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↓ Lecture 7 [28.11.23]

7 | Since TpM is a vector space for each point p of the manifoldM , we can define fields onM that
assign to each point p a tangent vector:

⁂ Vector field: A.p/ D
PD
iD1A

i .x/@i with x D u.p/

At every point p 2M the vector field yields a tangent vector A.p/ D
P
i A

i .u.p//@i 2 TpM .

8 | ^ Coordinate transformation Nx D '.x/ , x D '�1. Nx/

! Chain rule:

@

@ Nxi„ƒ‚…
N@i

D

DX
kD1

@xk

@ Nxi
@

@xk„ƒ‚…
@k

(3.5)

!For x D u.p/ and Nx D v.p/ this is a basis change on the tangent spaceTpM from one coordinate
basis f@ig to another coordinate basis fN@ig via the (invertible) matrix @x

k

@ Nxi :

9 | ^ Vector field A and expand it in different coordinate bases:X
i

Ai .x/@i D A.p/ D
X
i

NAi . Nx/N@i (3.6)

with x D u.p/ and Nx D v.p/.

• ¡! The vector field A is a geometric object, just as the scalar field � was. That it does not
depend on the chosen chart is the statement of this equation.

• You learned this (with different notation and without the x=p-dependency) in your first
course on linear algebra: Given a vector space V , a vector Ev 2 V , and a basis fEeig with
V D span feig, you can encode the vector in a basis-dependent set of numbers vi called
components via linear combination: Ev D

P
i vi Eei . The same vector can be encoded by different

components v0
i in a different basis fEe0

ig: Ev D
P
i Nv

0
i Ee

0
i . In our terminology, the vector Ev is a

“geometric object” that does not depend on your choice of basis; only its components do. In
this context, the gist of the story is that Ev represents something physical (like the velocity of
a particle). The components vi do so only indirectly because they depend on your choice of
the basis fEeig – and this choice does not bear any physical meaning.

Eq. (3.6)!

A D
X
i

Ai .x/@i
Š
D

X
i

NAi . Nx/N@i
Eq. (3.5)
D

X
k

"X
i

@xk

@ Nxi
NAi . Nx/

#
„ ƒ‚ …

Š
DAk.x/

@k (3.7)

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → MATHEMATICAL TOOLS I: TENSOR CALCULUS

84
PAGE

This motivates the following definition (we replace x $ Nx and the indices i $ k):

10 | ^ D-tuple fAi .x/g of fields (in some chart with coordinates x):

⁂ Contravariant vector field fAi .x/g W, NAi . Nx/ D

DX
kD1

@ Nxi

@xk
Ak.x/ (3.8)

Contravariant vector (field)! Superscript indices!

This is a convention which relates syntax and semantics and is at the heart of tensor calculus. The
idea is that whenever you are given a collection of fields Ai .x/, you immediately know that they
transform like Eq. (3.8) under coordinate transformations. (Unfortunately, there are exceptions to
this rule, e.g., the → Christoffel symbols.)

• ¡! Not everyD-tuple of fields transforms as Eq. (3.8). To deserve the name“contraviarant
vector (field),” (and superscript indices) one has to check this transformation law explicitly!

• The rationale of Eq. (3.8) is the same as that of Eq. (3.4): Whenever we find a family of fields
that transform under coordinate transformations as Eq. (3.8), we immediately know that
together they encode a geometric, chart-independent object on the manifold that can be used
to describe a physical quantity.

11 | (Counter)Examples:

• ^ Only linear coordinate transformations: Nx D '.x/ D ƒx

^ Coordinate functions X i .x/ WD xi as fields:

NX i . Nx/„ƒ‚…
Nxi

D

DX
kD1

ƒik X
k.x/„ƒ‚…
xk

D

DX
kD1

@ Nxi

@xk„ƒ‚…
ƒi

k

Xk.x/ (3.9)

! Coordinate functions are contravariant vectors for linear transition maps.

This is useful in special relativity because there we only consider global Lorentz
transformations (which are linear).

• ^ D scalar fields ˆi .x/ (i D 1; : : : ;D):

For general Nx D '.x/: N̂ i . Nx/ D ˆi .x/ ¤

DX
kD1

@ Nxi

@xk„ƒ‚…
¤ıi

k

ˆk.x/ (3.10)

! fˆi .x/g are not components of a contravariant vector field.

– You see: not every collection ofD fields is a vector!

– ¡! ıi
k
is the Kronecker symbol: ıi

k
D 1 for i D k and ıi

k
D 0 for i ¤ k. The notation

ıik is not used in tensor calculus (→ later).

12 | Reminder: ↓ Dual spaces
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i | Remember: Linear algebra

Consider the vector space V D RD and a column vector Ev D .v1; : : : ; vD/T 2 V (a 1 �D-
matrix). Let EwT D .w1; : : : ; wD/ be a row vector (aD � 1-matrix). We can then perform a
matrix multiplication between the vectors and interpret it as a linear map EwT acting on the
vector Ev and producing a number:

EwT W Ev 2 V 7! EwT � Ev D
�
w1 : : : wD

�
�

0B@v1:::
vD

1CA DX
i

wivi 2 R : (3.11)

Inmathematical parlance EwT is a linear functional on the vector spaceV . All linear functionals
of this form make up another vector space V � called the ↓ dual space of V . You can think
of V � as the vector space of allD-dimensional row vectors and V as the vector space of all
D-dimensional column vectors. The elements of the dual space are referred to as a ↓ covectors.

ii | Remember: Quantum mechanics

In quantum mechanics, the state of a physical system is described by ↓ state vectors in some
Hilbert space H (which is a special kind of vector space). Vectors in this space are written as
↓ kets: j‰i 2 H . You can produce a ↓ bra h‰j D j‰i� by applying the complex transpose
operator. As in the example above, the bra h‰j is a covector from the dual space H �; indeed,
it acts as a linear functional on state vectors via the inner product of the Hilbert space:

h‰jjˆi WD h‰jˆi 2 C : (3.12)

This is the gist of the famous ↓ Dirac bra-ket notation.

iii | Hopefully these examples convinced you that the dual space is just as important and useful
as the vector space itself.

!Dual space of the tangent space TpM ?

Given a coordinate basis f@ig 2 TpM of a vector space, there is a standard way to define a
basis of of the dual space T �

pM :

↓ Dual basis fdxig with

dxi .@j / WD ıij D
@xi

@xj
(3.13)

! fdxig is a basis of the ⁂ Cotangent space T �
pM

T �
pM is the dual space of TpM ; it is common to write T �

pM and not .TpM/�.

13 | Since T �
pM is just another vector space for each point p of the manifoldM , we can again define

fields onM that map into this space:

⁂ Covector field: B.p/ D
PD
iD1Bi .x/ dx

i with x D u.p/

14 | Just like the coordinate basis, the dual coordinate basis depends on the chart and changes under
coordinate transformations:

^ Coordinate transformation Nx D '.x/:

d Nxi D
DX
kD1

@ Nxi

@xk
dxk (3.14)
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• Check that this is the correct transformation for the dual coordinate basis:

d Nxi .N@j / D

"X
k

@ Nxi

@xk
dxk

# X
l

@xl

@ Nxj
@l

!

D

X
k;l

@ Nxi

@xk
@xl

@ Nxj
dxk.@l /„ ƒ‚ …

ık
l

D

X
k

@ Nxi

@xk
@xk

@ Nxj„ ƒ‚ …
@ Nxi

@ Nxj

D ıij , (3.15)

• You might recognize Eq. (3.14): This is simply the rule to compute the ↓ total differential
of the function Nx D '.x/. This is no coincidence and explains why we use the differential
notation dxi for the dual vectors: The objects dxi that we physicists like to illustrate as
“infinitesimal shifts” in xi are actually linear functionals (↑ 1-forms).

15 | Now we can play the same game on T �
pM as before on TpM :

^ Covector field B and expand it in different dual coordinate bases:X
i

Bi .x/dxi D B.p/ D
X
i

NBi . Nx/d Nxi (3.16)

with x D u.p/ and Nx D v.p/.

¡! The covector field B is another geometric object, just as the vector field A was. That it does not
depend on the chosen chart is the statement of this equation.

Eq. (3.16)!

B D
X
i

Bi .x/ dxi
Š
D

X
i

NBi . Nx/ d Nxi
Eq. (3.14)
D

X
k

"X
i

@ Nxi

@xk
NBi . Nx/

#
„ ƒ‚ …

Š
DBk.x/

dxk (3.17)

This motivates the following definition (we replace x $ Nx and the indices i $ k):

16 | ^ D-tuple fBi .x/g of fields (in some chart with coordinates x):

⁂ Covariant vector field fBi .x/g W, NBi . Nx/ D

DX
kD1

@xk

@ Nxi
Bk.x/ (3.18)

Covariant vector (field)! Subscript indices!

The rationale of Eq. (3.18) is the same as that of Eq. (3.8): Whenever we find a family of fields
that transform under coordinate transformations as Eq. (3.18), we immediately know that together
they encode a geometric, chart-independent object on the manifold that can be used to describe a
physical quantity. To indicate that this object is a covariant vector field, we use subscript indices.

17 | Example:

First, let us introduce an even shorter notation for partial derivatives: ˆ;i � @iˆ

Following our index convention, the lower index in these expressions is only warranted if the field
transforms as a covariant vector field according to Eq. (3.18). Let us check this:

N̂
;i . Nx/ D N@i N̂ . Nx/

Eq. (3.4)
Eq. (3.5)
D

DX
kD1

@xk

@ Nxi
@ˆ.x/

@xk
D

DX
kD1

@xk

@ Nxi
ˆ;k.x/ (3.19)
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! The gradient of a scalar is a covariant vector field.

18 | What happens if we apply a covector field on a vector field at each point p 2M ?

�.p/ WD B.p/A.p/ D
X
i;j

Bi .x/A
j .x/ dxi .@j /„ ƒ‚ …

ıi
j

D

X
i

Ai .x/Bi .x/ DW ˆ.x/ (3.20)

! ˆ.x/ must be a scalar!

This is a good point to introduce a new (and very convenient) notation:

⁂ Einstein sum convention:

DX
iD1

Ai .x/Bi .x/ � Ai .x/Bi .x/„ ƒ‚ …
⁂ Einstein summation

⁂ Contraction

D Al.x/Bl.x/ (3.21)

The Einstein sum convention or Einstein summation is a syntactic convention according to which a
sum is automatically implied (but not written) whenever two indices show up twice in an expression
and one is up (contravariant) and one down (covariant). Note that such indices are “dummy
indices” in the sense that you can rename them to whatever you want (as long as you do not use
the same letter for other indices already!). The sum over one co- and one contravariant index is
called a contraction.

With this new notation it is straightforward to check thatˆ transforms according to Eq. (3.4) by
using the transformations Eq. (3.8) and Eq. (3.18):

N̂ . Nx/ D NAi . Nx/ NBi . Nx/ D

�
@ Nxi

@xk
Ak.x/

�"
@xl

@ Nxi
Bl .x/

#
(3.22a)

D
@ Nxi

@xk
@xl

@ Nxi„ ƒ‚ …
Chain rule ! ıl

k

Ak.x/Bl .x/ D A
l .x/Bl .x/ D ˆ.x/ (3.22b)

The intermediate expression contains three sums over the colored indices (which we don’t write)!

! The contraction of a contra- and a covariant vector field yields a scalar field.

19 | Note on nomenclature:

• If you compare Eq. (3.18) with Eq. (3.5) you find that the components Bi of a covector field
transform like the basis vectors @i of the tangent space. We say the components covary (“vary
together”) with the basis. This is why they are called covariant.

• A comparison of Eq. (3.8) and Eq. (3.14) shows that the components Ai of a vector field
transform like the basis dxi of the cotangent space – which is the inverse (“opposite”)
transformation as for the basis of the tangent space @i . Thus we say the components Ai

contravary (“vary opposite to”) the basis @i . This is why they are called contravariant.

3.4. Higher-rank tensors

You learned in your linear algebra course that two vector spaces V andW can be used to construct a new
vector space V ˝W called the ↓ tensor product. This allows us to generalize the notion of contra- and
covariant vector fields to tensor fields, all of which are geometric, chart-independent objects defined on the
manifold that are needed to describe physical quantities:
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20 | An ⁂ (absolute) .p; q/-tensor (field) T of rank r D p C q

T
i1i2:::ip

j1j2:::jq
� T

i1i2:::ip
j1j2:::jq

.x/ or T IJ � T
I
J .x/ ; (3.23)

with ↓ multi-indices I D .i1 : : : ip/ and J D .j1 : : : jq/,

transforms like the tensor product of p contravariant and q covariant vector fields:

D NT I
J
. Nx/‚ …„ ƒ

NT
i1:::ip

j1:::jq
. Nx/ D

�
@ Nxi1

@xm1
� � �

@ Nxip

@xmp

�
„ ƒ‚ …

DW @ NxI

@xM

�
@xn1

@ Nxj1
� � �
@xnq

@ Nxjq

�
„ ƒ‚ …

DW @xN

@ NxJ

T
m1:::mp

n1:::nq
.x/„ ƒ‚ …

DTM
N
.x/

(3.24)

There are r D p C q sums in this transformation rule (Einstein summation!).

• ¡! It is important that we do not write contra- and covariant indices above each other like so:
T ij (at least not with additional knowledge about the tensor). This will become important
below.

• Henceforth we always encode tensor fields by their chart-dependent components. The actual
tensor field is of course chart-independent and maps each point p 2M to an element of the
tensor product

TpM ˝ � � � ˝ TpM„ ƒ‚ …
p factors

˝T �
pM ˝ � � � ˝ T

�
pM„ ƒ‚ …

q factors

: (3.25)

like so

T .p/ D
X
I;J

T
i1:::ip

j1:::jq
.x/ @i1˝ � � � ˝ @ip˝ dxj1˝ � � � ˝ dxjq : (3.26)

• Note that while tensors (more precisely: tensor components) are indicated by upper and
lower indices (corresponding to their rank), not every object that is conventionally written
with upper and lower indices does encode a tensor. For example, the transformation matrices
@ Nxi

@xm , which describe a basis change on T �
pM , do not encode a tensor field.

21 | Examples:

Scalar ˆ.x/ ! .0; 0/-tensor

Contravariant vector Ai .x/ ! .1; 0/-tensor

Covariant vector Bi .x/ ! .0; 1/-tensor

Tensor product T ij .x/ WD Ai .x/Bj .x/ ! .1; 1/-tensor (Check this!)

22 | Properties:

• Equality:

A D B W, 8i1:::ip 8j1:::jq
W A

i1:::ip
j1:::jq

D B
i1:::ip

j1:::jq
(3.27)

• Symmetry:

T (anti-)symmetric in k and l W, T :::k:::l:::::: D .�/ T
:::l:::k:::

::: (3.28)
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Every contra- or covariant rank-2 tensor can be decomposed into a sum of symmetric and
antisymmetric tensors:

Tij D
1

2
.Tij C Tj i /„ ƒ‚ …

DWT.ij /

C
1

2
.Tij � Tj i /„ ƒ‚ …

DWTŒij �

D T.ij / C TŒij � : (3.29)

23 | Constructing tensors:

New tensors can be constructed from known tensors as follows (Proofs: → Problemset 4):

• Sum of .p; q/-tensorsA andB yields .p; q/-tensor C :

C
i1:::ip

j1:::jq
WD A

i1:::ip
j1:::jq

C B
i1:::ip

j1:::jq
(3.30a)

or C IJ WD A
I
J C B

I
J (3.30b)

• Product of .p; q/-tensorA and scalarˆ yields .p; q/-tensor C :

C IJ WD ˆA
I
J (3.31)

• Tensor product of .p; q/-tensorA and .r; s/-tensorB yields .p C r; q C s/-tensor C :

C IKJL WD A
I
J � B

K
L (3.32)

• Contractions:

Summing over a pair of contra- and covariant indices yields a tensor of rank .p � 1; q � 1):

QA
i1:::�:::ip

j1:::�:::jq
WD A

i1:::k:::ip
j1:::k:::jq

(3.33)

The � indicates that the index summed over on the right side is missing in the list.

Proof: → Problemset 4

A special case of a contraction (in combination with a tensor product) is the scalar obtained
from a contra- and a covariant vector field above:

ˆ D C ii D A
iBi : (3.34)

• Quotient theorem:

AB D C tensor for all tensors B ) A is tensor (3.35)

Here, AB denotes (potentially multiple) contractions between indices of A and B (but not
within A and B).

– As an example, rewrite an arbitrary contravariant vector Ai as Ai D ıijA
j with Kro-

necker symbol ıij . The above theorem then implies that ıij transforms as a .1; 1/-tensor
(verify this using the definition!). Hence we actually should write ıij instead of ıij .
However, because the Kronecker symbol is symmetric in its indices, this simplified
notation is allowed (→ later).
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– Special case:

AikB
k
D Ci covector for all vectors Bk ) Aik is .0; 2/-tensor (3.36)

Proof: → Problemset 4

24 | Relative tensors:

i | Relative tensor are a generalization of the (absolute) tensors defined above. This generaliza-
tion is useful because most of the rules for computing with tensors discussed so far carry
over to relative tensors.

A ⁂ relative tensor of weightw 2 Z picks up an additional power w of the ↓ Jacobian
determinant under coordinate transformations:

NRIJ . Nx/ D det
�
@x

@ Nx

�w @ NxI

@xM
@xN

@ NxJ
RMN .x/ with weight w 2 Z (3.37)

and Jacobian determinant

det
�
@x

@ Nx

�
WD

X
�2SD

.�1/�
DY
iD1

@xi

@ Nx�j
: (3.38)

Here SD is the group of permutations � onD elements.

Since Nx D '.x/ is invertible, x D '�1. Nx/, it is @ Nx
@x
D

�
@x
@ Nx

��1

and therefore det
�
@ Nx
@x

�
D

det
�
@x
@ Nx

��1

.

ii | Examples:

• (Absolute) tensors � Relative tensors of weight w D 0

• Volume form: Relative tensor of weight w D �1:

dDNx D dDx det
�
@ Nx

@x

�
D dDx det

�
@x

@ Nx

��1

(3.39)

Remember the rule for integration by substitution with multiple variables!

• ⁂ Tensor density L.x/ WD Relative tensor of weight w D C1!

S D

Z
dDxL.x/„ ƒ‚ …

Absolute tensor

D

Z
dDNx NL. Nx/ (3.40)

In this example, we assume that L.x/ is a scalar tensor density such that its integral is a
(absolute) scalar quantity.

In ↑ relativistic field theories (like electrodynamics), the Lagrangian density L.x/ is a
scalar tensor density such that the ↓ action S becomes a scalar.

• Let i1; i2; : : : ; iD 2 f1; 2; : : : ;Dg and define the ⁂ Levi-Civita symbol as

"I � "i1i2:::iD WD

8̂<̂
:
C1 I even permutation of 1; 2; : : : ;D
�1 I odd permutation of 1; 2; : : : ;D
0 (at least) two indices equal

(3.41)
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An even (odd) permutation of 1; 2; : : : ;D is constructed by an even (odd) number of
transpositions (= exchanges of only two indices).
ı
�!

N"I D "I $ det
�
@x

@ Nx

�C1 @ NxI

@xJ
"J (3.42)

! "I D "i1i2:::iD is a .D; 0/-tensor density

– ¡! N"I D "I is true by definition: " is a symbol defined by Eq. (3.41); this definition
is independent of the coordinate system. In Eq. (3.42) we compare this trivial
transformation with that of a (relative) tensor and conclude that it is equivalent to
the statement that "I transforms as a .D; 0/-tensor density with weightw D C1.
This knowledge is helpful in tensor calculus to construct covariant expressions that
contain Levi-Civita symbols (→ below).

– To show this, note that the Levi-Civita symbol can be used to compute determi-
nants:

det
�
@ Nx

@x

�
D

X
�2SD

.�1/�
DY
iD1

@ Nxi

@x�j
D

@ Nx1

@xj1
� � �

@ NxD

@xjD
"j1:::jD : (3.43)

Details: → Problemset 4
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