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Problem 7.1: Transformation of the Electromagnetic Fields - The Einstein Way[Oral | 4 pt(s) ]

ID: ex_lorentz_transformation_E_B:rt2324

Learning objective

In the lecture, you have seen that the electric and magnetic fields transform under a Lorentz boost as

Ē(x̄) = γ

[
E(x) +

1

c
v ×B(x)

]
− (γ − 1)

v ·E(x)

v2
v , (1a)

B̄(x̄) = γ

[
B(x)− 1

c
v ×E(x)

]
− (γ − 1)

v ·B(x)

v2
v . (1b)

This complicated transformation law was derived from the transformation of the 4-potential Aµ, which

was shown to transform as a 4-vector in the lecture.

In this exercise, you derive this transformation law for a boost in x-direction the way it was originally

derived by Einstein in his famous publication “Zur Elektrodynamik bewegter Körper” (his discussion

starts on page 907).

The purpose of this exercise is twofold: First, you learn that the Lorentz covariance of Maxwell equations

can be shown without formulating the theory as a gauge theory, and without using the tensor formalism.

And second, since this direct approach turns out to be quite messy and opaque, you learn to appreciate

the elegance of the modern tensor formalism.

We consider two inertial systems K and K̄ , connected by a boost in x-direction K
vx−→ K̄ .

The homogeneous Maxwell equations read

Magnetic Gauss’s law: ∇ ·B = 0 , (2a)

Maxwell-Faraday law: ∇×E +
1

c
∂tB = 0 . (2b)

The goal is to derive the transformation laws for E and B under a Lorentz boost by requiring the

form-invariance of the homogeneous Maxwell Eq. (2).

a) Transform the homogeneous Maxwell Eq. (2) into the frame K̄ by transforming all derivatives. 3pt(s)

Identify new quantities Ē(x̄) and B̄(x̄) in terms of E(x) and B(x) such that the equations in

K̄ have the same form as in K (form-invariance).

Hint: After the transformation, rearrange the derivatives such that you can again identify the divergence

and curl. You need to combine two of the four equations to do this.

b) Check that the transformed fields Ē and B̄ found in a) also satisfy the inhomogeneous Maxwell 1pt(s)

equations (in vacuum for simplicity)

Electric Gauss’s law: ∇ ·E = 0 , (3a)

Ampère’s law: ∇×B − 1

c
∂tE = 0 . (3b)

Hint: Use that Eq. (2) and Eq. (3) map into each other via a simple substitution of fields.
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Problem 7.2: Covariant formulation of the Maxwell equations [Oral | 6 (+2 bonus) pt(s) ]

ID: ex_covariant_maxwell_equations:rt2324

Learning objective

In this problem, you use the Lagrange formalism and the machinery of tensor calculus to derive the

Maxwell equations (in vacuum) in a manifestly covariant form. To do so, you start by constructing a

Lorentz- and gauge invariant Lagrangian density for the electromagnetic field. Then you evaluate the

Euler-Lagrange equations to derive the inhomogeneous Maxwell equations in their manifestly covariant

form. Finally, you use the dual field strength tensor to write the homogeneous Maxwell equations

covariantly as well.

In the lecture we introduced the rank-2 field strength tensor

Fµν = ∂µAν − ∂νAµ , (4)

where the four-potential is given by Aµ = (ϕ,−A), ϕ is the scalar potential and A is the vector

potential of classical electrodynamics. In the lecture it was motivated that the field strength tensor

Eq. (4) encodes all gauge-invariant information about the electromagnetic field.

We now want to construct a Lagrangian density for the electromagnetic field in vacuum. This

Lagrangian density should be invariant under gauge transformations and proper orthochronous

Lorentz transformations SO+(1, 3). Furthermore, to recover the Maxwell equations (which are

linear in the fields), the Lagrangian should be quadratic in the fields.

Thus, the most general Lagrangian density we can construct has the form:

L = aF µνFµν + b F̃ µνFµν + c F̃ µνF̃µν , (5)

where a, b and c are constants, F̃ µν = 1
2
εµναβFαβ is the dual field strength tensor, and we use the

metric tensor ηµν to raise and lower indices.

a) First, we want to show that F̃µνF̃
µν ∝ FµνF

µν , so that the term can be dropped from the 1pt(s)

Lagrangian without loss of generality.

Hint: Use the following relation for the Levi-Civita symbol:

εµναβεµνγδ = −2(δαγ δ
β
δ − δαδ δ

β
γ ) (6)

b) Next, calculate the Euler-Lagrange equations for the second term of the Lagrangian density 2pt(s)

in Eq. (5) by treating the components Aµ(x) as the dynamic variables. Show that the result is

identically zero.

To understand why, show that F̃ µνFµν can be written as a four-divergence so that it leads to a

surface term in the action.

Note:The term F̃µνFµν is known as the θ-term. As you have shown, it has no effect on the classical level.

However, for a more general class of gauge theories known as Yang-Mills theories, it can have effects on

the quantum level.

In conclusion, we found that only the first term in Eq. (5) is relevant. Let us then define the Lagrangian

density of Maxwell theory in vacuum as

LEM = − 1

16π
FµνF

µν . (7)
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Note: The prefactor 1/16π is specific to our choice of Gaussian cgs units, and the minus sign a useful

convention so that the action possesses a minimum.

c) Evaluate the Euler-Lagrange equations for Eq. (7) to derive the inhomogeneous Maxwell equa- 1pt(s)

tions in their manifestly covariant form

∂νF
µν = 0 . (8)

The field strength tensor can also be expressed in terms of the electric and magnetic fields E and B,

F µν =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 ,

or equivalently

F i0 = −F 0i = Ei and (9)

F ij = −εijkBk ,

where Latin indices run over 1, 2, 3.

d) Check that the definition of the field strength tensor in Eq. (4) is consistent with Eq. (9). 1pt(s)

Note: The electric and magnetic fields Ei and Bi are not four-vectors! Therefore they are neither co- nor

contravariant and their index is just a label (which for consistency we always write as a subscript).

e) Write the inhomogeneous Maxwell Eq. (8) in their standard form (namely the electric Gauss law 1pt(s)

and Ampère’s law) by using Eq. (9).

So far we only considered the inhomogeneous Maxwell equations. The homogeneous Maxwell

equations are automatically fulfilled by expressing the field strength tensor (and thereby the electric

and magnetic fields) in terms of the four-potential Aµ. However, we could also define the field

strength tensor by Eq. (9) directly in terms of the electric and magnetic fields.

In this case, one can use the dual field strength tensor F̃ µν := 1
2
εµναβFαβ to write the homogeneous

Maxwell equations in manifestly covariant form:

∂νF̃
µν = 0 . (10)

The dual field strength tensor can be written in terms of the electric and magnetic fields as

F̃ µν =


0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

 ,

or equivalently

F̃ i0 = −F̃ 0i = Bi and (11)

F̃ ij = +εijkEk .

Note: Fµν and F̃µν are related by the substitution Ei 7→ Bi and Bi 7→ −Ei.

∗f) First, check that the definition of the dual field strength tensor F̃ µν = 1
2
εµναβFαβ is consistent +2pt(s)

with Eq. (11).

Then show that the manifestly covariant homogeneous Maxwell equations (10) are equivalent

to their standard form (namely the magnetic Gauss law and the Maxwell-Faraday law).
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Problem 7.3: The Electromagnetic Energy-Momentum Tensor [Oral | 7 pt(s) ]

ID: ex_em_energy_momentum_tensor:rt2324

Learning objective

In Problem 7.2 you studied the Lagrangian density of Maxwell theory and verified that its Euler-Lagrange

equations yield the Maxwell equations. In this exercise, you study the energy-momentum tensor of the

electromagnetic field, i.e., the conserved Noether current that follows from the spacetime translation

invariance of the Maxwell Lagrangian.

You will show that to relate the energy-momentum tensor to the standard energy and momentum

density of electrodynamics, one has to modify this canonical energy-momentum tensor to the so called

Belinfante-Rosenfeld energy-momentum tensor. The latter will also play a role in general relativity, as it is

the source of gravity in Einstein’s field equations.

The Lagrangian density for the electromagnetic field is given by

L = − 1

16π
FµνF

µν with Fµν = ∂µAν − ∂νAµ , (12)

where Aµ is the electromagnetic four-potential.

The Noether theorem for fields tells us, that for each continuous symmetry a of the Lagrangian

density, there is a conserved current given by

jµa =

{
∂L

∂(∂µAλ)
∂ρAλ − δµρL

}
δax

ρ − ∂L
∂(∂µAλ)

δaAλ , (13)

which satisfies the continuity equation

∂µj
µ
a = 0 . (14)

Here, δax
ρ and δaAλ are the variations due to the symmetry a of the spacetime coordinates and the

four-potential, respectively.

a) Apply Noether’s theorem Eq. (13) to the continuous symmetry of spacetime translations in the 1pt(s)

direction a = ν (argue why this is a symmetry of Eq. (12)). These are generated by δνx
ρ = δρν

and δνAλ = 0 (because the four-potential is invariant under translations).

Show that the corresponding Noether currents read

θµν =
∂L

∂(∂µAλ)
∂νAλ − ηµνL , (15)

and evaluate the expression for the Maxwell Lagrangian Eq. (12).

The Noether currents Eq. (15) are called canonical energy-momentum tensor.

Notice that θµν is neither symmetric nor gauge invariant; this is unsatisfying for several reasons:

• Gauge dependent quantities cannot be directly identified with physical quantities. However,

we expect that the energy-momentum tensor contains information about the energy density

and the momentum density of the electromagnetic field [see part e)].
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• A non-symmetric energy-momentum tensor cannot appear in an expression like Mλµν =
T λµxν − T λνxµ which parallels the angular momentum tensor Lµν = pµxν − pνxµ of classical

point mechanics [see part b) and c)]. Furthermore, in general relativity we will find that the

Hilbert energy-momentum tensor – which acts as the source of gravity – must be symmetric.

These issues can be amended because the conserved current θµν is not unique. Indeed, it is easy
to verify (do this!) that adding the four-divergence of any tensor Kλµν with the property Kλµν =
−Kµλν produces a new energy-momentum tensor T µν := θµν + ∂λK

λµν that still satisfies Eq. (14).

In the following, you study a systematic approach to construct a tensor Kλµν such that T µν is

symmetric and gauge-invariant (and therefore avoids the problems listed above). This special energy-

momentum tensor is known as Belinfante-Rosenfeld tensor and was proven to be identical to the

Hilbert energy-momentum tensor that shows up in general relativity as the source of gravity.

b) For this construction, we need the angular momentum tensor. Thus use Eq. (13) to calculate the 1pt(s)

conserved Noether currents Lµ
αβ (we refer to this quantity as canonical angular momentum

tensor) associated to homogeneous Lorentz transformations (i.e. rotations and boosts).

Show that the current can be written in the form

Lµ
αβ =

1

2

[
θµαxβ − θµβxα

]
+

1

2
Sµ

αβ (16)

where θµα is the canonical energy-momentum tensor and Sµ
αβ has to be determined.

Hint: Remember (Problem 5.3) that the generators of homogeneous Lorentz transformations are

(Jαβ )
µν = i

(
δµαδ

ν
β − δναδ

µ
β

)
. (17)

Since the four-potential Aµ is a contravariant Lorentz vector, it transforms just like the coordinates xµ;
i.e., their infinitesimal transformations are given by

δax
ρ = − i

2
(Jαβ )

ρ
κx

κ and δaAλ = − i

2
(Jαβ )

κ
λ Aκ , (18)

where we replaced the label a of the different generators by the more convenient labeling αβ.

The additional term Sµ
αβ is called spin tensor and is antisymmetric Sµ

αβ = −Sµ
βα in the last two

indices. The continuity equation (14) requires ∂µL
µ
αβ = 0; combined with ∂µθ

µ
ν = 0 this implies

(check this!)

∂µS
µ
αβ = θαβ − θβα . (19)

Thismeans that a non-vanishing divergence of the spin tensormakes the canonical energy-momentum

tensor θαβ non-symmetric.

We can use this insight to construct the symmetric Belinfante-Rosenfeld energy-momentum tensor

T µν := θµν + ∂λK
λµν with Kλµν := −1

2

(
Sµνλ + Sνµλ − Sλνµ

)
. (20)

c) Use Eq. (19) to show that the energy-momentum tensor T µν is indeed symmetric and still satisfies 2pt(s)

the continuity equation ∂µT
µν = 0.

d) Calculate the symmetric energy-momentum tensor T µν explicitly for the electromagnetic field. 1pt(s)

Use the covariant Maxwell equations (∂µF
µν = 0) to bring T µν in a gauge-invariant form.
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e) Finally, show that the symmetric energy-momentum tensor yields the standard electromagnetic 2pt(s)

energy density E and the energy flux (Poynting vector) S as its components T µ0.

Hint: Remember from Problem 7.2 that the field strength tensor can be expressed in terms of the electric

and magnetic field as

F i0 = Ei and F ij = −εijkBk . (21)
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