Learning objective

In this exercise, we investigate the motion of a rocket in a relativistic setting. To make the space-trip pleasant for the passengers, the rocket accelerates with a constant acceleration in its instantaneous rest frame, such that the passengers experience a constant gravitation-like force. Among other things, you investigate if it is possible to explore the universe with this rocket in a reasonable amount of time.

Recall the definition of the 4 -velocity u^{μ} and the 4-acceleration b^{μ} of the rocket's trajectory $x^{\mu}(\tau)$ (given in the coordinates x^{μ} of some inertial system K in which earth is at rest):

$$
\begin{equation*}
u^{\mu}=\frac{d x^{\mu}}{d \tau} \quad \text { and } \quad b^{\mu}=\frac{d u^{\mu}}{d \tau} . \tag{1}
\end{equation*}
$$

Here, τ denotes the proper time of the rocket.
a) Calculate the 4 -velocity u^{μ} and the 4 -acceleration b^{μ} in terms of the coordinate velocity $\boldsymbol{v}=\frac{d x}{d t}$ and the coordinate acceleration $\boldsymbol{a}=\frac{d v}{d t}$ (measured in K).
Use your results to prove the following relations:

$$
\begin{equation*}
u^{\mu} u_{\mu}=c^{2} \quad \text { and } \quad b^{\mu} u_{\mu}=0 \tag{2}
\end{equation*}
$$

Finally, argue that the 4 -acceleration b^{μ} can be written at any point in time in the instantaneous rest frame K_{0} of the rocket as

$$
\begin{equation*}
b_{0}^{\mu}=\binom{0}{\boldsymbol{a}_{0}}, \tag{3}
\end{equation*}
$$

where \boldsymbol{a}_{0} is the proper acceleration of the rocket as measured in K_{0}.
In what follows we are only interested in motion and acceleration in x-direction. Therefore, we consider a $1+1$ dimensional spacetime with coordinates $x^{\mu}=(c t, x)$ henceforth, and the coordinate vectors $\boldsymbol{v}, \boldsymbol{a}, \boldsymbol{a}_{0}$ can be replaced by numbers v, a, a_{0}.
b) Calculate $b^{2}=b_{\mu} b^{\mu}$ in the rest frame of earth K and in the instantaneous rest frame K_{0} of the rocket. Use this to show that the proper acceleration a_{0} is related to the coordinate acceleration a by

$$
\begin{equation*}
a=\frac{a_{0}}{\gamma^{3}} . \tag{4}
\end{equation*}
$$

We now consider the situation where the rocket starts from earth at time $t=0$ (measured in earths rest frame K) and proper time $\tau=0$ (measured by a clock in the rocket). The rocket is accelerated with a constant proper acceleration a_{0} in x-direction (so we can use $1+1$ dimensional spacetime).
c) Use Eq. (4) to calculate the velocity of the rocket $v(t)$ as a function of time t (measured in K, i.e., as observed from earth).
Use this result to calculate the distance $x(t)$ the rocket has traveled in K, the Lorentz factor $\gamma(t) \equiv \gamma_{v(t)}$, and the proper time $\tau(t)$ elapsed on the rocket.
Hint: You might find the following integrals useful:

$$
\begin{align*}
\int d x \frac{1}{\left(1-x^{2}\right)^{3 / 2}} & =\frac{x}{\sqrt{1-x^{2}}} \tag{5a}\\
\int d x \frac{x}{\sqrt{1+x^{2}}} & =\sqrt{1+x^{2}} \tag{5b}\\
\int d x \frac{1}{\sqrt{1+x^{2}}} & =\operatorname{arsinh}(x) \tag{5c}
\end{align*}
$$

d) Express your previous results in terms of the traveled distance $d=x(t)$, i.e., calculate $t(d), v(d)$, $\tau(d)$ and $\gamma(d)$.
For interstellar travels, the usual units of time (seconds) and length (meters) are not convenient. Instead, we use the unit year yr for time and light-year ly for length. In these units, the speed of light is $c=1$ ly/yr. Interestingly, the average gravitational acceleration on earth in these units is $g \approx 1.03 \mathrm{ly} / \mathrm{yr}^{2}$. To make the flight as pleasant as possible for the passengers, we choose a proper acceleration of $a_{0}=1 \mathrm{ly} / \mathrm{yr}^{2}$ close to earth's gravitational acceleration g.
Now calculate the (earth) time $t(D)$, the (rocket) proper time $\tau(D)$, the final velocity $v(D)$, and the Lorentz factor $\gamma(D)$ for a flight to the following destinations:

- Nearest star Proxima Centauri: $D=4.24$ ly.
- Nearest (known) black hole Gaia BH1: $D=1560$ ly.
- Center of our galaxy Sagittarius $A^{*}: D=27000 \mathrm{ly}$.
- Next nearest galaxy Andromeda: $D=2.5 \times 10^{6} \mathrm{ly}$.
*e) In the current scenario we pass our destinations almost with the speed of light. To arrive with a velocity close to zero, we reverse the acceleration of the rocket at the halfway point $x=D / 2$, so that we come to a halt when we reach the destination.
Find expressions for the new total time $t^{\prime}(D)$ and the new proper time $\tau^{\prime}(D)$ elapsed along the full trip.
Calculate the new times $t^{\prime}(D)$ and $\tau^{\prime}(D)$ for the same destinations as above. How do $t^{\prime}(D)$ and $\tau^{\prime}(D)$ behave for large distances $D \gg c^{2} / a_{0}$ compared to the original times $t(D)$ and $\tau(D)$?
Hint: To approximate τ for large distances D, use the approximation

$$
\begin{equation*}
\operatorname{arsinh}(x) \stackrel{x \gg 1}{\approx} \ln (x)+\ln (2)+\mathcal{O}\left(1 / x^{2}\right) . \tag{6}
\end{equation*}
$$

$\left.*_{f}\right)$ We now decide to never reverse or stop the constant proper acceleration of the rocket.
Plot the distance $\Delta(\tau)$ at which an observer in the rocket sees a star with a starting distance of $\Delta(\tau=0)=D$. Describe and interpret your result for $\tau \rightarrow \infty$.
Now consider a planet with initial distance $D<0$ that emits a light signal at $\tau=0$. After which proper time τ does an observer in the rocket receive the light signal?
Interpret your combined results.

Learning objective

In classical mechanics you have learned that to each continuous symmetry of the Lagrangian corresponds a conserved quantity; a mathematical fact known as Noether's (first) theorem. We already learned that the inhomogeneous Lorentz group (Poincaré group) is parametrized by 10 continuous parameters (3 boosts, 3 rotations, and 4 translations in spacetime). The goal of this exercise is to derive the corresponding conserved quantities ("Noether charges"); these quantities are conserved by every relativistic Lagrangian (which are the fundamental theories we are interested in).

We consider the trajectory γ of a relativistic particle, parametrized in some inertial system by $x^{\mu}(\lambda)$ with parameter $\lambda \in\left[\lambda_{a}, \lambda_{b}\right]$. Let the dynamics be given by an action

$$
\begin{equation*}
S[\gamma]=\int_{\lambda_{a}}^{\lambda_{b}} d \lambda L\left(x^{\mu}(\lambda), \dot{x}^{\mu}(\lambda)\right), \tag{7}
\end{equation*}
$$

with $\dot{x}^{\mu}=\frac{d x^{\mu}}{d \lambda}$ and a Lagrangian $L\left(x^{\mu}, \dot{x}^{\mu}\right)$.
a) Start by calculating the variation of the action $\delta S=S\left[\gamma^{\prime}\right]-S[\gamma]$ under a generic infinitesimal variation of the trajectory $\gamma \rightarrow \gamma^{\prime}$. This variation of the trajectory (in some parametrization λ) is given by

$$
\begin{equation*}
x^{\mu}(\lambda) \rightarrow x^{\prime \mu}(\lambda)=x^{\mu}(\lambda)+w_{\xi}(\lambda) \delta_{\xi} x^{\mu}(x), \tag{8}
\end{equation*}
$$

where w_{ξ} are infinitesimal parameters that quantify the continuous transformation and $\delta_{\xi} x^{\mu}(x)$ are the generators of the transformations, that can depend on x. In general, the parameters w_{ξ} can depend on the parametrization λ.
Note: The subscript ξ indexes the different generators of the continuous transformations, and Einstein summation is implied for double occurrences of ξ.
Expand your result up to first order in w_{ξ} and $\frac{\partial w_{\xi}}{\partial \lambda}$ to bring it into the following form:

$$
\begin{equation*}
\delta S=S\left[\gamma^{\prime}\right]-S[\gamma]=\int_{\lambda_{a}}^{\lambda_{b}} d \lambda w_{\xi}(\lambda) M_{\xi}\left(x^{\mu}, \dot{x}^{\mu}\right)+\frac{\partial w_{\xi}}{\partial \lambda}(\lambda) Q_{\xi}\left(x^{\mu}, \dot{x}^{\mu}\right) . \tag{9}
\end{equation*}
$$

b) We now consider only transformations $x^{\mu}(\lambda) \rightarrow x^{\prime \mu}(\lambda)=x^{\mu}(\lambda)+w_{a}(\lambda) \delta_{a} x^{\mu}(x)$ that are generated by symmetries of the system (denoted by the index a instead of a generic transformation ξ). This means that for rigid transformations (i.e. $\frac{\partial w_{a}}{\partial \lambda}=0$), the action is invariant $\delta S=0$ for any arbitrary path γ.

Use this to argue that for symmetry transformations all terms proportional to w_{a} must vanish

$$
\begin{equation*}
M_{a}\left(x^{\mu}, \dot{x}^{\mu}\right)=0 . \tag{10}
\end{equation*}
$$

Therefore, the variation of the action for a symmetry transformation $\delta_{a} x^{\mu}(x)$ (now again with trajectory-dependent parameters $w_{a}(\lambda)$) can be written as

$$
\begin{equation*}
\delta S=\int_{\lambda_{a}}^{\lambda_{b}} d \lambda \frac{\partial w_{a}}{\partial \lambda} Q_{a}\left(x^{\mu}, \dot{x}^{\mu}\right), \tag{11}
\end{equation*}
$$

with the Noether charge

$$
\begin{equation*}
Q_{a}=\frac{\partial L}{\partial \dot{x}^{\mu}} \delta_{a} x^{\mu}(x) . \tag{12}
\end{equation*}
$$

c) Show that Q_{a} is conserved along a trajectory that fulfills the equations of motion.

We now apply Noether's theorem to the continuous transformations of the inhomogeneous Lorentz group, i.e., we want to find the conserved quantities Q_{a} associated to boosts, rotations, and spacetime translations.

To this end, we define the canonical momentum p_{μ} as

$$
\begin{equation*}
p_{\mu}=-\frac{\partial L}{\partial \dot{x}^{\mu}} . \tag{13}
\end{equation*}
$$

Note: The minus is conventional.
d) Calculate the conserved quantities for the inhomogeneous part of the Lorentz group, namely for spacetime translations $x^{\prime \mu}=x^{\mu}+a^{\mu}$, with $a^{\mu}=\left(w_{0}, w_{1}, w_{2}, w_{3}\right)^{T}$.
e) Now calculate the conserved quantities associated to homogeneous Lorentz transformations $\Lambda^{\mu}{ }_{\nu}$. $2^{\mathrm{pt(s)}}$ Interpret the result for spatial rotations and boosts.
Hint: Remember [Problem 5.3] that the generators of homogeneous Lorentz transformations parametrized by $w_{(\alpha \beta)}$ can be written as

$$
\begin{equation*}
\delta_{(\alpha \beta)} x^{\mu}=-\frac{i}{2}\left(J_{\alpha \beta}\right)^{\mu}{ }_{\nu} x^{\nu}=\frac{1}{2}\left(\delta_{\alpha}^{\mu} \eta_{\beta \nu}-\eta_{\alpha \nu} \delta_{\beta}^{\mu}\right) x^{\nu} . \tag{14}
\end{equation*}
$$

Problem 6.3: Relativistic Scattering and the Compton Effect
[Written | 5 (+1 bonus) pt(s)]
ID: ex_relativistic_scattering:rt2324

Learning objective

Interactions between particles are fundamental to physics. In relativistic theories with translation invariance in space and time, such interactions are constrained by 4-momentum conservation (i.e., energy and momentum conservation). With only this constraint, we can already learn much about the possible result of a scattering process. An example of this is the Compton effect, where the change of wavelength of a photon that scatters of a charged particle (like an electron) depends only on its scattering angle. Here you derive this dependency by using the conservation of energy and momentum.

We start with a generic, elastic scattering process and specialize to the case where one of the particles is massless (e.g., a photon) later.

Consider two particles A and B of masses m_{A} and m_{B} (m_{B} can be possibly zero) described by their 4-momenta

$$
\begin{equation*}
p_{A}^{\mu}=\binom{E_{A} / c}{\boldsymbol{p}_{A}}, \quad p_{B}^{\mu}=\binom{E_{B} / c}{\boldsymbol{p}_{B}} . \tag{15}
\end{equation*}
$$

The two particles scatter elastically of each other (via some unspecified interaction), and afterwards have new 4-momenta \tilde{p}_{A}^{μ} and \tilde{p}_{B}^{μ}. We want to deduce the 4 -momenta after scattering from the 4 -momenta before the scattering.
In principle this can be done in an arbitrary inertial system. For simplicity, we will do our calculations in the rest frame K_{A} of particle A (see sketch on the right);
 this requires that A is a massive particle ($m_{A} \neq 0$).
To describe the scattering process completely, we would need to find four quantities $\tilde{E}_{A}, \tilde{E}_{B}, \theta, \phi$ in terms of p_{A}^{μ} and p_{B}^{μ}. However, because we know neither the exact initial positions of the particles nor the interactions between them, we cannot describe the scattering process completely. As a consequence, we can only obtain three of the quantities, in our case $\tilde{E}_{A}, \theta, \phi$, in terms of $\tilde{E}_{B}, p_{A}^{\mu}$ and p_{B}^{μ} when relying on energy and momentum conservation only (i.e., we cannot predict \tilde{E}_{B}).
a) Write down the relativistic energy and momentum conservation (in 4-vectors). Express the energy \tilde{E}_{A} in terms of \tilde{E}_{B}, E_{B} and m_{A}.
b) Derive an expression for $\cos (\theta)$ in terms of $\tilde{E}_{B}, E_{B}, m_{A}$ and m_{B}.

Hint: Begin with $\tilde{p}_{A \mu} \tilde{p}_{A}^{\mu}$ and 4-momentum conservation.
c) Find an expression for $\cos (\phi)$ in terms of $\tilde{E}_{B}, E_{B}, m_{A}$ and m_{B}.

Hint: Consider $\boldsymbol{p}_{B} \cdot \tilde{\boldsymbol{p}}_{A}$ and use momentum conservation.

We consider now the special case where particle B is a photon and therefore massless. Its 4 -momentum has then the form

$$
\begin{equation*}
p_{B}^{\mu}=q^{\mu}=\binom{\hbar \omega / c}{\hbar \boldsymbol{k}} \tag{16}
\end{equation*}
$$

with energy $E=\hbar \omega$ and 3-momentum $\boldsymbol{p}=\hbar \boldsymbol{k}$ (with wave vector $\boldsymbol{k}) . p_{B}^{2}=0$ is then equivalent to the linear dispersion relation $\omega=c|\boldsymbol{k}|$ of light in vacuum. This is the situation of the Compton
 Effect (see sketch on the right).

Note: We cannot choose particle A as the photon because we have worked in the rest frame K_{A}.
d) Use your result from part b) to show that the shift in the wavelength of the photon during this scattering process is given by

$$
\begin{equation*}
\Delta \lambda=\tilde{\lambda}-\lambda=\frac{h}{m_{A} c}(1-\cos \theta), \tag{17}
\end{equation*}
$$

i.e., the scattered photon has a different wavelength that only depends on its scattering angle θ (and the mass of the particle it scatters off).
Note: The quantity $\lambda_{A} \equiv \frac{h}{m_{A} c}$ is known as the Compton wavelength of the massive particle A.

While the Compton effect involves two photons, we could imagine a scattering process where only a single photon is emitted (or absorbed) by the massive particle (see sketch on the right).

*e) Prove, again using energy and momentum conservation, that such a process is impossible if the $\quad+^{\mathrm{pt(s)}}$ rest mass of the massive particle is conserved.

Hint: Use 4-momentum conservation and show that $p^{\mu}-\tilde{p}^{\mu}$ is a space-like 4 -vector.
Note: This means that an electron cannot emit (or absorb) a single photon.

