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Problem 3.1: The ladder “paradox” [Oral | 6 pt(s) ]

ID: ex_ladder_paradox:rt2324

Learning objective

In this exercise you study the so-called ladder “paradox.” As all “paradoxes” in the context of relativity, the

name reflects that this phenomenon might be counterintuitive and clash with our everyday experience

at first glance; however, as you will show, it does not demonstrate a logical inconsistency of relativity.

The goal of this exercise is to resolve the “paradox” and gain deeper insight into the thought experiment.

Consider a garage of length L with two doors: an entrance and an exit. The garage is at rest in the

lab frameK . Now a relativistic athlete runs with velocity vx towards the garage while carrying a
ladder (see the great piece of art below).

In the rest frame K ′ of the athlete, the length of

the ladder is alsoL. The entrance door closes when

the ladder’s left endpoint reaches the entrance. We

call this event e0 with e0 ∼ (0,0)K ∼ (0,0)K′ .

The exit door automatically opens when the lad-

der’s right endpoint reaches the exit; this event is

called e1.

a) Calculate the coordinates of e1 inK andK ′. Are the two events e0 and e1 space-like or time-like 2pt(s)

separated?

b) Draw a spacetime diagram for both inertial systems K and K ′. Include the worldlines of the 3pt(s)

ladder endpoints and the garage and mark the events e0 and e1. Interpret the diagram and explain

the “paradox.”

c) Describe qualitatively from both inertial systems what happens if the exit door does not open, 1pt(s)

but the ladder crashes against the exit door and comes to a halt.

Problem 3.2: Symmetric spacetime diagrams (Loedel diagrams) [Oral | 7 pt(s) ]

ID: ex_loedel_diagram:rt2324

Learning objective

The relativity principle of special relativity postulates that there is no distinguished inertial system.

However, when drawing spacetime diagrams, we usually choose a specific inertial system, the axes

of which we draw orthogonal to each other. This results in an asymmetric visualization of times (and

lengths) measured in other inertial systems in relative motion. To avoid this problem, we can use Loedel
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diagrams: a symmetric version of spacetime diagrams in which the symmetry between different inertial

systems is manifest.

We consider two inertial systems K
vx−→ K ′ which, for t = t′ = 0, coincide at the origin x = x′ = 0.

The Loedel diagram is constructed by finding a third inertial system K̃ which is symmetric to K
and K ′ in the sense that K

ux−→ K̃
ux−→ K ′ for some boost velocity ux.

a) Find the velocity ux such that K̃ is symmetric to K and K ′. 3pt(s)

In the spacetime diagram of K̃ (with orthogonal (t̃, x̃)-axes), draw the (t, x)-axes and the (t′, x′)-
axes of both K and K ′. What are the angles between the different axes (e.g. t− t̃, t− x′)?

In Problem 2.2 we studied the invariant spacetime interval ∆s2 that is invariant under Lorentz
transformations and used it to determine the “unit ticks” on different axes. Due to the symmetry of

the Loedel diagram, the unit ticks on the t- and t′-axis (x- and x′-axis) are the same. This has the

benefit that in the spacetime diagram of K̃ , we can directly compare times (lengths) measured inK
and K ′.

We can use this feature to illustrate the reciprocity of the relativistic effects of time dilation and

length contraction:

b) Place clocks in the origin of both systems K and K ′ and draw the clocks at different times t (t′) 2pt(s)

in the spacetime diagram of K̃ . At each clock event, draw the lines of simultaneity both in K
and K ′.

Explain how it is possible that both observers (K andK ′) observe the clocks of the other observer

to be slowed down. That is, demonstrate that time dilation is completely symmetric and the

relativity principle is satisfied.

c) Now place rods in the origin of both systems K and K ′. Draw the world lines of the endpoints 2pt(s)

of both rods in the spacetime diagram of K̃ ; add again some lines of simultaneity for K and K ′.

Explain the reciprocity of length contraction as well as the “ladder paradox” in this symmetric

spacetime diagram. That is, explain how it is possible that both observers see the rod of the other

observer to be contracted.

Problem 3.3: The Penrose-Terrell effect [Oral | 7 (+2 bonus) pt(s) ]

ID: ex_penrose_terrell_effect:rt2324

Learning objective

For many years after Einstein introduced special relativity, it was widely believed that, in principle, the

Lorentz contraction could be seen with the eye (or a camera). For example, a fast moving sphere would

appear as an ellipse. In two papers, published in 1959 independently by Penrose and Terrell, it was shown

that this is not the case: Instead of “squeezed”, relativistic objects appear rotated. In this exercise you

derive this phenomenon known as Penrose-Terrell effect.

In this exercise, we consider a “camera” to be located at one spatial point which can take pictures

at a certain time. A picture is the collection of all photons (including their spatial information, i.e.,

from which direction they came from) that arrive at the camera at the same time. You can think of a
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camera as an ideal pinhole, and a picture as the film on the back of the pinhole, after the pinhole

was opened for a short moment.

Note:This is different from the “observer” defined in the lecture. By definition, a spatial diagram of an observer

at equal time (relative to this observer) corresponds to the position of objects at that time. In the present

context, such a diagram would correspond to all photons that where emitted simultaneously.

We consider two inertial systemsK
vx−→ K ′. In the

rest frameK ′, a point-like light source is at rest at

position S ′ = (a, d) (for simplicity we ignore the
z-direction throughout this exercise). In addition,
a camera C ′

R is at rest in the origin of the rest frame

K ′. A second camera CL is at rest in the origin of
the lab frame K (see sketch on the right).

a) At the time t = 0 = t′ both cameras meet each other and take a picture. In the rest frameK ′, the 2pt(s)

photon from the light source arrives at the camera C ′
R with an angle θ′ (measured to the x′-axis).

At which angle θ does the photon arrive at the camera CL in the lab frame K?

Note:The relation betwen θ and θ′ is known as relativistic aberration formula.

Now we want to study the Penrose-Terrell effect. To this end, we

replace the point-like light source by an illuminated box of rest length

L0 and height h. The box is at rest in K ′ and can be described by the

corners A′ = (−L0/2, d + h), B′ = (−L0/2, d), C
′ = (L0/2, d) and

D′ = (L0/2, d+h). In addition, we consider the midpoint of the lower
surfaceM ′ = (0, 0).

For the sake of simplicity, we consider the special case θM = π/2:
When CL takes a picture in the lab frame K , the photon scattered off

the midpointM arrives perpendicular to the x-axis.

b) Where andwhen have the photons fromA,B,C been emitted such that they arrive simultaneously 5pt(s)

to the photon that was emitted fromM at (t = 0, x = 0, y = d) (this particular photon arrives
perpendicular to the x-axis at the camera CL)?
The angles at which the photons arrive at the camera CL can be calculated as cot θi = ∆xi

∆yi
, where

∆xi and ∆yi are the positions from where the photons were emitted (i ∈ {A,B,C}).
Compute these angles and compare your results with the picture (= angles) of a box that is

rotated by an angle α (where both the box and the camera are at rest). For which angle α are the

two pictures identical?

Hint: Assume that the distance between the box and the camera is large: d � L0. This means: (i) Light

emitted from (δx, d) with |δx| ∼ L0 arrives at the camera (0, 0) simultaneously. (ii) For cot θi =
∆xi
∆yi

you

can ignore terms of order O(1/d2).

∗c) In subtask b) we focused on the case θM = π/2. What does the aberration formula, derived in +2pt(s)

subtask a), predict for this case? Interpret your result.
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Problem 3.4: A slower speed of light∗ [Written | 2 bonuspt(s) ]

ID: ex_a_slower_speed_of_light:rt2324

Learning objective

In the previous exercises (and the lecture) you have studied various kinematic consequences of special

relativity. In many cases, these effects are counterintuitive and incompatible with our everyday experience

(or, as demonstrated by the Penrose-Terrell effect, even our naïve relativistic expectations). One reason

for this is that the speed of light is so large that we do not encounter relativistic effects in our daily life.

The educational game A slower speed of light, developed by the MIT Game Lab, lets you experience the

effects a slower speed of light would have on our perception of the world.

Go to the website

http://gamelab.mit.edu/games/a-slower-speed-of-light

and download the game (available for Windows, Mac and Linux). Play the game and make a

screenshot of your highscore to earn the bonus points for this exercise.

After you have finished the game, don not forget to read the “What Happened?” section of the game.

Which effects in the game can be explained with the results of Problem 3.3?

Problem 3.5: Rapidities [Written | 4 pt(s) ]

ID: ex_rapidity:rt2324

Learning objective

As shown in the lecture, even for collinear velocities the relativistic velocity addition formula does not

have a simple form. Fortunately, one can introduce a new quantity called rapidity that is additive for

collinear velocities, and thus makes the addition of velocities much easier.

The rapidity θ is defined as

tanh θ =
v

c
, (1)

where tanh is the hyperbolic tangent function.

Note that for rapidities −∞ < θ < ∞ the velocity is confined to the interval −c < v < c (as it
should be).

a) Show that for two collinear velocities v1 and v2, given by their rapidities θ1 and θ2, the relativistic 1pt(s)

addition of velocities is given by

c tanh θ3 = v3 = v1 ⊕ v2 = c tanh (θ1 + θ2) . (2)

That is, the rapidities are additive (in contrast to velocities).

b) Now consider the special Lorentz transformation K
vx−→ K ′ with velocity vx in x-direction. 1pt(s)
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Show that the Lorentz transformation can be written in terms of rapidities as

t′ = t cosh θ − x

c
sinh θ

x′ = x cosh θ − ct sinh θ

y′ = y and z′ = z . (3)

Note: Appreciate the similarity of this form to a rotation in space and time (to be a proper rotation, the

hyperbolic functions would have to be replaced by their trigonometric counterparts cos and sin).

c) Imagine you are preparing a space expedition from a spaceport which is at rest in some inertial 2pt(s)

system K . To accelerate your spaceship, you came up with a (clever) idea: You start by “catapul-

ting” a large spaceship from the spaceport, such that the relative velocity from the spaceship

observed by K is vx = 0.5c. Now, in turn, the large spaceship catapults a smaller spaceship,

such that the relative velocity from the smaller spaceship, observed by the large spaceship, is

vx = 0.5c (ignore any recoil effects). We continue this process in total N = 10 times.

How fast is the last spaceship moving relative to the spaceport? Give an exact answer and an

approximation for large N .
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