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Problem 4.1: Tensor Calculus [Written | 9 pt(s) ]

ID: ex_tensor_calculus:rt2324

Learning objective

Tensor calculus is a crucial toolkit for special and general relativity. In this exercise, you practice

calculating with tensor fields and prove some useful rules for the construction of tensor fields.

Consider a D-dimensional differentiable manifoldM and an arbitrary coordinate transformation

x̄ = ϕ(x) from one chart with coordinates x ∈ RD to another chart with coordinates x̄ ∈ RD.

As motivated in the lecture, we define the transformation of contravariant and covariant vector

(fields) as follows:

Contravariant vector field: Āi(x̄) =
D∑

k=1

∂x̄i

∂xk
Ak(x) ≡ ∂x̄i

∂xk
Ak(x) (1)

Covariant vector field: B̄i(x̄) =
D∑

k=1

∂xk

∂x̄i
Bk(x) ≡

∂xk

∂x̄i
Bk(x) , (2)

Here we use the Einstein sum convention: Sums over pairs of repeated up and down indices are

implied but not explicitly written.

a) Prove that the contraction Φ(x) := Ai(x)Bi(x) of a contravariant vector field Ai(x) with a 1pt(s)

covariant vector field Bi(x) is invariant under coordinate transformations; i.e., show that it

transforms like a scalar field.

The generalization of co- and contravariant vector fields are (mixed) (p, q) tensor fields Tm1,...,mp
n1,...,nq(x)

with r = p+q indices (called rank). Like vector fields, tensor fields are defined by their transformation
under coordinate transformations:

T̄ i1,...,ip
j1,...,jq(x̄) =

∂x̄i1

∂xm1
. . .

∂x̄ip

∂xmp

∂xn1

∂x̄j1
. . .

∂xnq

∂x̄jq
Tm1,...,mp

n1,...,nq(x) , (3)

where p and q are the number of contravariant and covariant indices, respectively.

b) Show that the following combinations of the tensor fields Aij
k, B

ij
k, C

ij ,Dk
l, Em and the scalar 3pt(s)

field Φ are again tensor fields (we suppress the x-dependency):

i) V ij
k := Aij

k +Bij
k ii) W ij

k := ΦAij
k iii) X ijk

l := CijDk
l

iv) Y i := AijEj v) Zi := Aij
j

c) Let Cij be a collection of D
2 fields (i, j = 1, . . . , D). 1pt(s)

Prove that if Bi := CijA
j is a covariant vector field for any contravariant vector field Ai, then

Cij transforms like a covariant tensor field of rank 2.

Note:This theorem is called quotient law, a quite useful tool in tensor calculus.
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d) Show that the covariant derivative Ai
;k of a contravariant vector field A

i transforms as a mixed 3pt(s)

(1, 1) tensor field.

The covariant derivative of a contravariant vector field is defined as

Ai
;k := ∂kA

i + Γi
klA

l , (4)

with ∂k ≡ ∂
∂xk and where the Christoffel symbol Γi

kl is defined as

Γi
kl :=

1

2
gim (∂lgmk + ∂kgml − ∂mgkl) . (5)

gij = gij(x) is a given, symmetric (gij = gji) covariant tensor field of rank 2 called the metric.

Hint: First, prove the translation law for the Christoffel symbol

Γ̄i
kl(x̄) =

∂x̄i

∂xj
∂xm

∂x̄k
∂xn

∂x̄l
Γj

mn(x) +
∂x̄i

∂xm
∂2xm

∂x̄k∂x̄l
, (6)

and show that

∂x̄i

∂xm
∂2xm

∂x̄k∂x̄l
= − ∂2x̄i

∂xm∂xn
∂xm

∂x̄k
∂xn

∂x̄l
. (7)

Use this to derive the transformation law for the covariant derivative.

You might want to use the shortcut notations αi
k := ∂x̄i

∂xk and βi
k := ∂xi

∂x̄k with αi
kβ

k
j = δij .

e) In the lecture, the general Levi-Civita symbol εi1...iD was introduced. Here we want to focus on 1pt(s)

the most important case of a D = 4 dimensional manifold.

The Levi-Civita symbol is defined (independent of the coordinate system) as

εijkl :=


+1 if (i, j, k, l) is an even permutation of (0, 1, 2, 3)

−1 if (i, j, k, l) is an odd permutation of (0, 1, 2, 3)

0 otherwise

. (8)

Show that this definition is consistent with the transformation law for a relative tensor of rank 4

with weight w = +1 (which we call a tensor density), i.e., show that

εijkl =

∣∣∣∣∂x∂x̄
∣∣∣∣ ∂x̄i

∂xa

∂x̄j

∂xb

∂x̄k

∂xc

∂x̄l

∂xd
εabcd with Jacobian determinant

∣∣∣∣∂x̄∂x
∣∣∣∣. (9)

Hint: Use that determinants can be calculated via the Leibniz formula using the Levi-Civita symbol:∣∣∣∣∂x̄∂x
∣∣∣∣ = εijkl

∂x̄0

∂xi
∂x̄1

∂xj
∂x̄2

∂xk
∂x̄3

∂xl
. (10)
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Problem 4.2: The metric tensor [Oral | 5 pt(s) ]

ID: ex_srt_metric_coordinate_transformation:rt2324

Learning objective

The metric tensor (field) is crucial for Riemannian geometry, i.e., the mathematical framework needed

to described curved spaces. Both in special relativity and in general relativity, the metric tensor on

the spacetime manifold determines durations (measured by clocks) and lengths (measured by rods) in

spacetime.

In this exercise, you show that the components of the metric tensor indeed transform like a covariant

tensor field of rank 2. To familiarize yourself with the concept, you study the simple example of

Euclidean space (no time!) in two dimensions R2 and calculate the components of the metric tensor in

polar coordinates.

Consider a D-dimensional differentiable manifoldM and an arbitrary coordinate transformation

x̄ = ϕ(x) from one chart with coordinates x ∈ RD to another chart with coordinates x̄ ∈ RD.

a) We start by showing that the components gij(x) of the metric transform like a covariant tensor 1pt(s)

field of rank 2. To this end, use that the “line element” ds2 is a tensor field and hence does not
depend on the coordinate system:

gij(x)dx
idxj = ds2 = ḡij(x̄)dx̄

idx̄j (Einstein summation!) (11)

Hint: Compute the total differential dx̄i and use that {dxi} is a basis of the cotangent space T ∗
pM . The

transformation law for a covariant tensor of rank 2 is given in Problem 4.1.

As an example, we consider Euclidean space M = R2 in D = 2 dimensions for the rest of this
exercise. In Cartesian coordinates x1 = x and x2 = y, the components of the metric tensor are

gij =

(
1 0
0 1

)
with line element ds2 = gij(x)dx

idxj = dx2 + dy2 . (12)

This particular metric tensor ds2 characterizes the flat, Euclidean plane you already encountered in
school.

b) We want to calculate the components of the metric tensor in polar coordinates x̄1 = r and 2pt(s)

x̄2 = θ. The coordinate transformation x̄ = ϕ(x) ⇔ x = ϕ−1(x̄) between Cartesian and polar
coordinates is given by

ϕ−1 :

{
x = r cos θ

y = r sin θ
. (13)

First, use Eq. (11) and the rule for computing the total differentials dx and dy to compute ḡij(x̄).

Then, derive the same components directly by using the transformation law for a covariant

tensor of rank 2.

The physical length of a curve γ can be calculated via the metric tensor by

L[γ] =

∫
γ

ds :=

b∫
a

dt
√

gij(γ(t)) γ̇i(t)γ̇j(t) , (14)

where γ(t) is the parametrization of the curve with t ∈ [a, b] in some coordinate system.
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c) Let γ be the circle in R2 with radius R and center in the origin. 2pt(s)

Calculate the circumference L[γ] of this circle once in Cartesian coordinates and then again
in polar coordinates. Use the components of the metric tensor given above and computed in

subtask b).

Problem 4.3: Covariant form of the Lagrangian of classical electrodynamics [Oral | 3 pt(s) ]

ID: ex_covariant_em_lagrangian:rt2324

Learning objective

Maxwell’s electrodynamics is the prototypical example of a relativistic field theory. In this exercise you

use tensor calculus [recall Problem 4.1], specialized to the inertial coordinate systems of special relativity,

to show that the Lagrangian and the action of classical electrodynamics are invariant under Lorentz

transformations.

Here we consider Minkowski spaceM = R1,3 ' R4 as spacetime manifold and focus on inertial

coordinate systems and the transformations between them (Lorentz transformations). The metric

tensor is the Minkowski metric with components ηµν = diag(+1,−1,−1,−1) in any inertial

coordinate system. In the following, Greek indices run from 0 to 3.

The action of classical electrodynamics in vacuum (with speed of light c = 1) is given in some

inertial coordinate system by

S =

∫
d4xL =

∫
d4x

(
−1

4
FµνF

µν

)
, (15)

with the field-strength tensor Fµν = ∂µAν − ∂νAµ and F µν = ηµρηνπFρπ (where η
µν denotes the

inverse of the metric ηµν).

Here, Aµ is the gauge potential of electrodynamics; however, for this exercise you only need to

know that Aµ transforms like a contravariant vector field (a (1, 0) tensor) and Aµ = ηµνA
ν like a

covariant vector field (a (0, 1) tensor).

a) Show that F µν is a contravariant tensor field of rank 2, and that the Lagrangian (density) L is a 2pt(s)

Lorentz scalar.

Hint: Use the results from Problem 4.1 and your knowledge about Lorentz transformations (which are

the only coordinate transformations considered in special relativity).

b) Show that Eq. (15) is invariant under Lorentz transformations, i.e., show that 1pt(s)

S =

∫
d4xL =

∫
d4x̄ L̄ = S̄ . (16)

In summary, you have shown that the Lagrangian (density) L and the action given in Eq. (15)

are Lorentz scalars. To prove that classical electrodynamics (the Maxwell equations) is Lorentz

covariant (= the equations take the same form in all inertial systems), we still need to show that

the Euler-Lagrange equations that follow from varying the action in Eq. (15) produce the Maxwell

equations in their conventional form (→ later).

Problem Set Version: 1.0 | rt2324 Page 4 of 6



RELATIVITÄTSTHEORIE 1 Problem Set 4

Problem 4.4: The Lorentz group [Oral | 7 (+1 bonus) pt(s) ]

ID: ex_lorentz_group:rt2324

Learning objective

The goal of this exercise is to get familiar with the Lorentz group and its continuous and discrete

generators. Since the Lorentz group is a Lie group, we can study its Lie algebra. Knowing the Lie algebra

of a group is very helpful to construct other representations of the group. This will become important in

the context of relativistic quantum mechanics where we have to replace the Schrödinger equation by the

Dirac equation.

The Lorentz group O(1, 3) is defined as group of real 4 × 4 matrices Λ that keep the Minkowski

metric η = diag(1,−1,−1,−1) invariant, i.e.

O(1, 3) = {Λ ∈ R4×4 |Λµ
αηµνΛ

ν
β = ηαβ ⇐⇒ ΛTηΛ = η} . (17)

a) Show that O(1, 3) is a group [use only the definition in Eq. (17)]. 2pt(s)

Specifically, show the following properties for any Λ1,Λ2 ∈ O(1, 3):

(i) Λ1Λ2 ∈ O(1, 3)

(ii) The inverse Λ−1
1 exists and is in O(1, 3).

Since the Lorentz group is a Lie group (i.e., a group that is also a differentiable manifold), we can

study its Lie algebra (a vector space with an additional multiplication known as Lie bracket).

To this end, we consider an infinitesimal Lorentz transformation

Λξ = exp (−iξiXi)
ξi�1
≈ 1− iξiXi , (18)

where the matricesXi ∈ R4×4 belong to the Lie algebra and are the generators of the Lorentz group;

the ξi ∈ R are the corresponding coefficients that define the group element Λξ in terms of these

generators.

b) How does the defining condition of the Lorentz group ΛTηΛ = η translate to the generatorsXi? 2pt(s)

Show that we can write the generators Xi in the general form

(Xi)
ρ
σ =


0 a b c
a 0 d e
b −d 0 f
c −e −f 0

 , (19)

with only 6 degrees of freedom left.

Since the Lie algebra is a vector space, we can choose a set of basis vectors (= generators) and write

every element of the algebra as a linear combination of these.

A conventional basis of the Lie algebra of the Lorentz group is

(J µν)ρσ = i (ηµρδνσ − δµση
νρ) , (20)
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with

Λω = exp

(
− i

2
ωµνJ µν

)
, (21)

where both, the set of coefficients ωµν and the set of generators J µν are antisymmetric in their

indices.

Note: For every pair µ, ν, the object J µν is a real 4× 4 matrix, given by Eq. (20).

Convince yourself that this basis can be used to construct all matrices of the form (19) by setting

one of the parameters to one and all others to zero. Therefore, the antisymmetric coefficient tensor

ωµν takes the place of ξi and encodes 6 degrees of freedom.

∗c) Show that the commutator (Lie bracket) of the generators is +1pt(s)

([J µν ,J αβ])ρσ = i
(
ηναJ µβ − ηνβJ µα − ηµαJ νβ + ηµβJ να

)ρ
σ . (22)

This is the Lie algebra of the Lorentz group; it has to be the same for all representations of the

Lorentz group.

d) Calculate the determinant of Λ first from the definition in Eq. (17), and then from the expression 1pt(s)

in Eq. (18) using the form of the generators.

Can the exponential form Λξ (equivalently: Λω) be used to generate the complete groupO(1, 3)?

e) Convince yourself that time reversal T and space inversion P are part of the Lorentz group (17) 2pt(s)

but cannot be continuously connected to the identity Λξ=0 = 1:

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (23)

Finally, prove that T and P cannot be continuously connected to each other as well.

Interpret your result by sketching the structure of the Lorentz group.
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