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↓ Lecture 8 [05.12.23]

3.5. The metric tensor

A differentiable manifoldM does not automatically allow us to measure the length of curves, the angles
of intersecting lines, or the area/volume of subsets of the manifold; to do so, we need a metric onM
(which is an additional piece of information). While the continuity structure (an atlas) that comes with
M determines its topology, the metric determines its geometry (= shape). The same manifoldM can be
equipped with different metrics; this corresponds to different geometries of the same topology (a potato
and an egg both have the topology of a sphere, nonetheless they are geometrically distinct).

A differentiablemanifold togetherwith a (pseudo-)metric is called↑ (pseudo-)Riemannian manifold. In spe-
cial relativity and general relativity, spacetime is modeled by such (pseudo-)Riemannian
manifolds where the metric is used to represent spatial and temporal distances between events.

25 | Motivation:

On linear spaces V , it is convenient to define an ↓ inner product (like in quantum mechanics where
you consider Hilbert spaces and use their inner product to compute probabilities and transition
amplitudes).

Recall the definition of a (real) inner product:

h�j�i W V � V ! R with… (3.44a)

Symmetry: hxjyi D hyjxi (3.44b)

(Bi)linearity: hax C byj´i D ahxj´i C bhyj´i (3.44c)

Positive-definiteness: x ¤ 0 ) hxjxi > 0 (3.44d)

Once you have an inner product, you get a norm, and subsequently a metric for free:

hxjyi„ƒ‚…
Inner product

) kxk WD
p
hxjxi„ ƒ‚ …

Norm

) d.x; y/ WD kx � yk„ ƒ‚ …
Metric

(3.45)

Thus an inner product is a rather versatile structure and nice to have!

Problem: We cannot define a inner product on the manifold directly becauseM is not a linear space.

However: We can introduce an inner product on each of its tangent spaces TpM !!

26 | ⁂ Riemannian (Pseudo-)Metric ds2 := Symmetric, non-degenerate .0; 2/-tensor field:

ds2 W M 3 p 7!
�
ds2p W TpM � TpM ! R

�„ ƒ‚ …
Bilinear & symmetric & non-degenerate

ds2p bilinear ) ds2p 2 T
�
pM ˝ T

�
pM

) ds2p D
DX

i;jD1

gij .x/ dxi ˝ dxj � gij .x/ dxidxj

with gij D gj i (symmetry) and g D det.gij / ¤ 0 (non-degeneracy).

(3.46a)

(3.46b)
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• The tensor product is non-commutative: dxi ˝ dxj ¤ dxj ˝ dxi . However, you can always
decompose a tensor product as

dxi ˝ dxj D
1

2
.dxi ˝ dxj C dxj ˝ dxi /„ ƒ‚ …

DWdxi _dxj

C
1

2
.dxi ˝ dxj � dxj ˝ dxi /„ ƒ‚ …

DWdxi ^dxj

(3.47)

with the symmetrized tensor product dxi _ dxj and the anti-symmetrized tensor product
dxi ^ dxj (↑ wedge product).

Since gij is assumed to be symmetric, only the symmetric component survives:

gij .x/dxi ˝ dxj D gij .x/dxi _ dxj � gij .x/dxidxj (3.48)

This means that when writing dxidxj in the above formula, you can be sloppy and either
mean dxi ˝ dxj or, equivalently, dxi _ dxj . You will find both conventions in the literature.
I will use dxidxj � dxi _ dxj so that dxidxj D dxjdxi .

• It would be more appropriate to write g D gijdxidxj for the metric .0; 2/-tensor; it is
conventional, however, to reserve g for the determinant det.gij / so that we are stuck with
ds2 for the metric. Note that the d in ds2 does not refer to an ↑ exterior derivative, it is purely
symbolical.

• To define a proper ↓ inner product on TpM , we should demand ↓ positive-definiteness instead
of non-degeneracy. This, however, is often (for example in relativity) too restrictive; as
it turns out, non-degeneracy is all we need for an isomorphism between TpM and T �

pM

(“pulling indices up and down”, → below). This is why negative eigenvalues of gij are fine for
many purposes, and motivates the concept of a → signature:

27 | Signature:

Since gij .x/ D gj i .x/ and det.gij .x// ¤ 0

! gij .x/ has r positive and s negative real eigenvalues for all p 2M

Since det.gij .x// ¤ 0, these numbers must be the same for all p 2M .

! .r; s/: ⁂ Signature of the metric ds2

This classification does not depend on the coordinate basis (↑ Sylvester’s law of inertia).

• .r > 0; s D 0/

! ds2: Riemannian metric! .M; ds2/: ⁂ Riemannian manifold

I.e., gij has only positive eigenvalues for all p 2M and is therefore ↓ positive-definite. This
produces a true, positive-definite inner product on TpM .

• .r > 0; s > 0/

! ds2: pseudo-Riemannian metric! .M; ds2/: ⁂ pseudo-Riemannian manifold

I.e., gij has both positive and negative eigenvalues and is therefore ↓ indefinite.

– .r > 0; s D 1/ or .r D 1; s > 0/:

! ds2: Lorentzian metric! .M; ds2/: ⁂ Lorentzian manifold

In relativity we are only interested in metric tensors with one positive and three
negative eigenvalues (equivalently: three positive and one negative eigenvalue). Math-
ematically speaking, spacetime is then a four-dimensional Lorentzian manifold and a
special case of a pseudo-Riemannian manifold.
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28 | Example: (Details: → Problemset 4)

i | ^ D D 2 Euclidean space E2 � .R2; ds2E /

The Euclidean metric in Cartesian coordinates x1 D x and x2 D y reads:

ds2E WD dx2 C dy2 D gij .x/ dxidxj with .gij / D

�
1 0

0 1

�
„ ƒ‚ …
Signature
.2;0/

: (3.49)

This is consistent with the notion of dx and dy as infinitesimal shifts in coordinates and ds2

as the infinitesimal distance (squared) that corresponds to this shift:

ii | We can now transition to a new chart, namely polar coordinates Nx1 D r and Nx2 D � . The
induced basis change on the cotangent space is given by the total differential of the coordinate
functions Eq. (3.14):

'�1
W

(
x D r cos.�/

y D r sin.�/

Eq. (3.14)
)

dx D cos.�/ dr � r sin.�/ d�

dy D sin.�/ dr C r cos.�/ d�
(3.50)

iii | We find the components of the metric tensor field in the new basis fd Nx1 D dr; d Nx2 D d�g:

ds2 $ dr2 C r2d�2 D Ngij . Nx/ d Nxid Nxj with . Ngij / D

�
1 0

0 r2

�
„ ƒ‚ …
Signature
.2;0/

: (3.51)

This expression is again compatible with infinitesimal shifts in the (new) coordinates r and � :

• The Euclidean planeE2 is therefore an example for a Riemannian manifold with metric
signature .2; 0/; its distinctive feature is that it is flat.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → MATHEMATICAL TOOLS I: TENSOR CALCULUS

95
PAGE

• Note that here we compute the same infinitesimal length in different coordinates (with
the same result)! We did not change the metric, only the coordinates and thereby the
coordinate basis in which we express the metric tensor. This is flat Euclidean space in
↑ curvilinear coordinates. By contrast, later in general relativity we will study
curved (non-flat, non-Euclidean) metric tensors, i.e., we will modify the geometry of
space(time) itself.

29 | Since the metric ds2 is a .0; 2/-tensor field:

Ngij . Nx/d Nxid Nxj D ds2 D gij .x/dxidxj (3.52)

Eq. (3.14)
ı
�!

Ngij . Nx/ D
@xl

@ Nxi
@xm

@ Nxj
glm.x/ (3.53)

The metric (components) transforms as any other .0; 2/ tensor. Nothing special!

Side note:

Let g WD det.gij / and Ng WD det. Ngij /
Eq. (3.53)
�����!p
j Ngj D

ˇ̌̌̌
det

�
@x

@ Nx

�ˇ̌̌̌p
jgj (3.54)

!
p
jgj is a pseudo scalar tensor density of weight w D C1. The “pseudo” indicates that the

absolute value of the Jacobian determinant shows up, cf. Eq. (3.37).

^ g < 0
Eq. (3.39)
�����! dDx

p
�g is a scalar (→ later)!

30 | Length of curves onM :

One immediate benefit of having a Riemannian manifold is that we can now compute the length of
curves 
.t/ onM (parametrized by t 2 Œa; b� and given in some chart):

LŒ
� �

Z



ds WD
Z b

a

s
gij .
.t//

d
 i .t/
dt

d
j .t/
dt

dt

�

Z b

a

k P
.t/k
.t/ dt

(3.55)

(3.56)

¡! If ds2 is a true pseudo metric (i.e., gij has at least one negative eigenvalue), one must make sure
that the chosen curve 
 does not produce negative values under the square root. In relativity
these will be ↑ time-like curves.

Example:

Let 
 be the circle with radiusR in the Euclidean planeE2. A possible parametrization in Cartesian
coordinates (with origin in the center of the circle) is E
xy.t/ D .xt ; yt / D .R cos.t/; R sin.t//
with 0 � t < 2� so that one finds for the circumference:

L D

Z



p
dx2 C dy2 D

Z 2�

0

q
Px2t C Py

2
t dt $ 2�R (3.57)
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The same length can of course be calculated with the parametrization E
r� .t/ D .rt ; �t / D .R; t/
and 0 � t < 2� in polar coordinates:

L D

Z



p
dr2 C r2d�2 D

Z 2�

0

q
Pr2t C r

2
t
P�2t dt $ 2�R (3.58)

Details: → Problemset 4

31 | Besides computing lengths of curves (and other geometric quantities, → later), there is another
benefit of having a metric tensor:

Pulling indices down:

QT
i1 : : :� : : : ip � : : : �
� : : : i : : :� j1 : : : jq

WD gikT
i1 : : : k : : : ip � : : : �
� : : :� : : :� j1 : : : jq

(3.59)

! QT is a tensor of type .p � 1; q C 1/

• In Eq. (3.59) we indicate “empty” slots for indices by � to emphasize that in each index
“column” an index can either be up (contravariant) or down (covariant). It is conventional to
omit the �-markers. Note that this explains why you never should write two indices directly
above each other (except for special cases, → below).

Furthermore, since g is fixed, it makes sense to label QT again by T (note that the difference
between the original tensor and the new one is manifest in the different index patterns!):

QT
i1 : : :� : : : ip � : : : �
� : : : i : : :� j1 : : : jq

7! T
i1 : : : : : : ip

i j1 : : : jq
(3.60)

Example:

Ai kj l WD gjmA
imk

l (3.61)

• This convention matches perfectly with the computation of an inner product (which is
determined by the metric tensor g) of two contravariant vectors:

hA;Bi
def
D gijA

iBj
def
D AiBi„ƒ‚…

Scalar

(3.62)

32 | Pulling indices up:

We would like to have a .2; 0/-tensor gij with the property

ıkj T
j
D T k

Š
D gkiTi

def
D gkigijT

j : (3.63)

gij allows us to revert the pulling-down of indices defined by the metric gij . Note that gij is a
different tensor than gij , we could call it Qgij ; however, it is conventional to denote it with the same
label due to the following close relationship with g:

gkigij
Š
D ıkj (3.64)

This is an implicit equation for gki !
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! gij is the inverse matrix of gij
(Which always exists because ds2 is non-degenerate: det.gij / ¤ 0.)

! In general:

QT
i1 : : : ip � : : : j : : : �
� : : :� j1 : : :� : : : jq

WD gjkT
i1 : : : ip � : : :� : : : �
� : : :� j1 : : : k : : : jq

(3.65)

! QT is a tensor of type .p C 1; q � 1/

• Again we relabel QT to T and omit the �-markers:

QT
i1 : : : ip � : : : j : : : �
� : : :� j1 : : :� : : : jq

7! T
i1 : : : ip j

j1 : : : : : : jq
(3.66)

• Example:

Aijkl WD glmAijk m (3.67)

• With these new definitions, we can now raise and lower contractions:

AiBi D A
iı
j
i Bj D A

igikg
kjBj D A

igikB
k
D AkB

k
D AiB

i (3.68)

• What happens if you pull the indices of the Kronecker symbol up or down?

ıij WD gjkıik D g
ij and ıij WD gikı

k
j D gij (3.69)

¡! ıij � gij and ıij � gij denote the metric and its inverse!

!We never use the notation ıij and ıij to prevent confusion!

• Note that in general

gjkT ik D T
ij
¤ T j i D gjkT i

k : (3.70)

This means that the “column” in which the index is located is important, and notations like
T i
k
are ill defined (if you pull k up by gjk , do you get T ij or T j i ?). However, if the tensor is

symmetric, T ij D T j i , this does not matter and you can get away with the sloppy notation T i
k
.

This explains why writing ıi
k
for the Kronecker symbol is fine: gj i D gjkıi

k
is symmetric.

33 | Mathematical side note:

“Pulling indices up and down” is mathematically the application of an ↓ isomorphism between TpM
and T �

pM :

g.�; �/ W TpM 3 A 7! g.A; �/ 2 T �
pM (3.71)

This has nothing to do with differential geometry or manifolds in particular; it is a general feature
of non-degenerate bilinear forms on vector spaces. In differential geometry, this canonical iso-
morphism between the tangent bundle TM and the cotangent bundle T �M is know as ↑ musical
isomorphism.

For example, you are using the same kind of isomorphism all the time in quantum mechanics,
namely whenever you“dagger” a ket j‰i to obtain a bra h‰j:

.�/� W H 3 j‰i 7! h‰j � j‰i� 2 H � with h‰jjˆi
Š
D h‰jˆiH for all jˆi 2 H . (3.72)
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Note how the bra bra h‰j associated to the ket j‰i is defined via the inner product h�j�iH (and
therefore metric) of the Hilbert space (↑ Riesz representation theorem)!

This leads to a nice dictionary between concepts in tensor calculus (and therefore relativity)
and the bra-ket formalism of quantum mechanics:

Relativity (fixed p 2M ) Quantummechanics
Inner product space TpM H

Basis f@ig fjiig

Vector A D Ai@i j‰i D ‰i jii

Dual space T �
pM H �

Dual basis fdxig fhi jg

… dxi .@j / D ıij hi jj i D ıij

Covector B D Bidxi h‰j D ‰�
i hi j

Inner product g.A1; A2/ D gijA
i
1A

j
2 h‰jˆi

Tensor A D Aij @i ˝ @j j‰i ˝ jˆi � j‰ijˆi

… B D Bijdxi ˝ dxj h‰j ˝ hˆj � h‰jhˆj

Operator T D T ij @i ˝ dxj jˆi ˝ h‰j � jˆih‰j

Trace T ii TrŒjˆih‰j�
Scalar BA D BiA

i D gijB
iAj h‰jjˆi D h‰jˆi

Pulling indices down Ai D gijA
j h‰j D j‰i�

Pulling indices up Ai D gijAj j‰i D h‰j�

3.6. Differentiation of tensor fields

34 | Remember: @iˆ is covariant vector if ˆ is scalar. However:

^ Contravariant vector Ai :

NAi ;k �
@ NAi

@ Nxk
D
@xm

@ Nxk

@

@xm

"
@ Nxi

@xl
Al

#
D

@2 Nxi

@xm@xl

@xm

@ Nxk
Al„ ƒ‚ …

¤ 0 (in general)/

C
@xm

@ Nxk

@ Nxi

@xl

@Al

@xm„ ƒ‚ …
.1; 1/-tensor,

(3.73)

Here we used the transformation of NAi [Eq. (3.8)] and N@k [Eq. (3.5)] and the product rule.

! In general: @ NAi

@ Nxk is not a tensor!

35 | How to define a derivative of tensor fields that again transforms as a tensor?

To solve this problem, we first need a new field:

!⁂ Christoffel symbols (of the second kind):

� ikl WD
1

2
gim

�
gmk;l C gml;k � gkl;m

�
(3.74)

• The Christoffel symbols are symmetric in the lower two indices: � i
kl
D � i

lk

• ¡! Despite the index notation, the Christoffel symbols are not tensors:

N� ikl $
@ Nxi

@xm
@xn

@ Nxk

@xp

@ Nxl
�mnp �

@xn

@ Nxk

@xp

@ Nxl

@2 Nxi

@xn@xp„ ƒ‚ …
No tensor!

(3.75)
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This is why they are called“symbols” and not “tensors”!

• There are also Christoffel symbols of the first kind:

�ikl WD gij�
j

kl
D
1

2

�
gik;l C gil;k � gkl;i

�
(3.76)

• Mathematically, the Christoffel symbols are the coefficients (in some basis) of the ↑ Levi-
Civita connection which is determined by the metric tensor gij (→ later).

36 | ^ Contravariant vector NAi and contract it with N� i
kl

:

N� ikl
NAl D

@ Nxi

@xm
@xn

@ Nxk
�mnp

�
@xp

@ Nxl
NAl
�

„ ƒ‚ …
Ap„ ƒ‚ …

.1; 1/-tensor,

�
@xn

@ Nxk

@2 Nxi

@xn@xp

�
@xp

@ Nxl
NAl
�

„ ƒ‚ …
Ap„ ƒ‚ …

Problematic term in Eq. (3.73)

(3.77)

Idea: Add Eq. (3.73) and Eq. (3.77) to cancel the problematic term:

NAi ;k C
N� ikp

NAp D
@xm

@ Nxk

@ Nxi

@xl

h
Al;m C �

l
mpA

p
i

„ ƒ‚ …
.1; 1/-tensor,,

(3.78)

37 | This motivates the definition of the ⁂ Covariant derivative:

Scalar: ˆ
Ik WD ˆ;k

Contravariant vector: Ai
Ik WD A

i
;k C �

i
klA

l

Covariant vector: Bi Ik WD Bi ;k � �
l
ikBl

(3.79a)

(3.79b)

(3.79c)

• With this definition, Ai
Ik

is a .1; 1/-tensor and B
i Ik

is a .0; 2/-tensor!

• With this definition, the product rule is valid for the covariant derivative:

.AiBi /Ik D .A
iBi /;k $ Ai

IkBi C A
iBi Ik (3.80)

• The construction of higher-rank tensors by tensoring contra- and covariant vectors Eq. (3.32)
and the definitions of the covariant derivative above Eq. (3.79) can be used to construct
covariant derivatives of arbitrary tensor fields. For example:

T ikIl WD T
i
k;l C �

i
ml T

m
k � �

m
kl T

i
m (3.81)

• With this generalization, we can apply the covariant derivative multiple times. For example:

Ai
IkIl �

�
Ai

Ik

�
Il

(3.82)

• The covariant derivative is not commutative in general:

Ai
IkIl � A

i
IlIk ¤ 0 (3.83)

! Riemann curvature tensor! general relativity (→ later)

(This is not the case for the “normal” derivative: Ai
;k;l
D Ai

;l;k
.)
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38 | Conclusion:

If you can formulate an equation that describes a physical theory in terms of tensors, it can always
be brought into the form

T IJ .x/ D 0 : (3.84)

(This equation is meant to hold for all values of indices I and J and all coordinate values x.)

Here is an example:

The (inhomogeneous) Maxwell equations on an arbitrary (potentially curved) spacetime read:

F ��I� C
4�

c
J�„ ƒ‚ …

DWT�.x/

D 0 (3.85)

with current density J� and field strength tensor F �� D g��g��.A�I� � A�I�/.

How does Eq. (3.84) look like in any other coordinate system Nx D '.x/?

Easy:

NT IJ . Nx/ D
@ NxI

@xM
@xN

@ NxJ
TMN .x/„ ƒ‚ …

D0

D 0 , NT IJ . Nx/ D 0 : (3.86)

This means:

Tensor equations are automatically form-invariant under arbitrary coordinate

transformations; we say they exhibit ⁂ (manifest) general covariance.

The“manifest”means that checking general covariance is just a matter of checking whether the
equation“looks right”, i.e., whether it is built from tensors following the rules discussed in this
chapter. If a property of an equation is manifest, you don’t have to do calculations to verify it!

In the next chapter, we take a step back and specialize the allowed coordinate transformations to
the Lorentz transformations of special relativity. We can then use the form-invariance of
equations built from“Lorentz tensors” to construct Lorentz covariant equations from scratch –
which was our original goal!
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