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↓ Lecture 6 [21.11.23]

iii | !⁂ Proper time accumulated by the spaceship clock along the trajectory P :
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• As constructed, the proper time��ŒP � of a time-like trajectoryP , parametrized by Ex.t/
for t 2 Œt0; t1�, is the time elapsed by a clock that follows this trajectory in spacetime.

• ¡! This result is valid for accelerated clocks.

In general, special relativity can described the physics of accelerated objects as
long as the descpription of the process is given in an inertial coordinate system (as is
the case here).

• ¡! The right-most expression in Eq. (2.25) yields the same result in all inertial systems
K [recall Eq. (2.24)]. This is why �ŒP � is a function of the event trajectory P and
not its coordinate parametrization Ex.t/. This is important: It tells us that all inertial
observers will agree on the reading of the spaceship clock �A at arrivalA (although their
parametrization Ex.t/may look different).

• Note that since Ex.t/ is assumed to be time-like, it is 8t W j PEx.t/j < c such that the
radicand is always non-negative.

• �Œ�� is a functional of the trajectory P ; this is why we use square-brackets.

4 | Which trajectory P � between the two eventsD and A maximizes the proper time��?

i | D and A are time-like separated! 9 Inertial system K 0 D K.D;A/ with

ŒD�K0 D .t 0D D 0; Ex
0
D D

E0/ and ŒA�K0 D .t 0A; Ex
0
A D
E0/ (2.26)

That is, without loss of generality, we can Lorentz transform into an inertial systemwhere the
two events happen at the same location (and by translations we can assume that this location
is the origin E0 and that the coordinate time is t 0D D 0 atD). We label the time and space
coordinate in K 0 by t 0 and Ex0. Because of the relativity principle SR , K 0 is as good as any
system to describe events.

ii | Time of an arbitrary path P 3 D;A with ŒP �K0 D .t 0; Ex0.t 0//:
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Here P � is the trajectory betweenD and A that is parametrized by the constant function
Ex0.t 0/ � E0 inK 0. In other inertial systems, this trajectory will not be constant; however, it is
inertial, i.e., P � is described by a trajectory betweenD and A with uniform velocity.

Check this by applying a Lorentz transformation to the coordinates .t 0; E0/K0 !

! Clocks that travel along the inertial trajectory P � betweenD and A collect the
largest proper time �� D ��ŒP ��.

Collecting the“largest time”means that the these clocks run the fastest.

5 | It is important to let this result sink in:

LetK 0 be the rest frame of earth (which is located in the origin E0) and consider two twins of age �D :

• Twin S departs with a Spaceship atD, flies away from earth, turns around and returns to
earth at A. Twin S therefore follows a trajectory similar to P2 in the sketches above.

• Twin E stays on Earth. He follows the inertial trajectory P � in the sketches above.

We just proved above:

hAge of Twin S at Ai D ��ŒP2�C �D < ��ŒP ��C �D D hAge of Twin E at Ai

This is the famous ⁂ Twin“paradox” : Twin S aged less than Twin E.

6 | Why there is no paradox:

• If you don’t see why the above result should be paradoxical:

Good! Move along. Nothing to see here! ,

• Why one could conclude that the above result is paradoxical (= logically inconsistent):

– From the view of Twin E, Twin S speeds around quickly, thus time-dilation tells him
thatTwin S should age slower. And indeed, when Twin S returns, he actually didn’t
age as much.

– Now, you conclude, due to the relativity principle SR , we could also take the perspective
ofTwin S (i.e., our system of reference is now attached to the spaceship). ThenTwin S
would conclude that time-dilation makesTwin E (who now, together with earth, speeds
around quickly) age more slowly. But this does not match up with the above result that,
when both twins meet again at A, Twin S is the younger one! Paradox!

The resultion is quite straightforwad:

The invocation of the relativity principle SR in the last point is not admissible! Remember
that SR only makes claims about the equivalence of inertial systems. Now have a look at the
trajectory P2 of the spaceship again: it is clearly accelerated and cannot be inertial. And
that there is at least a period where the spaceship (and Twin S) is accelerating is a neccessity
forTwin S to return toTwin E (at least in flat spacetimes, but not so in curved ones [50])!
This implies that the reunion of both twins at A requires at least one of them to not stay in
an inertial system. This breaks the symmetry between the two twins and explains why the
result can be (and is) asymmetric.

• ¡! For historical (and anthropocentric) reasons, the “twin paradox” is called a “paradox.”
We stick to this term because we have to – and not because it is appropriate name. The term
“paradox” suggests an intrinsic inconsistency of relativity. As we explained above: This
is not the case. All “paradoxes” in relativity are a consequence of unjustified, seemingly
“intuitive” reasoning. The root cause is almost always an inappropriate, vague notion of
“absolute simultaneity” that cannot be operationalized.
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• An overview on different geometric approaches to rationalize the phenomenon can be found
in Ref. [51].

Below are two widely used spacetime diagrams of an idealized version whereTwin S changes
inertial systems only once from SD to SA halfway through the journey atR. You can think of
this as an instantenous acceleration at the kink. Note, however, that the acceleration itself
is dynamically irrelevant for the arguments; it is only important that the inertial frames in
which Twin S departs and returns are not the same:

– In the left diagram the slices of simultaneity in the two systems SD and SA are drawn. As
predicted by time-dilation (andmandated by SR ),Twin S observes the clocks ofTwinE
to run slower during his “inertial periods”, i.e., while he stays in a single inertial system.
However, the moment Twin S“jumps” from SD to SA atR, his notion of simultaneity
changes instantaneously: In SD ,R andRD are simultaneous; in SA, however,R and
RA are simultaneous. Due to this jump, the record of Twin S contains now a temporal
gap for events on earth (highlighted interval). It is this “missing” time interval that
overcompensates the slower running clocks on earth (as observed from SD and SA) and
makesTwin S conclude thatTwin E ages faster (in agreement with the actual outcome
of the experiment).

If you wonder what happened to the (missing) observations of events in the triangle
RARRD : there is a nice explanation in Schutz [4]. (The bottom line is that Twin S
constructs a bad coordinate system by stopping the recording of events in system SD
when he reachesR.)

– In the right diagram, we draw light signals (“pings”) of an earth-bound clock next to
Twin E sent to Twin S. Twin S receives these signals and measures their period. This
idealizes howTwin S sees (not observes!) the clocks ticking on earth (and, by proxy, how
fastTwin E ages). It is important to understand the difference between this “seeing”
and our operational definition of observing (using the contraption called an ← inertial
system, as used in the left diagram). As demonstrated by the diagram, Twin S first sees
the clock on earth ticking slower; but when he turns around atR, the clocks on earth
(apparantly) speed up significantly. In the end, this speedup overcompensates for the
slowdown during the first part of the journey so thatTwin S again arrives at the (correct)
conclusion that Twin E ages faster. Note that the speedup of the earth-bound clock
seen by Twin S during the second half of his journey does not contradict time-dilation
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because seeing is not observing. This is similar to the ↑ Penrose-Terrell effect in that a
genuine relativistic effect (here: time-dilation) is distorted by an additional “imaging
effect” due to the finite speed of light.

• In our careful derivation above, we not only showed that Twin S ages less than Twin E; we
also showed that this conclusion is independent of the inertial observer! Thus we know that
there will be no dispute about the different ages between different inertial observers.

• The Hafele-Keating experiment [46,47] and the muon decay experiments [44], mentioned
previously in the context of time-dilation, are experimental confirmations of the twin“para-
dox.” So our theoretical prediction above (that Twin S ages less than Twin E) is experimen-
tally confirmed. End of discussion.

• Our derivation of the accumulated proper time along trajectories in spacetime is both mathe-
matically sound and experimentally confirmed. This qualifies special relativity as a
successfull theory of physics. Operationally there is nothing to complain about: the theory
does its job to produce quantiative predictions of real phenomena. So why do so many people
(physicists included) – despite the various efforts to visualize the phenomenon – have this
nagging feeling of dissatisfaction that they cannot get rid of? The reason, so I would argue, is
the human brain and its proclivity to inject concepts of absolute simulateneity into its model
building. This qualifies the historical overemphasis of the twin “paradox” as a meta problem:
The question to study is not how to“solve” the twin“paradox” (as we showed above, there
is nothing to solve); the question to study is why so many peoply thought (and still think)
that there is a problem in the first place. This meta problem is an actual problem to study; but
it falls into the domain of cognitive science, and not physics!

7 | Two lessons to be learned from this:

You can live longer than your inertial-system-dwelling peers

by changing inertial systems (= accelerating) at least once.

The mere fact that our universe really allows for this (at least in theory) makes it much more
interesting than its boring alternative: a Galilean universe.

and

Phenomena like length contraction and the twin “paradox” are physically real.

Their “paradoxical” flavor is a phenomenon of human cognition, not physics.

This is why we put “paradox” always in quotes in the context of relativity.
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3. Mathematical Tools I: Tensor Calculus

In this chapter we introduce tensor calculus (↑ Ricci calculus) for general coordinate transformations '
(which will be useful both in special relativity and general relativity). The coordinate
transformations ' relevant for special relativity are Lorentz transformations (and therefore linear)
which simplifies expressions often significantly (→ Chapter 4). However, this special feature of coordinate
transformations in special relativity is not crucial for the discussions in this chapter.

Goal: Construct Lorentz covariant (form invariant) equations
(for mechanics, electrodynamics, quantum mechanics)

Question: How to do this systematically?

Note that (we suspect that) Maxwell equations are Lorentz covariant. Clearly this is not obvious and
requires some work to prove; we say that the Lorentz covariance is not manifest: it is there, but it is hard
to see. Conversely, without additional tools that make Lorentz covariance more obvious, it is borderline
impossible to construct Lorentz covariant equations from scratch (which we must do for mechanics and
quantum mechanics!).

We are therefore looking for a “toolkit” that provides us with elementary “building blocks” and a set of
rules that can be used to construct Lorentz covariant equations. This toolbox is known as tensor calculus
or ↑ Ricci calculus; the “building blocks” are tensor fields and the rules for their combination are given by
index contractions, covariant derivatives, etc. The rules are such that the expressions (equations) you can
build with tensor fields are guaranteed to be Lorentz covariant. This implies in particular that if you can
rewrite any given set of equations (like the Maxwell equations) in terms of these rules, you automatically
show that the equations were Lorentz covariant all along. We then say that the Lorentz covariance is
manifest: one glance at the equation is enough to check it.

Later, in general relativity, our goal will be to construct equations that are invariant under
arbitrary (differentiable) coordinate transformations (not just global Lorentz transformations). Luckily, the
formalism we introduce in this chapter is powerful enough to allow for the construction of such → general
covariant equations as well. This is why we keep the formalism in this chapter as general as possible, and
specialize it to special relativity in the next Chapter 4. The discussion below is therefore already a
preparation for general relativity; it is based on Schröder [1] and complemented by Carroll [52].

3.1. Manifolds, charts and coordinate transformations

1 | D-dimensional Manifold

= Topological space that locally “looks like”D-dimensional Euclidean space RD :
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• ¡! In relativity, the manifold of interest is the set of coincidence classes E; it makes up
theD D 4-dimensional manifold we call spacetime.

• A space that “locally looks like RD” is formalized as a ↑ topological space that is locally
↑ homeomorphic to Euclidean space RD . The structure defined in this way is then called a
↑ topological manifold.

2 | Differentiable Manifolds:

We want to formalize this idea and introduce additional structure to the manifold so that we can
differentiate functions on it:

i | ⁂ Coordinate system / Chart .U; u/:

u W U �M ! u.U / � RD (3.1a)

u�1
W u.U / � RD ! U �M (3.1b)

U �M : open subset ofM ; u and u�1 are continuous and u ı u�1 D 1.

U DM is allowed. This is the situation we assumed so far in special relativity:
Our inertial coordinate systems cover all of spacetimeM D E .

ii | ^ Two charts .U; v/ and .V; v/ and let U \ V ¤ 0:

' WD v ı u�1
W u.U \ V / ! v.U \ V / (3.2a)

'�1
WD u ı v�1

W v.U \ V / ! u.U \ V / (3.2b)

': ⁂ Coordinate transformation / Transition map

U DM D V andU \V DM is allowed. This is the situation we assume so far in special
relativity where .U D E; u/ and .V D E; v/ correspond to the coordinate systems of
two different inertial systems. The coordinate transformation ' would then be a Lorentz
transformation (defined on U \ V D E).

iii | ⁂ Atlas := Family of charts .Ui ; ui /i2I such thatM D
S
i2I Ui

This definition of an atlas formalizes the notion of an atlas in real life (of the book variety):
It contains many charts that, taken together, cover the complete manifold (typically earth).
The different charts (on different pages of the book) all overlap on their edges such that you
can draw any route on earth without gaps.

All ', '�1 differentiable!M : ⁂ Differentiable Manifold
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• ' and '�1 are maps from RD to itself. It is therefore clear what“differentiable”means.

• In mathematics one is of course more precise about the degree of differentiability of
the transition functions, and subsequently assigns this degree to the manifold. For
example, if all coordinate transformations are infinitely often differentiable (= smooth),
the manifold is called a ↑ smooth manifold. We are sloppy in this regard: For us all
functions are differentiable as often as we need them to be.

In relativity we will only be concerned with differentiable manifolds.

3 | Example:

! In general, a manifold cannot be covered by a single chart (Earth, mathematically S2, needs at
least two charts). In special relativity this is not a problem: There we assume that spacetime
is a flat (pseudo-)Euclidean space E ' R4 and the coordinates given by our inertial systems cover
all of spacetime. Later, in general relativity, this will not necessarily be the case.

3.2. Scalars

4 | ⁂ Scalar (field) := Function � WM ! R=C

• If � maps to R (C), we call � a real (complex) scalar field.

• ¡! � is a geometric object because it only depends on the manifold itself. It does not rely on
charts/coordinates and does not depend on a particular set of charts you might choose to
parametrize the manifold. The notion of a mathematical object to be “geometric in nature”
or “independent of the choice of coordinates” is absolutely crucial for the understanding of
general relativity. The reason why these “geometric objects” are so important for
physics is the following insight that took physicists (including Einstein) a long time to fully
comprehend and implement mathematically:

Coordinates (charts) do not represent physical entities.

They are (useful) “mathematical auxiliary structures.”

• One reason why it is so hard for us to grasp and implement the “physical irrelevance” of
coordinates is, so I believe, that the first (and often only) coordinates we encounter in school
are Cartesian coordinates. They are particularly intuitive because they are simply the distances
of a point to some coordinate axes. Distances are a geometric property and physically relevant
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(you can measure them with rods); they are not the invention of mathematicians. This makes
students draw the (wrong) conclusion that coordinates in general have intrinsic physical
meaning. The problem is that coordinates are inventions of mathematicians; they do not
share the ontological status of physical quantities like lengths etc. To undo thismisconception
is key to understand general relativity (→ much later).

• Since bothM and R=C are ↑ topological spaces, it makes sense to ask whether (or require
that) � is continuous. It does not make sense to ask whether � is differentiable (and what is
derivative is) because, in general,M does neither come with a notion of “distance” between
two points inM nor can you add or subtract points (M does not have to be a ↓ metric space
and/or a ↓ linear space). So an expression like @p�.p/ does not make sense (→ below)!

5 | We just declared that coordinates are “not physical.” The problem is that without coordinates it
is really hard (at least for physicists) to do actual calculations with the geometric objects we are
interested in (for example: compute derivatives). In addition, comparing theoretical predictions
with experimental observations typically requires some sort of coordinate representation. Our
← inertial systems, for example, are elaboratemeasurement devices that produce a specific coordinate
representation of the observed events.

This is why we always assume in the following that we have one (or more) charts that allow us to
parametrize a (part of the) manifold, and then express the geometric quantities as functions of
these coordinates. This means for the scalar field:

^ Two overlapping charts u and v:

ˆ.x/ WD �.u�1.x// x 2 u.U \ V / (3.3a)

N̂ . Nx/ WD �.v�1. Nx// Nx 2 v.U \ V / (3.3b)

ˆ and N̂ are functions on (subsets of ) RD; in contrast to � which is a function on the manifoldM .
In an abuse of notation, some authors do not make this distinction and write � and N� instead.
ı
�!

N̂ . Nx/ D ˆ.x/ for Nx D '.x/ with ' D v ı u�1 : (3.4)

Note that N̂ . Nx/ def
D �.p/

def
D ˆ.x/ with u�1.x/ D p D v�1. Nx/.

• In relativity we typically work in a particular chart (coordinate system). Thus we write
our fields as functions of coordinates (and not points on the manifold); e.g., when working
with scalars, we typically work withˆ (and not �).

• ¡! The special transformation of a field Eq. (3.4) (given as function of coordinates) tells us
that it actually encodes a geometric, chart-independent function � (given as function of
points on the manifold). This idea will be prevalent throughout this chapter and is the basis
of our modern formulation of relativity: We work with functions that depend on specific
coordinates (and therefore change when we transition to another chart); however, these
functions satisfy certain transformation laws [like Eq. (3.4)] that guarantee that they actually
encode geometric, chart-independent objects (which is what physics is about).

• As a function of coordinates, scalar fields are those fields the values of which do not change
under coordinate transformations. A typical example would be the temperature as a function
of position: When you move your coordinate system, the temperature of a particular point in
space still is the same (only your coordinates of this particular point have changed!). This is
exactly what Eq. (3.4) demands.
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Note that being a scalar (field) does not simply mean“being a number.” The ´-component of
the electric field strengthE´.x/, for example, assigns a number to every point x; however, it
does not transform like Eq. (3.4) under coordinate transformations. (Do you see why? What
happens toE´ if you rotate your coordinate system?)

• In the literature, you will find the notation N̂ D ˆ to characterize scalars. This does not mean
N̂ .x/ D ˆ.x/ for all x 2 RD (which characterizes form-invariance or functional equivalence),
but rather N̂ . Nx/ D ˆ.x/ (which characterizes scalar fields). Note that with x D '�1. Nx/ it
follows N̂ . Nx/ D ˆ.'�1. Nx// such that the function N̂ is typically not functionally equivalent
toˆ. This ambiguity is the price we have to pay if we want to express geometric objects in
terms of coordinates.

• Sinceˆ W RD ! R, it is well-defined what “differentiability” of ˆmeans. So expressions
like @ˆ.x/

@xk make sense now (if ˆ is differentiable). One then defines that � is differentiable
onM iff ˆ is differentiable for all charts of an atlas ofM .

3.3. Covariant and contravariant vector fields

Are scalar fields the only geometric objects that can be defined on a manifold? The answer is no, there
are many more! And these objects are not just toys for mathematicians: they are necessary to represent
physical quantities like the electromagnetic field. Unfortunately, the definition of these quantities is not
so straightforward as for scalars. We will not be mathematically precise in our discussion; however, it is
important to understand the conceptual ideas:

6 | ⁂ Tangent space TpM at p 2M

= Vector space of directional derivative operators with evaluation at p 2M (=derivations)

These operators can be applied to differentiable functions on the manifold (i.e., scalar fields).

• The tangent space TpM is the mathematical formalization of the intuitive concept of the
plane R2 that you can attach tangentially at any point p of a two-dimensional manifold. The
problem with this picture is that it only works if you embed the manifoldM into a higher-
dimensional Euclidean space. Mathematically, such an approach is not satisfying because it
presupposes additional structure to characterize the manifold (which, as it turns out, is not
needed). Physically, the approach is also problematic: The manifold we are interested in is
all of spacetime E . But E is all there is, it is (to the best of our knowledge) not embedded
into anything. It is therefore crucial that we can work with manifolds “stand alone”, without
assuming any embedding into a higher-dimensional space. The price we have to pay is that
tangent vectors must be defined, rather abstractly, as directional derivative operators.
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• There is a different tangent spaceTpM at every pointp 2M ; these vector spaces all have the
same dimensionD (like the manifold) and are therefore all isomorphic. However, without
additional structure, there is no natural connection (isomorphism) between these different
vector spaces at different points. The disjoint union of all tangent spaces is called ↑ tangent
bundle TM .

• Mathematically, the vectors in the tangent space can be defined as equivalence classes of
smooth curves through p with the same derivative (with respect to their parametrization)
at p. This equivalence class corresponds to a particular directional derivative that one can
apply to smooth functions on the manifold at p. We do not need this abstract“bootstrapping
procedure” for TpM in the following.

^ Chart .U; u/ with coordinates x D .x0; x1; : : : ; xD/

!⁂ Coordinate basis f@i � @
@xi g for TpM

Recall that partial derivatives are special kinds of directional derivatives (namely in the direction
where you keep all but one coordinate fixed). You can therefore think of @i as the tangent vector at
p 2M that points into the xi -direction mapped by u�1 onto the manifold.
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