. This

is why the modified volume element
√
g dnx shows up in generally covariant actions of general

relativity.

With this volume element [and your result from part c)], one immediately finds the useful form of

Gauss’s theorem∫
V

dnx
√
g Ai

;i

c)
=

∫
V

dnx ∂i
(√

gAi
) Gauss

=

∮
∂V

dn−1σi
√
gAi , (11)

where dn−1σi denotes the integration over the surface normal.
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Problem 2.2: Curved Riemannian manifolds – The sphere [Oral | 6 pt(s) ]

ID: ex_connection_curvature_examples:rt24

Learning objective

In this exercise you practice calculations on curved Riemannian manifolds by a simple (though non-trivial)

example, namely the sphere. The point is to illustrate the usefulness of the curvature tensor. You will

see that it is a non-trivial task to determine the “curvedness” of a given Riemannian manifold from its

metric, and that the curvature tensor (and its descendants) are the tool to solve it.

A sphere of radius ρ can be parameterized by two angles, ϑ ∈ [0, π] and φ ∈ [0, 2π).

In these coordinates, the metric of the sphere is

given by

ds2 = ρ2dϑ2 + ρ2 sin2(ϑ) dφ2 . (12)

We consider now a coordinate transformation

from (θ, φ) to a new chart (r, ϕ) defined by

cos(ϑ) =
r2 − 1

r2 + 1
and ϕ = φ (13)

with r ∈ [0,∞).

This corresponds to a stereographic projection of the sphere through the north pole onto the plane

R2 which bisects it (see the sketch on the right).

a) Determine the metric in the new coordinates r and ϕ. 1pt(s)

Consider now two different metrics defined as follows:

ds2A =
4ρ2

(r2 + 1)2
(
dr2 + r2dϕ2

)
, and ds2B = dr2 + r2dϕ2 . (14)

The first metric ds2A = ds2 is the result from a), i.e., the metric of the sphere (in unusual coordinates).

By contrast, ds2B is the metric of flat Euclidean space R2 (in polar coordinates).

The two manifolds are clearly very different: the sphere is curved while the plane is not. However,

this differentiating feature is hard to extract from the expressions in Eq. (14).

In general, it is almost impossible to look at a metric and decide whether the manifold it describes is

curved or not because the choice of curvilinear coordinates can make even the simplest metric look

very complicated.

Here the Riemann curvature tensor (and its traces) come in handy as a tool to distinguish between

curved and flat spaces:

b) To compute the curvature tensor of both manifolds, first determine the Christoffel symbols 2pt(s)

Γi
kl =

1

2
gim (gmk,l + gml,k − gkl,m) , (15)

for both metrics.

Hint: Use a previous exercise for the Christoffel symbols of the Euclidean plane in polar coordinates.
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c) The Riemann curvature tensor is given by 2pt(s)

Rl
ijk = −

[
Γl

ij,k − Γl
ik,j + Γm

ijΓ
l
km − Γm

ikΓ
l
jm

]
. (16)

Show that this tensor vanishes for the flat space ds2B but not for the sphere ds2A.

Hint: Since we are in two dimensions, there is only one independent nonzero component of the curvature

tensor due to the symmetries

Rlijk = −Riljk , and Rlijk = −Rlikj . (17)

We will have a closer look at the symmetries of the curvature tensor in a future exercise.

d) Finally, compute the Ricci scalar 1pt(s)

R = gijRk
ijk , (18)

for both metrics. How does the curvature RA of the sphere change with varying radius ρ?

Problem 2.3: Equivalence priciple - Local inertial systems [Oral | 3 pt(s) ]

ID: ex_local_inertial_system:rt24

Learning objective

The Einstein Equivalence principle (EEP) is the foundational principle of general relativity. It states that

in a small enough laboratory there is no experiment that can detect the presence of a gravitational field.

In other words, locally (in space and time) special relativity is sufficient to describe the world.

In this exercise, you study generic properties of Lorentzianmanifolds that allow for a natural incorporation

of the EEP into the formalism of general relativity. In particular, you show that at every point there is a

coordinate system in which a Lorentzian metric takes the Minkowskian form of special relativity.

Let us first set the stage: We consider a manifoldM (= spacetime) and select a point P ∈ M (the

center of our lab at a specific time). We focus on a small neighborhood V of P (the lab during some

small time interval). In this neighborhood V we can define a local coordinate system xµ.

In special relativity, we considered a particular combination of manifold (Minkowski space) and

coordinates (inertial coordinate systems) where the metric tensor had the special form

ηµν = diag(1,−1,−1,−1)µν ,

and the Christoffel symbols vanished identically.

In the presence of an inhomogeneous gravitational field, general relativity forces us to work on a

more general 4D spacetime manifold with an arbitrary Lorentzian metric gµν of signature (1, 3) (and
its corresponding Christoffel symbols).

In the following, you show how one can locally recover the spacetime structure of special relativity

on such a manifold:

a) Recall from last semester (or the lecture) that Christoffel symbols change under an arbitrary 1pt(s)
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coordinate transformation in a non-tensorial way:

Γ̄κ
µν(x̄) =

∂x̄κ

∂xσ

∂xα

∂x̄µ

∂xβ

∂x̄ν
Γσ

αβ(x) +
∂x̄κ

∂xσ

∂2xσ

∂x̄µ∂x̄ν
. (19)

Show that there exist coordinates x̄µ such that the Christoffel symbols vanish at the point P :

Γ̄α
µν(P ) = 0 . (20)

Hint: Consider a non-linear coordinate transformation of the form

xµ − xµP = x̄µ +
1

2
Qµ

αβx̄
αx̄β , (21)

where Qµ
αβ is w.l.o.g. symmetric in the two lower indices and x

µ
P are the coordinates of the point P .

b) Show that there is a linear coordinate transformation, which transforms the coordinates x̄ to 1pt(s)

new coordinates x̃ such that the metric at the point P takes the Minkowski form:

g̃µν (P ) = ηµν . (22)

Why is it important that the transformation x̃ = x̃(x̄) is linear? What does this imply for the

Christoffel symbols in these new coordinates?

The two properties

Γ̃κ
µν(P ) = 0 and g̃µν (P ) = ηµν (23)

characterize a local inertial coordinate system in P .

(Is this coordinate system unique? Which coordinate transformations leave Eq. (23) invariant?)

Note: Conceptually this is very important because this tells us how to implement the EEP: We can use any

Lorentzian metric to describe spacetime, as long as we obey the constraint that our equations reduce to their

special relativistic form when we transform into a local inertial system where gµν = ηµν and Γ
κ
µν = 0.

c) Show that the properties Eq. (23) imply that 1pt(s)

∂̃αg̃µν

∣∣∣
P
= 0 . (24)

Combining our results, show that close to the point P we can expand the metric as

g̃µν = ηµν +
1

2

∂2gµν
∂x̃α∂x̃β

x̃αx̃β +O(x̃3) . (25)
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