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↓ Lecture 9 [12.12.23]

4. Formulation onMinkowski Space

In this section we briefly reformulate what we already learned about special relativity in terms of
tensor calculus. We use this notation in subsequent chapters to make classical and quantum mechanics
relativistic, and reformulate electrodynamics in a form where its Lorentz covariance is manifest. It also
allows a smooth transition into general relativity.

The formulation of special relativity on a unified, four-dimensional spacetime manifold goes back
to Hermann Minkowski, Albert Einstein’s former professors of mathematics at ETH. Minkowski writes
in the notes of his lecture “Raum und Zeit” delivered 1908 in Cologne [53]:

Die Anschauungen über Raum und Zeit, die ich Ihnen entwickeln möchte, sind auf experimentell-
physikalischem Boden erwachsen. Darin liegt ihre Stärke. Ihre Tendenz ist eine radikale. Von
Stund’ an sollen Raum für sich und Zeit für sich völlig zu Schatten herabsinken und nur noch eine
Art Union der beiden soll Selbständigkeit bewahren.

Einstein, a physicist all through, didn’t appreciate this mathematical reformulation of his theory at first.
According to Sommerfeld, he (Einstein) commented:

Seit die Mathematiker über die Relativitätstheorie hergefallen sind, verstehe ich sie selbst nicht
mehr.

Einstein later changed his views and acknowledged that withoutMinkowski’s introduction of spacetime as
a four-dimensional manifold, the development of general relativity would have been impossible.

For a historical account on the role of Minkowski, and his relationship (or absence thereof ) to Einstein,
see Ref. [54].

4.1. Minkowski space

1 | Manifold:

M D hSpacetime of events / coincidence classes Ei ' R4 (4.1)

It is a well founded, but nonetheless empirical assumption that the spacetime manifold of events
has the topology of R4. Note that at this point we do not impose restrictions on the geometry of
spacetime, e.g., whether it is flat or curved; this follows below when we settle on a metric.

2 | Charts:

In special relativity, we restrict the coordinate systems to the ones that correspond to
inertial observers / inertial coordinate systems:

.E; K/ $ Inertial (coordinate) systems K 2 I (4.2)
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The coordinates are the ones obtained by an ↑ inertial observer:

K W E 3 E 7! K.E/ WD ŒE�K D x

with x� D .x0; x1; x2; x3/T D .ct; x; y; ´/T D .ct; Ex/T

(4.3)

(4.4)

• ¡! Henceforth, Greek indices �; �; : : : run over 0; 1; 2; 3 where � D 0 denotes the time
component and � D 1; 2; 3 denote the spatial components. Roman indices i; j; : : : run only
over the spatial components 1; 2; 3.

• ¡! We multiply the time t with the speed of light to measure times and distances in the same
units.

• Since we assumed that our inertial systems cover all of spacetime, the domains on which the
coordinate functions are defined are the complete manifold.

• The notation above is very suggestive: You can think of our inertial systems, namely the
calibrated latticework of clocks and rods, as physical manifestations of the coordinate map of
the corresponding chart. That is, an inertial system is a measurement device, or function,
which assigns to every eventE 2 E the coordinate tuple x D K.E/ D .ct; Ex/K 2 E.

3 | Transition maps:

i | We worked hard in Section 1.4 to derive and select the correct coordinate transformations
between different inertial systems. The most general ones have the form of…

Inhomogenous Lorentz transformations

Poincaré transformations

)
W Nx D '.x/ D ƒx C a (4.5)

with a 2 R4 arbitrary and ƒ 2 R4�4 a ↑ Lorentz transformation.

For the special case a D 0 2 R4 we found:

Homogeneous Lorentz transformations: Nx D '.x/ D ƒx (4.6)

ii | Since these transformations are affine, we find immediately:

@ Nx�

@x�
D ƒ�� and

@x�

@ Nx�
D .ƒ�1/�� � ƒ

�
� (4.7)

Recall that the derivative of a linear (affine) map is simply the matrix which defines the map.

¡! We use the tensor-inspired notationƒ�� for the matrix elements of ƒ to allow for well-
defined contractions with the metric (→ later). Inƒ�� , the upper index � denotes the rows,
the lower index � the columns of the matrix. The notationƒ �

� for the components of the
inverse transformation matrixƒ�1 is purely conventional at this point; it will turn out to be
consistent with pulling indices up and down with the Minkowski metric (→ below).

This allows us to rewrite the coordinate transformation Eq. (4.5) in tensor notation:

Nx� D ƒ��x
�
C a� (4.8)
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¡! The matrix-vector productƒx is now given by the Einstein summation (index contraction)
highlighted blue. We will stick to this notation whenever possible. Since we are now in the
world of tensor calculus, it is strongly discouraged to think of and write rank-2 tensors as
“matrices”and contractions asmatrix-vector productsƒx (even thoughƒ does not represent
the components of a tensor). It is less error-prone (and simpler) to perform computations
using the index notation introduced in Chapter 3.

iii | Writing down the most general homogeneous Lorentz transformation is very complicated
(and unnecessary). Here we provide the two special Lorentz transformations (boosts) dis-
cussed earlier in the new matrix notation, and an example for a spatial rotation about the
´-axis:

• Lorentz boost in x-direction K
vx
�! NK (ˇx D vx=c):

Eq. (1.77)! ƒ�� D Œƒvx
��� D

0BB@

 �ˇx
 0 0

�ˇx
 
 0 0

0 0 1 0

0 0 0 1

1CCA
��

(4.9)

• Lorentz boost in Ov-direction K
Ev
�! NK (v D jEvj and Q
 WD 
 � 1):

Eq. (1.75)! ƒ�� D ŒƒEv�
�
� D0BB@


 �ˇx
 �ˇy
 �ˇ´


�ˇx
 1C Q
vx
2=v2 Q
vxvy=v

2 Q
vxv´=v
2

�ˇy
 Q
vxvy=v
2 1C Q
vy

2=v2 Q
vyv´=v
2

�ˇ´
 Q
vxv´=v
2 Q
vyv´=v

2 1C Q
v´
2=v2

1CCA
��

(4.10)

• Spatial rotation K
R´.�/;E0
�����! NK by � in xy-plane:

ƒ�� D ŒR´.�/�
�
� D

0BB@
1 0 0 0

0 cos � � sin � 0

0 sin � cos � 0

0 0 0 1

1CCA
��

(4.11)

4 | Metric tensor:

i | We elevate the spacetime manifoldM to a pseudo-Riemannian (and Lorentzian) manifold by
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introducing the following pseudo-Riemannian metric tensor (given in inertial coordinates):

⁂ Minkowski metric ds2

8̂<̂
:
W D .cdt /2 � .dEx/2

D .dx0/2 � .dx1/2 � .dx2/2 � .dx3/2

D ��� dx�dx�

with metric components ��� D �
��
D

0BB@
C1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCA
��„ ƒ‚ …

Signature .1; 3/ � .C;�;�;�/

:

(4.12a)

(4.12b)

• The components ��� of this metric tensor in Eq. (4.12b) are the same for all inertial
coordinate systems [→ Eq. (4.21) below].

• Recall that �mu� is the matrix inverse of ��� .

!We call the spacetime manifold equipped with this metric…

⁂ Minkowski space: R1;3 � .E ' R4; ds2/ (4.13)

• Wewill always use ��� to denote the components of theMinkowskimetric (in an inertial
coordinate chart) to distinguish it from a generic metric gij .

• Note that, informally speaking, ds2 this is the infinitesimal form of the ← invariant
spacetime interval Eq. (1.83) we introduced earlier (→ below).

• Minkowski space is therefore an example of a ← Lorentzian manifold. By fixing a metric,
we fixed the geometry of spacetime. As we will see in our discussion of general
relativity, the distinctive feature of Minkowski space is that it is flat (it has no
curvature). It will turn out that, in reality, this assumption is only valid to some degree:
The tenet of general relativity is that the deviations of spacetime from flat
Minkowski space are what we expercience as gravity!

ii | With the metric we can measure “lengths” of trajectories on spacetime:

^ Time-like trajectory 
 W s 7! x�.s/ for s 2 Œsa; sb� in R1;3!

LŒ
�
3.55
D

Z sb

sa

r
���

dx�.s/
ds

dx�.s/
ds

ds (4.14a)

4.12b
D

Z sb

sa

q
Œ Px0.s/�2 � Œ Px1.s/�2 � Œ Px2.s/�2 � Œ Px3.s/�2 ds (4.14b)

Choose parametrization s WD x0=c � t (4.14c)

D

Z tb

ta

q
c2 � Ev2.t/„ ƒ‚ …

>0 (time-like)

dt (4.14d)

2.25
D c��Œ
� (4.14e)

Thus the“length”LŒ
� of time-like curves in R1;3 is the ← proper time��Œ
� along the curve
defined in Eq. (2.25) (multiplied by c); this explains why the Minkowski metric ds2 is the
right choice for special relativity.
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4.2. Four vectors and tensors

5 | Tensors are defined as in Chapter 3, with the restriction toD D 4 and that only homogeneous
Lorentz transformations Eq. (4.7) are considered as transition maps. To emphasize this, we
introduce a new nomenclature:

Tensor calculus special relativity

Contravariant vector Ai Contraviarant ⁂ Lorentz vector / 4-vector A�

Covariant vector Bi Covariant ⁂ Lorentz vector / 4-vector B�

(Mixed) tensor T ij (Mixed) ⁂ Lorentz tensor / 4-tensor T ��

Scalar ˆ ⁂ Lorentz scalar ˆ

Then a generic .p; q/ tensor transforms under the coordinate transformation Eq. (4.7) as:

NT
�1:::�p

�1:::�q
. Nx/ D

�
ƒ�1

�1
: : : ƒ

�p
�p

� �
ƒ �1
�1

: : : ƒ
�q

�q

�
T
�1:::�p

�1:::�q
.x/ (4.15)

6 | With the Minkowski metric, we can reformulate our classification for 4-vectors [recall Eq. (1.85)]:

X� time-like

X� light-like

X� space-like

9>=>; W, X2 D X�X� D .X
0/2 � . EX/2

8̂<̂
:
> 0

D 0

< 0

(4.16)

A light-like 4-vector is also called ⁂ null.

¡! We use this classification scheme also for generic Lorentz vectors that are not coordinate differ-
ences between a pair of events (→ below). Since the pseudo-normX�X� D X

2 is a Lorentz scalar,
this classification is independent of the inertial system.

7 | Coordinate functions:

It is a particular feature of linear coordinate transformations (here: homogeneous Lorentz transfor-
mations) that the coordinate functions themselves transform as contravariant vector fields:

^ Coordinate field X�.x/ WD x�!

NX�. Nx/„ƒ‚…
Nx�

D ƒ�� X
�.x/„ƒ‚…
x�

D
@ Nx�

@x�„ƒ‚…
ƒ

�
�

X�.x/ (4.17)

Wemake the identificationX�.x/ � x� and don’t writeX�.x/ henceforth.

Consequently, we can construct ⁂ covariant coordinates (a covariant vector field) via the metric by
pulling the index down:

x� WD ���x
�
D .x0;�x1;�x2;�x3/ D .ct;�Ex/ (4.18)

¡! To pull the index of a contravariant vector down, you multiply the spatial components by �1.
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8 | ^ Coordinates of two events x�A and x�B ! �x� WD x
�
B � x

�
A Lorentz vector

�x2 � �x��x� (4.19a)

def
D ����x

��x� (4.19b)

D .�x0/2 � .�x1/2 � .�x2/2 � .�x3/2 (4.19c)

def
D �s2 (4.19d)

Remember [Eq. (1.84)]: �s2 D �Ns2 for arbitrary Lorentz transformations

!

��� �x
��x�„ ƒ‚ …

�s2

D ��� � Nx
�� Nx�„ ƒ‚ …

�Ns2

D
�
���ƒ

�
�ƒ

�
�

�
�x��x� (4.20)

Since this is true for all events�x�
ı
�!

ƒ��ƒ
�
���� D ��� (4.21)

Concluding Eq. (4.21) from Eq. (4.20) is non-trivial because we consider “norms” ��� �x��x�

and not “inner products” ��� �x��y� . However, for symmetric, real matrices A and B, it is
true that if ExTA Ex D ExTB Ex for all real vectors Ex, then A D B. This is so because A � B is a
symmetric matrix that can be diagonalized by an orthogonal matrix and ExT .A�B/Ex D 0. The last
condition implies that all eigenvalues of A �B are zero and therefore A �B D 0. Alternatively
you can use the ↓ polarization identity to show that the invariance of the Minkowski (pseudo) norm
implies the invariance of the Minkowski (pseudo) inner product.

We say:

Lorentz transformations are ↓ isometries of Minkowski space. (4.22)

With det.���/ ¤ 0, a corollary of Eq. (4.21) is:

det
�
ƒ��

�
D ˙1 (4.23)

If you want to write Eq. (4.21) in the old matrix notation, make the identifcationsƒ�� D ƒ�� and
��� D ��� . Here, subscripts of bold symbols denote the entries of matrices as usual (first index:
row; second index: column). Equations that contain matrices (bold symbols) do not comply with
the syntax of tensor calculus (which is why you should avoid them!).

Eq. (4.21) then reads in matrix notation:

ƒT
�����ƒ�� D ��� , ƒT �ƒ D � (4.24)

Here we defined the transposed matrix as ƒT
�� WD ƒ��, i.e., the matrix where rows and columns

are swapped. Eq. (4.24) immediately implies det.ƒT / det.�/ det.ƒ/ D det.�/; using det.�/ ¤ 0
and det.ƒT / D det.ƒ/, we find det.ƒ/ D ˙1.
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9 | Eq. (4.21)!

ƒ��
�
ƒ������

��
�
D ı�� (4.25)

We can therefore conclude that:

ƒ �
� WD ����

��ƒ�� D .ƒ
�1/�� (4.26)

Note that this is consistent with our definition in Eq. (4.7).

In the literature (e.g. Schröder [1]) the concept of a “transposed” transformation is introduced.
We refer to it as“pseudo-adjoint” transformation instead and label it by �. It is defined analogous to
proper adjoints on proper inner product spaces:

���ƒ
�
�„ ƒ‚ …

DWƒ��

x�y�
def
D hy;ƒxi

Š
D hƒ�y; xi

def
D ���.ƒ

�/��„ ƒ‚ …
DW.ƒ�/��

x�y� : (4.27)

This yields as reasonable definition for the pseudo-adjoint:

.ƒ�/�� WD ƒ�� ) .ƒ�/�� D ƒ
�
�

Eq. (4.26)
D .ƒ�1/�� : (4.28)

One can then define a correspondingmatrixƒ� such that .ƒ�/
�
� D ƒ�

�� and use .ƒ�1/
�
� D ƒ�1

��

to rewrite the above equation as

ƒ�
D ƒ�1 : (4.29)

Recall that the pseudo-adjoint is implicitly defined via the inner product. At no point did we claim
that the pseudo-adjoint matrix is given by the transposed matrix ƒT (which is defined by swapping
rows and columns)! To find a relation to the latter, we can rewrite Eq. (4.26) in matrix language:

ƒ�1
�� D ���ƒ���

�1
�� D .�ƒ�/�� D .�ƒT �/�� : (4.30)

Here we used that ��1 D � D �T and that MT
ab
WDMba for any matrix M . So finally:

ƒ�
D ƒ�1

D �ƒT � : (4.31)

The take homemessage is that the transpose of a Lorentz transformation (given by swapping columns
and rows) is not its inverse (there are additional minuses sprinkled in by the metric)! By contrast,
the pseudo-adjoint (defined via the pseudo-inner product) is identical to the inverse.

Warning: In the literature you will find the notation T instead of � (e.g. Schröder [1]). Then one
finds the (correct) relation .ƒT /�� D ƒ

�
� D .ƒ

�1/
�
� . The problem is that this notation suggests

that .ƒT /��
�
D ƒT

�� and therefore ƒ�1 �
D ƒT . As shown above, both equations are wrong!

10 | Covariant derivative:

i | Since in inertial coordinate systems the Minkowski metric is given by ��� , it follows immedi-
ately for the Christoffel symbols Eq. (3.74):

� ikl D
1

2
�im.�mk;l„ƒ‚…

0

C �ml;k„ƒ‚…
0

� �kl;m„ƒ‚…
0

/ D 0 (4.32)

¡! If you would transform into curvilinear (non-inertial) coordinates, the Christoffel symbols
would not vanish – even on flat Minkowski space (→ Problemset 5). That simple partial
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derivatives produce Lorentz tensors is therefore a special feature of Minkowski space in
inertial coordinates.
Eq. (3.79)
�����!

Lorentz Scalar: ˆI� WD ˆ;� D @�ˆ

Contravariant Lorentz vector: A
�

I� WD A
�
;� D @�A

�

Covariant Lorentz vector: B�I� WD B�;� D @�B�

(4.33a)

(4.33b)

(4.33c)

ii | ⁂ 4-Gradient:

This allows us to think of the differential operator @� itself as a covariant Lorentz vector and
motivates the introduction of its contravariant components:

@� D
@

@x�
D .1

c
@t ;CEr/

T

@� WD ���@� D
@

@x�
D .1

c
@t ;�Er/

(4.34a)

(4.34b)

Using Eq. (3.5), the transformation laws match that of co- and contravariant Lorentz vectors,
respectively:

N@� D
@

@ Nx�
D ƒ �

�

@

@x�
D ƒ �

� @�

N@� D
@

@ Nx�
D ƒ��

@

@x�
D ƒ��@

� :

(4.35a)

(4.35b)

¡! The covariant 4-gradient (index down) is the partial derivative wrt. the contravariant coor-
dinates (index up) and vice versa.

iii | These transformation properties immediately suggest two Lorentz scalars that can be con-
structed from 4-gradients (A� D .A0; EA/):

⁂ 4-divergence: @A WD @�A
�
D @�A� D

1
c
@tA

0
C Er � EA

⁂ 4-Laplacian: � � @2 WD @�@� D
�
1
c
@t
�2
� Er

2

(4.36a)

(4.36b)

The 4-Laplacian � is also known as ↓ d’Alembert operator.

Examples:

• In electrodynamics (→ later) the gauge potential transforms as a contravariant Lorentz
vector A� D .1

c
'; EA/.

The ↓ Lorenz gauge is defined as @�A� D 0; it is Lorentz invariant since the 4-
divergence is a Lorentz scalar: N@� NA�. Nx/ D @�A�.x/.

Note: The Lorenz gauge is named after ↑ Ludvig Lorenz; by contrast, the Lorentz
transformation is named after ↑ Hendrik Lorentz. Thus: The Lorenz gauge (no“t”) is
Lorentz invariant.
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• In vacuum (and in Lorenz gauge), the gauge field of electrodynamics satisfies the wave
equation

@2A� D
h�
1
c
@t
�2
� Er

2
i
A� D 0 : (4.37)

Since @2 is a Lorentz scalar andA� a Lorentz vector, @2A� transforms as a contraviarant
Lorentz vector and the equation is manifestly Lorentz covariant:

@2A�.x/ D 0 , N@2 NA�. Nx/ D 0 : (4.38)

• If we have a scalar field ˆ, we can construct a manifestly Lorentz covariant wave
equation:

.@2 Cm2/ˆ.x/ D 0 , .N@2 Cm2/ N̂ . Nx/ D 0 : (4.39)

The parameterm is arbitrary and plays the role of a mass (spectral gap) of the excitations.
This equation is known as ↑ Klein-Gordon equation and describes, for example, the
classical equation of motion of the Higgs field (without interactions).

11 | Relative tensors!⁂ Lorentz pseudo tensor:

Since det.ƒ/ D ˙1, the classification of tensors simplifies:

Tensor: NTMN . Nx/ D ƒMRƒ
P

N T RP .x/

Pseudo tensor: NTMN . Nx/ D det.ƒ/ ƒMRƒ
P

N T RP .x/

(4.40a)

(4.40b)

Here we use again a multi-index notation:M D �1; : : : ; �p etc. Recall that det.ƒ/ D ˙1; pseudo
tensors therefore pick up an additional minus sign under parity or time inversion (→ later).

! Relative tensors of odd weightw are pseudo tensors under Lorentz transformations.

Example:

The Levi-Civita symbol is a Lorentz pseudo tensor [recall Eq. (3.42)]:

N"���� D "���� D det.ƒ/ƒ��0ƒ
�
�0ƒ

�
�0ƒ

�
� 0 "

�0�0�0� 0

: (4.41)

This means that if you contract a Levi-Civita symbol with an actual .0; 4/ Lorentz tensor like
F��F�� (the tensor product of two electromagnetic field trength tensors), you obtain a pseudo
(Lorentz) scalar:

N̂ . Nx/ WD N"���� NF�� NF�� $ det.ƒ/ "����F��F�� D det.ƒ/ˆ.x/ : (4.42)

Since this is a quadratic (pseudo) scalar quantity, you might try to add it to the Lagrangian of
Maxwell theory (� 2 R):

QL D �1
4
F ��F�� C �"

����F��F�� : (4.43)

(This Lagrangian is now only invariant under Lorentz transformations with det.ƒ/ D C1.)

The new term is called ↑ � -term. One can show that it is a total derivative and therefore does
not affect the classical equations of motion (Maxwell’s equations). However, for non-abelian
generalizations of electrodynamics like ↑ quantum chromodynamics (↑ Yang-Mills theories), it does
affect the theory (↑ Strong CP-problem [55]).

Note that we did not use the metric tensor ��� to construct the term "����F��F�� (as compared
toF ��F�� where we need it to pull two indices up); this makes the � -term an example of a so called
↑ topological term (↑ topological field theory): the term doesn’t “see” the geometry of spacetime! In
condensed matter physics, the term plays a role in the description of ↑ topological insulators [56].
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12 | In the next chapter we want to construct a relativistic version of classical mechanics (using the
framework of tensors calculus to make the equations Lorentz covariant). As a preparation, we can
already define two 4-vectors with physical interpreation:

i | 4-velocity:

Question: What is a reasonable definition for a relativistic (= Lorentz covariant) velocity?

^ Particle trajectory x�.�/ parametrized by �:

x�.�/ D

�
ct.�/

Ex.�/

�
)

dx�

d�
D

0@dct
d�
dEx
d�

1A (4.44)

First try: � D t (coordinate time)!

dx�

dt
D

�
c
dEx
dt

�
D

�
c

Ev.t/

�
(4.45)

with coordinate velocity Ev.t/.

Problem:
dx�

dt is not a contravariant Lorentz vector because dt ¤ dNt is not a Lorentz scalar. That is:

d Nx�

dNt
¤ ƒ��

dx�

dt
(4.46)

! Eq. (4.45) is useless to construct Lorentz covariant equations!

Idea: The ← Proper time � is a Lorentz scalar [Eq. (2.24)]: d� D d N�

! Set � D � :

⁂ 4-velocity: u� WD
dx�

d�
D

 
c dt
d�
dEx
d�

!
D 
v

�
c

Ev

�
(4.47)

Here we used dt
d� D 
v.t/ [recall Eq. (2.23)].

By construction, the 4-velocity is a contravariant Lorentz vector: Nu� D ƒ��u� .

^ Pseudo-norm:

u2 D ���u
�u� D .u0/2 � .Eu/2 $ c2 > 0 (4.48)

! Time-like 4-vector

In Minkowski space, u� is the tangent at x� of the world line x�.�/.

ii | 4-acceleration:

Following the same line of arguments above, the 4-acceleration is then defined as the deriva-
tive of the 4-velocity wrt. the proper time:

⁂ 4-acceleration:

b� WD
du�

d�
D

 
c
d
v.t/

d�
dŒ
v.t/ Ev.t/�

d�

!
$

0@ 
4v
Ev�Ea
c


2v EaC 

4
v

Ev�Ea
c2 Ev

1A (4.49)
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Here Ea WD dEv.t/
dt is the coordinate acceleration or 3-acceleration.

It is now easy to show that b2 D b�b� < 0 is a space-like Lorentz vector and that

d.u�u�/
d�

D
d.c2/
d�
D 0 ) u�b� D 0 ; (4.50)

i.e., the 4-acceleration is always “orthogonal” (in terms of the Minkowski metric) to the
4-velocity.

4.3. The complete Lorentz group

Details: → Problemset 5

1 | The Lorentz group is a matrix group defined as the homogenous isometry group of the Minkowski
metric �:

⁂ Lorentz group: O.1; 3/ WD
n

ƒ 2 R4�4
ˇ̌̌
ƒT �ƒ D �

o
(4.51)

with identification ƒ�� D ƒ�� and ��� D ��� .

• As shown previously [Eq. (4.21) and Eq. (4.24)], the matrix constraint in Eq. (4.51) is equiva-
lent to the property

��� x
�y�

def
D �.x; y/

Š
D �.ƒx;ƒy/

def
D
�
���ƒ

�
�ƒ

�
�

�
x�y� (4.52)

for all 4-vectors x; y. Namely, the transformationsƒ do not change the inner product (and
thereby length) of arbitrary vectors; maps with this feature are called ↑ isometries.

• If you replace the Minkowski metric ��� D diag .C1;�1;�1;�1/ by the Euclidean metric
ı�� D diag .C1;C1;C1;C1/, the homogeneous isometry constraint becomes ƒTƒ D 1

since ı D 1 is the identity matrix; this constraint characterizes orthogonal matrices. The
homogenous isometry group of aD D 4 Euclidean space is therefore O.4/: the group of
four-dimensional rotations and reflections.

2 | Continuous Lorentz transformations:

i | Mathematical fact: O.1; 3/ is a ↑ Lie group (= a group that is also a differentiable manifold)

To be precise: O.1; 3/ is a 6-dimensional (→ below) ↑ non-compact ↓ non-abelian disconnected
(→ below) real matrix Lie group with components that are not ↑ simply connected.

! In a neighborhood of 1, elements of Lie groups can be written as exponentials:

ƒ D exp.X/ with X 2 o.1; 3/ (4.53)

where o.1; 3/ denotes the ↑ Lie algebra (= vector space with a Lie bracket):

o.1; 3/ D
n

X 2 R4�4
ˇ̌̌
exp.tX/ 2 O.1; 3/ for all t 2 R

o
: (4.54)
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ii | The isometry constraint on the group elements can be translated into the Lie algebra:

ƒT �ƒ D �
Eq. (4.53)
(HHHH) XT

D ��X� (4.55)

!Most general form of X :

X D

0BB@
0 a b c

a 0 �d �e

b d 0 �f

c e f 0

1CCA with a; : : : ; f 2 R (4.56)

Proof: → Problemset 5

!

• dim.o.1; 3// D 6

This is why O.1; 3/ is a 6-dimensional Lie group.

• TrŒX � D 0 ) detƒ D detŒexp.X/� D exp.TrŒX �/ D 1

! All Lorentz transformations connected to the identity have positive determinant.
Recall that we found previously detƒ D ˙1, so we should not expect to find all
elements of O.1; 3/ in this way.

iii | Generators = Basis of o.1; 3/ [57]:

We use the shorthandC (�) forC1 (�1).

Lx D

0B@0 0 0 0
0 0 0 0
0 0 0 �
0 0 C 0

1CA ; Ly D

0B@0 0 0 0
0 0 0 C
0 0 0 0
0 � 0 0

1CA ; L´ D

0B@0 0 0 0
0 0 � 0
0 C 0 0
0 0 0 0

1CA

Kx D

0B@ 0 C 0 0
C 0 0 0
0 0 0 0
0 0 0 0

1CA ; Ky D

0B@ 0 0 C 0
0 0 0 0
C 0 0 0
0 0 0 0

1CA ; K´ D

0B@ 0 0 0 C
0 0 0 0
0 0 0 0
C 0 0 0

1CA

(4.57a)

(4.57b)

Interpretation:

exp .'Lx/ $

0BB@
1 0 0 0

0 1 0 0

0 0 cos' � sin'
0 0 sin' cos'

1CCA D ƒRx.'/ ! Rotation around x-axis (4.58a)

exp .��Kx/ $

0BB@
cosh � � sinh � 0 0
� sinh � cosh � 0 0

0 0 1 0

0 0 0 1

1CCA D ƒvx
! Boost in x-direction (4.58b)

with ← rapidity tanh � D vx

c
2 .�1; 1/ (→ Problemset 3) and rotation angle ' 2 Œ0; 2�/.

!

Lx;Ly ;L´ W Generators of rotations

Kx;Ky ;K´ W Generators of boosts

(4.59a)

(4.59b)

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → FORMULATION ON MINKOWSKI SPACE

113
PAGE

An arbitrary element of O.1; 3/ that is connected to the identity can then be written as

ƒ D exp
�P

i 'iLi �
P
i �iKi

�
with i 2 fx; y; ´g : (4.60)

In particular [57]:

Pure boost: ƒEv � ƒE�
D exp

�
�E� � EK

�
(4.61a)

Pure rotation: ƒRE'
D exp

�
E' � EL

�
(4.61b)

with rotation angle ' D jE'j, rotation axis O' D E'=', and rapidity vector

E� � E�.Ev/ WD Ov tanh�1
�v
c

�
: (4.62)

¡! The rapidity vector E� is not given by the rapidities tanh�1 vi

c
of the components vi of Ev.

iv | Lie algebra:

The Lie bracket (= commutator) on the Lie algebra determines the multiplicative structure of
the Lie group via the ↓ Baker-Campbell-Hausdorff formula:

exp.X/ � exp.Y / D exp
�

X C Y C
1

2
ŒX ;Y �C : : :

�
: (4.63)

! The Lie algebra o.1; 3/ determines the (local) group structure of O.1; 3/:

Eq. (4.57)
ı
�! �

Li ; Lj
�
D "ijkLk�

Li ; Kj
�
D "ijkKk�

Ki ; Kj
�
D �"ijkLk

(4.64a)

(4.64b)

(4.64c)

Some comments and implications:

• ¡! Because of Eq. (4.64) [and Eq. (4.63)], you cannot simply combine exponentials:

exp
�
�E� � EK

�
� exp

�
E' � EL

�
¤ exp

�
E' � EL � E� � EK

�
; (4.65a)

exp
�
�E� � EK

�
� exp

�
�E� 0
� EK

�
¤ exp

�
�.E� C E� 0/ � EK

�
; (4.65b)

exp
�
E' � EL

�
� exp

�
E'0
� EL
�
¤ exp

�
. E' C E'0/ � EL

�
: (4.65c)

This is why the concatenation of Lorentz transformations is quite complicated in general.

• Eq. (4.64a) is written in physics often as ŒLi ; Lj � D i„"ijkLk with angular momentum
operatorsLk . In this notation, they generate rotationsU E! D exp. i

„
E! EL/. The additional

phase i in the commutation relation matches a corresponding factor in an alternative
definition of the generators EL. (Recall that the Li in Eq. (4.57) are anti-Hermitian
whereas in physics we often prefer Hermitian operators.)

• Eq. (4.64a) shows that o.3/ WD span
˚
Lx ; Ly ; L´

	
forms a subalgebra of o.1; 3/. On

the group level, this means that the group of spatial rotations SO.3/ is a subgroup of
the full Lorentz group O.1; 3/.
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By contrast, Eq. (4.64c) shows that the boost generators fKx ; Ky ; K´g do not form a
subalgebra, but mix with rotations. This implies that there is no “subgroup of pure
boosts” in O.1; 3/. In particular:

ƒEvƒEu D ƒEu˚EvƒR.Eu;Ev/ (4.66)

with the ← Thomas-Wigner rotation R.Eu; Ev/ 2 SO.3/ [recall Section 2.3].

• There is a more compact, 4-vector-inspired notation for the 6 generators in Eq. (4.57),
namely [58]: �

J ˛ˇ
��
�
�

�
J ˛ˇ

�
��
WD �˛�ıˇ� � �

ˇ�ı˛� : (4.67)

Inspection shows that (→ Problemset 5)

Lx D J 23 D �J 32 ; Kx D J 01 D �J 10 ; (4.68a)

Ly D J 31 D �J 13 ; Ky D J 02 D �J 20 ; (4.68b)

L´ D J 12 D �J 21 ; K´ D J 03 D �J 30 : (4.68c)

The three equations of the Lie algebra Eq. (4.64) can then be condensed into a single
equation [58]:

ŒJ�� ;J �� � D ���J�� � ���J �� � ���J�� C ���J �� : (4.69)

This form is useful to construct other representations of the Lorentz group, especially
in relativistic quantum mechanics (→ Dirac equation).

v | It is a useful mathematical fact that every continuous Lorentz transformation of the form
Eq. (4.60) can be decomposed uniquely as follows:

ƒ D ƒEvƒR D ƒRƒ Ew

with parameters:

vi

c
D �

ƒi0

ƒ00
;
wi

c
D �

ƒ0i

ƒ00
and Rij D ƒij �

ƒi0ƒ0j

1Cƒ00

(4.70a)

(4.70b)

ƒEv and ƒR are defined in Eq. (4.61a) [or Eq. (1.75)] and Eq. (4.61b) [or Eq. (1.40)].

The proof can be found in Ref. [59]. This decomposition, sometimes referred to as⁂ rotation-
boost decomposition, relates to the mathematical concept of ↑ Cartan decompositions [60].

If we use the multiplicative law ƒRƒEvƒR�1 D ƒREv [recall Eq. (1.43a)] and chooseR such
thatREv D .vx ; 0; 0/T , we can also find a decomposition of the form

ƒ D ƒR1
ƒvx

ƒR2
(4.71)

with appropriately chosen rotationsR1; R2 2 SO.3/ and a boost in x-direction by vx .

3 | Discrete generators:
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It is easy to verify that the following two matrices also belong to O.1; 3/:

⁂ Parity:

P W .t; Ex/ 7! .t;�Ex/
) P�� � P�� WD

0BB@
C1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCA
��

⁂ Time reversal:

T W .t; Ex/ 7! .�t; Ex/
) T �� � T�� WD

0BB@
�1 0 0 0

0 C1 0 0

0 0 C1 0

0 0 0 C1

1CCA
��

(4.72)

(4.73)

In contrast to the continuous group elements above: det.P / D det.T / D �1

! P and T are not generated by boosts or rotations!

4 | Structure of the Lorentz group:

Combining the discrete transformationP andT with the continuous transformationsƒ D exp.X/
yields the complete group O.1; 3/. Let us study its structure:

i | det.ƒ/ D ˙1!

O.1; 3/ D LC„ƒ‚…
det.ƒ/DC1

[ L�„ƒ‚…
det.ƒ/D�1

(4.74)

All Lorentz transformations that are continuously connected to 1 are in LC. One can
transition between LC and L� by applying either T or P .

ii | In addition, we find:

1 D �00
4.21
D
�
ƒ00

�2
�

3X
kD1

�
ƒk0

�2
�
�
ƒ00

�2
(4.75)

Thusƒ00 ¤ 0 and sign.ƒ00/ D ˙1 can be used to characterize Lorentz transformations.
Note that sign.P 00 / D C1 but sign.T

0
0 / D �1 and sign..PT /00/ D �1.

iii | Neither det.ƒ/ D ˙1 nor sign.ƒ00/ D ˙1 can be changed by continuously deforming a
Lorentz transformation.

! Four disconnected components of O.1; 3/:

L
"

C
W det.ƒ/ D C1 and sign.ƒ00/ D C1 (1 2 L"

C) (4.76a)

L"
� W det.ƒ/ D �1 and sign.ƒ00/ D C1 (P 2 L"

�) (4.76b)

L
#

C
W det.ƒ/ D C1 and sign.ƒ00/ D �1 (PT 2 L#

C) (4.76c)

L#
� W det.ƒ/ D �1 and sign.ƒ00/ D �1 (T 2 L#

�) (4.76d)
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Graphically:

�P

L"
�

�1

L
"

C

T

�T

L#
�

P �PT

L
#

C

T

P
proper orthochronous

Lorentz Group
(restricted LG)

L
"

C D SOC.1; 3/

orthochorous LG

proper LG
LC D SO.1; 3/

orthochronous LG
L" D OC.1; 3/

L"

L0
LC

L
"=#
˙

8̂̂̂<̂
ˆ̂:
" no time inversion (signƒ00 D C1)
# time inversion (signƒ00 D �1)
C detƒ D C1 (proper)
� detƒ D �1 (improper)

iv | Subgroups: We can define the following four subgroups of O.1; 3/:

⁂ Proper LG: SO.1; 3/ �LC WD L
"

C
[ L

#

C

⁂ Orthochronous LG: OC.1; 3/ � L"
WD L

"

C
[ L"

�

⁂ Proper orthochronous LG: SOC.1; 3/ WD L
"

C

⁂ Orthchorous LG: L0 WD L
"

C
[ L#

�

(4.77a)

(4.77b)

(4.77c)

(4.77d)

Note that subgroups must contain the identity 1!

In Greek, “chrónos” (χρόνος) means “time” and“chóros” (χώρος) means “space”.

According to modern physics, Einstein’s principle of relativity SR reads formally:

All fundamental theories of nature must be invariant

under the proper orthochronous Lorentz group SOC.1; 3/.

• This does not prevent specific theories to have additional symmetries. ↑ Quantum
electrodynamics (QED), for example, is invariant under the full Lorentz groupO.1; 3/.
This means that phenomena of electromagnetism – and its interaction with charged
particles – are also symmetric under time inversion T and parity P .

So far, observations suggest that, besides the electromagnetic force, also gravity and
the strong force are symmetric under P and T . (Interestingly, there is no formal reason
why the strong force should not break P and T ; the fact that it does not violate these
symmetries is called the ↑ strong CP problem).

• However, today we know that there are terms in the standard model of particle physics
that violate bothP and T . For example, the weak interaction (responsible for radioactive
ˇ-decay) violates parity P strongly (↑ Wu experiment). This means that you can use
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experiments that depend on the weak interaction to tell the difference between our
world and its mirror image (or a right-handed and a left-handed coordinate system).
There are also weak terms (concerning quarks) that violate time reversal T (↑ CP

violation). As a consequence, the standard model as a whole is only invariant under the
proper orthochronous Lorentz group SOC.1; 3/.

This explains why we can only require symmetry under SOC.1; 3/, and not the full
Lorentz group O.1; 3/: We already know by experiments that the latter is not a funda-
mental symmetry of nature!

• The fact that there are processes that violate parity symmetryP contradicts our everyday
experience: If you run an experiment using equipment found in a school physics lab
and put a mirror next to it, there is no way to decide whether you are watching the
experiment directly or via the mirror (i.e., parity inverted). The reason is that the
physics we experience in everyday life is goverened by electrodynamics and gravity,
both of which are invariant under P . To unveil that nature secretly violates P , you
must perform an experiment that involves the weak interaction (that is: a particle
physics experiment). This is what Chien-Shiung Wu did in her now famous ↑ Wu
experiment. At the time, the result (that P is not a symmetry of nature) was unexpected
and groundbreaking.

So if you are surprised that P is not a symmetry of nature, you are not alone. Here is
howWolfang Pauli reacted to the result of the Wu experiment [61]:

At one point, Temmer found himself in the presence of eminence grise Wolfgang
Pauli, who asked for the latest news from the United States. Temmer told him that
parity was no longer to be assumed conserved. “That’s total nonsense” averred the
great man. Temmer: “I assure you the experiment says it is not.” Pauli (curtly):
“Then it must be repeated!”

4.4. ‡ Why is spacetime 3+1 dimensional?

Given the discussions in Chapter 3 and Chapter 4 it is clear that the mathematical formalism allows for
straightforward generalizations to higher- (or lower-) dimensional spacetime manifolds with arbitrary
signatures; these suggest spacetimes with various numbers of spatial and temporal dimensions.

It is therefore natural to ask:

Is there anything special about our 3C 1-dimensional world?

What follows is not a proof that spacetime must be 3 C 1 dimensional. Our goal is to argue that all
spacetimes, except ours with three space and one time dimension, face severe problems that, most likely,
would not allow for complex life.

The following discussion is based on Tegmark [39, 62].

1 | ^ Pseudo-Riemannian manifold of signature .t; s/ with metric

gij D diag.C1; : : : ;C1„ ƒ‚ …
t

;�1; : : : ;�1„ ƒ‚ …
s

/ (4.78)

• This is the generalization of Minkowski space to a (flat) spacetime manifold with, naïvely, t
time and s space-dimensions.

• Most of our discussions in this chapter can be transferred to this more general setting.
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2 | ^ ↑ Klein-Gordon equation for signature .t; s/:

�
@2 Cm2

�
ˆ D

tX
iD1

@2ˆ

@xi
2„ ƒ‚ …

t � Time (?)

�

sCtX
iDtC1

@2ˆ

@xi
2„ ƒ‚ …

s� Space (?)

Cm2ˆ D 0 (4.79)

• Recall that @2 D gij @i@j where gij is given by (the inverse of ) Eq. (4.78).

• The Klein-Gordon equation (KGE) is the simplest covariant field equation. It describes the
time evolution of a scalar field of massm. It is ubiquitous in relativistic physics (especially in
↑ quantum field theory).

• For example, the components of the electromagnetic field in vacuum are described by the
KGE form D 0 and .t; s/ D .1; 3/ (which is then referred to as ↓ wave equation):

@2Ei D
1
c2 @

2
tEi � r

2Ei D 0 ; (4.80a)

@2Bi D
1
c2 @

2
tBi � r

2Bi D 0 : (4.80b)

This motivates in Eq. (4.79) the (tentative) identification of the coordinates with positive
sign as “time coordinates”, and the ones with a negative sign as “space coordinates”:

The difference between time and space is just a sign!

In the following, we use the KGE as a proxy for more general relativistic field equations.

! Possible combinations of t time and s space dimensions:

3 | Partial differential equations (PDE):

The general KGE in Eq. (4.79) is an example of a partial differential equation (PDE). The theory of
PDEs has been thoroughly developed by mathematicians and a lot is known about their solvability.
The problem of solving a PDE, given some boundary/initial conditions, is known as ↑ Cauchy
problem:

• ⁂ Well-posed (Cauchy) problem: Given some boundary/initial data, there exists a unique
solution to the PDE that satisfies these conditions, and this solution is robust. Here “robust”
means that if you slightly modify the boundary/initial conditions, the solution also changes
only slightly. Put differently: The solutions are not chaotic and you can use them to extrapolate
reliably from boundary/initial states with finite errorbars. This is a crucial feature to use
PDEs for predictions in the real world.

• ⁂ Ill-posed (Cauchy) problem: Given some boundary/initial data, there either exist multiple
solutions to the PDE that satisfy these conditions, or the unique solution is not robust. In
both cases, the PDE cannot be used for predictions in the real world.
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i | ^ .t D 0; s/ or .t; s D 0/! Eq. (4.79) = ↑ Elliptic PDE

This corresponds to spacetimes that are ← Riemannian manifolds.

Elliptic PDEs have well-posed boundary problems:

!One cannot use Eq. (4.79) to make predictions/

!No coordinate in Eq. (4.79) qualifies as a “time coordinate”.

!

ii | ^ .t � 2; s � 2/ or .t � 2; s � 2/! Eq. (4.79) = ↑ Ultrahyperbolic PDE

This corresponds to spacetimes that are generic ← pseudo-Riemannian manifolds.

A similar but more involved chain of arguments holds also for ultrahyperbolic PDEs [39, 62].

!One cannot use Eq. (4.79) to make predictions/

!

iii | .t D 1; s � 1/ or .t � 1; s D 1/! Eq. (4.79) = ↑ Hyperbolic PDE

This corresponds to spacetimes that are ← Lorentzian manifolds.

Hyperbolic PDEs have well-posed initial value problems:
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!We can use Eq. (4.79) to make predictions,

4 | Stability:

• ^ Newtonian Gravity in s � 4 spatial dimensions:

! ↓ Two-body problem has no stable orbits (only scattering and attraction solutions).

!No stable planetary systems possible/

• ^ Hydrogen atom in s � 4 spatial dimensions:

! Schrödinger equation has no bound states.

!No stable atoms possible/

The opposite cases with t � 4 and s D 1 are equivalent if one interprets space as time and vice
versa (which is necessary to use hyperbolic PDEs to predict “the future”, → below).

!

5 | Simplicity:

general relativity in s � 2 spatial dimensions! No gravity (→ later)!

!No stars, no planets, no orbits/

The opposite cases with t � 2 and s D 1 are equivalent if one interprets space as time and vice
versa (which is necessary to use hyperbolic PDEs to predict “the future”, → below).

!
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6 | Tachyon world:

¡! In the literature both Lorentzian signatures .1; 3/ and .3; 1/ are used to formulate special rel-
ativity. Formulations in signature .3; 1/ have nothing to do with the Tachyon sector discussed
here since they compensate for the global minus in their equations. For example, the KGE in
signature .�;C;C;C; / reads .�@2Cm2/ˆ D 0which is equivalent to the KGE .@2Cm2/ˆ D 0
in signature .C;�;�;�/. The point here is that we do not add this additional minus:

Eq. (4.79)
.1;3/ 7! .3;1/
���������!
Time$ Space

.�@2 Cm2/ˆ D 0 , .@2�m2/ˆ D 0 (4.81)

In more detail:

For t D 3 and s D 1 the KGE reads

@2ˆ

@.x1/
2
C

@2ˆ

@.x2/
2
C

@2ˆ

@.x3/
2„ ƒ‚ …

3� Time (?)

�
@2ˆ

@.x4/
2„ ƒ‚ …

1� Space (?)

Cm2ˆ D 0 : (4.82)

But because this an hyperbolic PDE, the Cauchy problem is only well-posed with initial conditions
on a hypersurface spanned by fx1; x2; x3g. Put differently: The PDE allows predictions only in
x4-direction! Thus we should interpret x4 as time and fx1; x2; x3g as space:

@2ˆ

@.x1/
2
C

@2ˆ

@.x2/
2
C

@2ˆ

@.x3/
2„ ƒ‚ …

3� Space (!)

�
1

c2
@2ˆ

@t2„ƒ‚…
1� Time (!)

Cm2ˆ D 0 (4.83)

with ct � x4. But this KGE is equivalent to�
1

c2
@2t � r

2
�m2

�
ˆ D .@2 �m2/ˆ D 0 : (4.84)

Thus the“transposed” situation .t � 1; s D 1/ is equivalent to the situation .t D 1; s � 1/ with
negative square-masses in the equations. Fields with negative square-mass (equivalently: imaginary
mass) are called ↑ tachyonic fields or ↑ tachyons for short.

! All massive particles are ↑ tachyons [63]

¡! Tachyonic fields are not science fiction; they do exist (→ below) but, contrary to the features
assigned to them in science fiction, do not allow for faster-than-light propagation of information.

! Tachyon fields herald vacuum instabilities [64] /

The spontaneous symmetry breaking of the ↑ Higgs mechanism is an example of this phenomenon:
The Higgs field has a negative square-mass which is responsible for the“Mexican hat potential.”
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The consequence is spontaneous symmetry breaking, which, in this context, can be reframed as
“tachyon condensation.” On the new, symmetry broken vacuum, excitations are not tachyons with
negative square-mass but Higgs bosons with positive square-mass.

!

7 | These arguments support the following hypothesis:

Only a spacetime with 1 time and 3 space dimensions supports observers like us.

What does this line of arguments explain? Well, if youwould randomly construct universes by dicing
the number of space and time dimensions, only the ones with one time and three space dimensions
have the chance to develop complex observers like us (who then wonder why their universe is
3C 1-dimensional). Thus the arguments above are important for “ensemble interpretations” of
reality, like certain ↑ multiverse hypotheses or superstring theories (which can predict a plethora of
different spacetime dimensions) [39, 65].
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