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Problem 6.1: Relativistic rocket [Oral | 11 (+5 bonus) pt(s) ]

ID: ex_relativistic_rocket:rt2324

Learning objective

In this exercise, we investigate the motion of a rocket in a relativistic setting. To make the space-trip

pleasant for the passengers, the rocket accelerates with a constant acceleration in its instantaneous rest

frame, such that the passengers experience a constant gravitation-like force. Among other things, you

investigate if it is possible to explore the universe with this rocket in a reasonable amount of time.

Recall the definition of the 4-velocity uµ and the 4-acceleration bµ of the rocket’s trajectory xµ(τ)
(given in the coordinates xµ of some inertial system K in which earth is at rest):

uµ =
dxµ

dτ
and bµ =

duµ

dτ
. (1)

Here, τ denotes the proper time of the rocket.

a) Calculate the 4-velocity uµ and the 4-acceleration bµ in terms of the coordinate velocity v = dx
dt

3pt(s)

and the coordinate acceleration a = dv
dt

(measured in K).

Use your results to prove the following relations:

uµuµ = c2 and bµuµ = 0 . (2)

Finally, argue that the 4-acceleration bµ can be written at any point in time in the instantaneous

rest frame K0 of the rocket as

bµ0 =

(
0
a0

)
, (3)

where a0 is the proper acceleration of the rocket as measured in K0.

In what follows we are only interested in motion and acceleration in x-direction. Therefore, we

consider a 1+1 dimensional spacetime with coordinates xµ = (ct, x) henceforth, and the coordinate

vectors v, a, a0 can be replaced by numbers v, a, a0.

b) Calculate b2 = bµb
µ in the rest frame of earth K and in the instantaneous rest frame K0 of the 2pt(s)

rocket. Use this to show that the proper acceleration a0 is related to the coordinate acceleration

a by

a =
a0
γ3

. (4)

We now consider the situation where the rocket starts from earth at time t = 0 (measured in earths

rest frame K) and proper time τ = 0 (measured by a clock in the rocket). The rocket is accelerated

with a constant proper acceleration a0 in x-direction (so we can use 1 + 1 dimensional spacetime).
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c) Use Eq. (4) to calculate the velocity of the rocket v(t) as a function of time t (measured inK , i.e., 4pt(s)

as observed from earth).

Use this result to calculate the distance x(t) the rocket has traveled in K , the Lorentz factor

γ(t) ≡ γv(t), and the proper time τ(t) elapsed on the rocket.

Hint: You might find the following integrals useful:∫
dx

1

(1− x2)3/2
=

x√
1− x2

(5a)∫
dx

x√
1 + x2

=
√
1 + x2 (5b)∫

dx
1√

1 + x2
= arsinh(x) (5c)

d) Express your previous results in terms of the traveled distance d = x(t), i.e., calculate t(d), v(d), 2pt(s)

τ(d) and γ(d).

For interstellar travels, the usual units of time (seconds) and length (meters) are not convenient.

Instead, we use the unit year yr for time and light-year ly for length. In these units, the speed of

light is c = 1 ly/yr. Interestingly, the average gravitational acceleration on earth in these units

is g ≈ 1.03 ly/yr2. To make the flight as pleasant as possible for the passengers, we choose a

proper acceleration of a0 = 1 ly/yr2 close to earth’s gravitational acceleration g.

Now calculate the (earth) time t(D), the (rocket) proper time τ(D), the final velocity v(D), and
the Lorentz factor γ(D) for a flight to the following destinations:

• Nearest star Proxima Centauri: D = 4.24 ly.

• Nearest (known) black hole Gaia BH1: D = 1560 ly.

• Center of our galaxy Sagittarius A*: D = 27 000 ly.

• Next nearest galaxy Andromeda: D = 2.5× 106 ly.
∗e) In the current scenario we pass our destinations almost with the speed of light. To arrive with a +3pt(s)

velocity close to zero, we reverse the acceleration of the rocket at the halfway point x = D/2,
so that we come to a halt when we reach the destination.

Find expressions for the new total time t′(D) and the new proper time τ ′(D) elapsed along the

full trip.

Calculate the new times t′(D) and τ ′(D) for the same destinations as above. How do t′(D) and
τ ′(D) behave for large distances D � c2/a0 compared to the original times t(D) and τ(D)?

Hint: To approximate τ for large distances D, use the approximation

arsinh(x)
x�1
≈ ln(x) + ln(2) +O(1/x2) . (6)

∗f) We now decide to never reverse or stop the constant proper acceleration of the rocket. +2pt(s)

Plot the distance ∆(τ) at which an observer in the rocket sees a star with a starting distance of

∆(τ = 0) = D. Describe and interpret your result for τ → ∞.

Now consider a planet with initial distanceD < 0 that emits a light signal at τ = 0. After which

proper time τ does an observer in the rocket receive the light signal?

Interpret your combined results.
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Problem 6.2: Noether’s theorem for the inhomogeneous Lorentz group [Oral | 7 pt(s) ]

ID: ex_noether_srt:rt2324

Learning objective

In classical mechanics you have learned that to each continuous symmetry of the Lagrangian corresponds

a conserved quantity; a mathematical fact known as Noether’s (first) theorem. We already learned that the

inhomogeneous Lorentz group (Poincaré group) is parametrized by 10 continuous parameters (3 boosts,

3 rotations, and 4 translations in spacetime). The goal of this exercise is to derive the corresponding

conserved quantities (“Noether charges”); these quantities are conserved by every relativistic Lagrangian

(which are the fundamental theories we are interested in).

We consider the trajectory γ of a relativistic particle, parametrized in some inertial system by xµ(λ)
with parameter λ ∈ [λa, λb]. Let the dynamics be given by an action

S[γ] =

λb∫
λa

dλL(xµ(λ), ẋµ(λ)) , (7)

with ẋµ = dxµ

dλ
and a Lagrangian L(xµ, ẋµ).

a) Start by calculating the variation of the action δS = S[γ′]− S[γ] under a generic infinitesimal 2pt(s)

variation of the trajectory γ → γ′. This variation of the trajectory (in some parametrization λ)
is given by

xµ(λ) → x′µ(λ) = xµ(λ) + wξ(λ)δξx
µ(x) , (8)

where wξ are infinitesimal parameters that quantify the continuous transformation and δξx
µ(x)

are the generators of the transformations, that can depend on x. In general, the parameters wξ

can depend on the parametrization λ.

Note: The subscript ξ indexes the different generators of the continuous transformations, and Einstein

summation is implied for double occurrences of ξ.

Expand your result up to first order in wξ and
∂wξ

∂λ
to bring it into the following form:

δS = S[γ′]− S[γ] =

λb∫
λa

dλwξ(λ)Mξ(x
µ, ẋµ) +

∂wξ

∂λ
(λ)Qξ(x

µ, ẋµ) . (9)

b) We now consider only transformations xµ(λ) → x′µ(λ) = xµ(λ) + wa(λ)δax
µ(x) that are gen- 1pt(s)

erated by symmetries of the system (denoted by the index a instead of a generic transformation

ξ). This means that for rigid transformations (i.e. ∂wa

∂λ
= 0), the action is invariant δS = 0 for

any arbitrary path γ.

Use this to argue that for symmetry transformations all terms proportional to wa must vanish

Ma(x
µ, ẋµ) = 0 . (10)
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Therefore, the variation of the action for a symmetry transformation δax
µ(x) (now again with

trajectory-dependent parameters wa(λ)) can be written as

δS =

λb∫
λa

dλ
∂wa

∂λ
Qa(x

µ, ẋµ) , (11)

with the Noether charge

Qa =
∂L

∂ẋµ
δax

µ(x) . (12)

c) Show that Qa is conserved along a trajectory that fulfills the equations of motion. 1pt(s)

We now apply Noether’s theorem to the continuous transformations of the inhomogeneous Lorentz

group, i.e., we want to find the conserved quantitiesQa associated to boosts, rotations, and spacetime

translations.

To this end, we define the canonical momentum pµ as

pµ = − ∂L

∂ẋµ
. (13)

Note: The minus is conventional.

d) Calculate the conserved quantities for the inhomogeneous part of the Lorentz group, namely for 1pt(s)

spacetime translations x′µ = xµ + aµ, with aµ = (w0, w1, w2, w3)
T .

e) Now calculate the conserved quantities associated to homogeneous Lorentz transformations Λµ
ν . 2pt(s)

Interpret the result for spatial rotations and boosts.

Hint: Remember [Problem 5.3] that the generators of homogeneous Lorentz transformations parametrized

by w(αβ) can be written as

δ(αβ)x
µ = − i

2
(Jαβ )

µ
νx

ν =
1

2

(
δµαηβν − ηανδ

µ
β

)
xν . (14)
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Problem 6.3: Relativistic Scattering and the Compton Effect [Written | 5 (+1 bonus) pt(s) ]

ID: ex_relativistic_scattering:rt2324

Learning objective

Interactions between particles are fundamental to physics. In relativistic theories with translation

invariance in space and time, such interactions are constrained by 4-momentum conservation (i.e.,

energy and momentum conservation). With only this constraint, we can already learn much about the

possible result of a scattering process. An example of this is the Compton effect, where the change of

wavelength of a photon that scatters of a charged particle (like an electron) depends only on its scattering

angle. Here you derive this dependency by using the conservation of energy and momentum.

We start with a generic, elastic scattering process and specialize to the case where one of the particles

is massless (e.g., a photon) later.

Consider two particles A and B of masses mA and mB (mB can be possibly zero) described by their

4-momenta

pµA =

(
EA/c
pA

)
, pµB =

(
EB/c
pB

)
. (15)

The two particles scatter elastically of each other (via

some unspecified interaction), and afterwards have

new 4-momenta p̃µA and p̃µB . We want to deduce the

4-momenta after scattering from the 4-momenta before

the scattering.

In principle this can be done in an arbitrary inertial

system. For simplicity, we will do our calculations in

the rest frameKA of particleA (see sketch on the right);

this requires that A is a massive particle (mA 6= 0).

To describe the scattering process completely, we would need to find four quantities ẼA, ẼB, θ, φ in

terms of pµA and pµB . However, because we know neither the exact initial positions of the particles

nor the interactions between them, we cannot describe the scattering process completely. As a

consequence, we can only obtain three of the quantities, in our case ẼA, θ, φ, in terms of ẼB , p
µ
A and

pµB when relying on energy and momentum conservation only (i.e., we cannot predict ẼB).

a) Write down the relativistic energy and momentum conservation (in 4-vectors). Express the 1pt(s)

energy ẼA in terms of ẼB , EB and mA.

b) Derive an expression for cos(θ) in terms of ẼB , EB , mA and mB . 2pt(s)

Hint: Begin with p̃Aµp̃
µ
A and 4-momentum conservation.

c) Find an expression for cos(φ) in terms of ẼB , EB , mA and mB . 1pt(s)

Hint: Consider pB · p̃A and use momentum conservation.
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We consider now the special case where particle B is a photon

and therefore massless. Its 4-momentum has then the form

pµB = qµ =

(
h̄ω/c
h̄k

)
(16)

with energyE = h̄ω and 3-momentum p = h̄k (with wave vector

k). p2B = 0 is then equivalent to the linear dispersion relation

ω = c|k| of light in vacuum. This is the situation of the Compton

Effect (see sketch on the right).

Note: We cannot choose particle A as the photon because we have worked in the rest frame KA.

d) Use your result from part b) to show that the shift in the wavelength of the photon during this 1pt(s)

scattering process is given by

∆λ = λ̃− λ =
h

mAc
(1− cos θ) , (17)

i.e., the scattered photon has a different wavelength that only depends on its scattering angle θ
(and the mass of the particle it scatters off).

Note: The quantity λA ≡ h
mAc is known as the Compton wavelength of the massive particle A.

While the Compton effect involves two photons, we

could imagine a scattering process where only a single

photon is emitted (or absorbed) by the massive particle

(see sketch on the right).

∗e) Prove, again using energy and momentum conservation, that such a process is impossible if the +1pt(s)

rest mass of the massive particle is conserved.

Hint: Use 4-momentum conservation and show that pµ − p̃µ is a space-like 4-vector.

Note: This means that an electron cannot emit (or absorb) a single photon.
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